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Abstract
Biphenyl-2,2'-bisfenchol (BIFOL) based chlorophosphite, BIFOP-Cl, exhibits surprisingly high
stabilities against hydrolysis as well as hydridic and organometallic nucleophiles. Chloride
substitution in BIFOP-Cl proceeds only under drastic conditions. New enantiopure, sterically
demanding phosphorus ligands such as a phosphoramidite, a phosphite and a P-H phosphonite
(BIFOP-H) are hereby accessible. In enantioselective Cu-catalyzed 1,4-additions of ZnEt2 to 2-
cyclohexen-1-one, this P-H phosphonite (yielding 65% ee) exceeds even the corresponding
phosphite and phosphoramidite.

Introduction
Chiral monodentate phosphorus ligands with C2-sym-
metric diol backbones, e.g. with the prominent BINOLs or
TADDOLs, are fundamental for the construction of effi-
cient enantioselective transition metal catalysts, especially
for copper-catalyzed 1,4-additions. [1-18] Such asymmet-
ric conjugate additions of diethylzinc to enones are often
highly enantioselective, especially with phosphoramidites
(amidophosphites) and phosphites. [19-42] These chiral
ligands (L*) exhibit large steric demands and good metal
to ligand back bonding abilities. Such ligands generate
active R-CuI-L* catalysts and support the rate determining
reductive elimination in the catalytic cycle (Scheme 1).
[43-48]
Common basis for diol-based phosphoramidites and
phosphites are highly reactive chlorophosphites. [49-52]

These intermediates are converted usually in situ with
amines or alcohols to the modular, enantiopure ligands
(Scheme 2). [19-42].
Modular fencholates were recently applied in chiral orga-
nolithium reagents [53-59] and in organozinc [60-63] as
well as in organopalladium catalysts [64-68] to study ori-
gins of enantioselectivities in C-C-couplings. The rigid,
terpene-based bicyclo[2.2.1]heptane unit enables effi-
cient, stereoselective access to crystalline diol ligands such
as BIFOL (biphenyl-bisfenchol), [69-73] which we here
apply for constructions of new BIFOL-based, phosphorus
ligands, i.e. biphenylbisfencholphosphanes (BIFOPs).
BIFOPs with high steric demand and good acceptor abili-
ties are then employed in enantioslective Cu-catalyzed
1,4-additions.
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Scheme 1: Monodentate phosphorus ligands, e.g. BINOL-based phosphoramidites or TADDOL-based phosphites, are highly efficient in 
copper catalyzed enantioselective conjugate additions.

Scheme 2: Modular phosphoramidites (R= NR'2) or phosphites (R= OR') from reactive chlorophosphite intermediates.

Scheme 3: Synthesis of biphenyl-2,2'-bisfenchol (BIFOL) based phosphane derivatives (BIFOPs).

Results and Discussion
Coupling of bis-lithiated biphenyl-2,2'-bisfenchol
(BIFOL), synthesized from 2,2'-dilithiobiphenyl and (-)-
fenchone, [69-73] with PCl3 or PBr3 yields the enantiop-
ure halophosphites BIFOP-Cl, 1 (62% yield) and BIFOP-
Br, 2 (69% yield, Scheme 3), which are air stable (no
hydrolysis or oxidation) over weeks, crystalline and ana-
lyzable via X-ray diffraction. [74-77] In close analogy to
the hydrogen bonded M-BIFOL, [69-73] only minus-(M)-
conformations of biaryl axes are found in these BIFOP
(biphenylbisfencholphosphane) halides (Figures 1 and 2).
Surprisingly, the halophosphites 1 (BIFOP-Cl) and 2
(BIFOP-Br) are very reluctant in reactions with various
nucleophilic reagents to give halide substitution (Table
1). [78,79] No nucleophilic substitution [19-42] is
observed for 1 in treatments with equimolar suspensions
of LiAlH4 in hexanes or THF at 25°C for 3 h (Table 1,
entries 1 and 2). Only elevated temperatures (69°C),
longer reaction times (12 h) and an excess of LiAlH4 yields
the P-H phosphonite BIFOP-H, 3 (79% yield, Table 1,

entry 3, Figure 3). Even the strong C-nucleophilic reagents
methyllithium, ethyllithium, n-butyllithium and t-butyl-
lithium gave no expected conversions at low tempera-
tures. Ethylation of BIFOP-Cl (1) yielding BIFOP-Et (4)
was observed with ethyllithium only at elevated tempera-
tures (Table 1, entry 7) or with a large excess of diethylzinc
at room temperature (Table 1, entry 13). Similarly, 1 was
converted to BIFOP-nBu (5, Figure 4) only with an excess
of n-BuLi at elevated temperatures. The resistance of
BIFOP-Cl (1) to O-and N-nucleophiles is apparent from
reactions with H2O, LiOPh and LiNEt2. While no hydrol-
ysis of 1 is observed at ambient temperature, only reflux
and basic conditions (KOH) yield complete hydrolysis of
1 to BIFOP(O)-H, 8 (98%, Table 1, entry 14, Figure 5).
[80,81] The phosphite BIFOP-OPh, 6 (40%, Figure 6) and
the phosphoramidite BIFOP-NEt2, 7 (47%, Figure 7) are
accessible from 1 only at elevated temperatures with
LiOPh or LiNEt2. The oxo-derivative BIFOP(O)-Cl (9) is
synthesized by coupling of BIFOL with POCl3 (65%, Fig-
ure 8).
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Scheme 4: Geometries of BIFOP-systems with respect to biaryl dihedral angles (C2-C1-C1’-C2’, BAA), fenchyl-aryl dihedral angles (C1-
C2-C3-O1) on the lone pair-side of phosphorus (FAA-lp) and at the substituent (X) side (FAA), the pyramidality of phosphorus measured
as angle sum and the distance of phosphorus to the biaryl axis (C1-C1’).

The high steric demand of the embedding fenchane units
provides explanations for the unexpectedly low reactivity
of the > P-Cl moiety in BIFOP-Cl (1). The geometries of all
BIFOP-derivatives are remarkable with respect to their
biaryl-angles, the fenchyl-aryl-angles, the pyramidality at
the phosphorus atoms as well as the positions of the
phosphorus atom in the hydrophobic fenchane cavities
(Scheme 4, Table 2).

A strong preference for the minus (M)-biaryl conformation
was found in BIFOL (Scheme 3) and was attributed to
hydrogen bond linked chiral fenchole units, in the solide
state and in solution. [69-73] Similarly, all phosphorus
linked BIFOPs exhibit M-biarly axes with dihedral angles
varying from -91° to -99° (Scheme 4, Table 2). The alter-
native plus (P)-conformations were not found experimen-
tally, they are computed to be disfavored by ca. 20 to 35
kcal mol-1 (Table 2). As in M-BIFOL, [69-73] the strong
destabilization of these plus-(P)-conformations arise from
steric repulsion of endo-oriented fenchane units in
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X-ray crystal structure of BIFOP-Cl (1)Figure 1
X-ray crystal structure of BIFOP-Cl (1). Distances are given in Å. 
(BAA = biaryl angle between C2-C1-C1'-C2'; FAA-lp = fenchyl-aryl 
dihedral angle between C1-C2-C3-O1; FAA = fenchyl-aryl dihedral 
angle between C1'-C2'-C3'-O2). The probability of ellipsoids is 
40% (CDC 270531).

Table 1: Reactivity of BIFOP-Cl (1) with various nucleophilic 
reagents.

entry Reagent 1 : reagent conditions yield a

1 LiAlH4 1 : 1 Rt, 3 h, THF -b

2 LiAlH4 1 : 1 Rt, 3 h, hexanes -b

3 LiAlH4 1 : 2.5 reflux, 12 h, hexanes 3(79%)
4 MeLi 1 : 1.2c -78°C, hexanes, Et2Od -b

5 MeLi 1 : 5c reflux, 24 h hexanes, Et2O -b

6 EtLi 1 : 1.2c -78°C, hexanes, benzened -b

7 EtLi 1 : 5c reflux, 24 h, hexanes, benzene 4 (63%)
8 nBuLi 1 : 1.2 -78°C-rt, hexanesd -b

9 nBuLi 1 : 5 reflux, 24 h, hexanes 5 (74%)
10 tBuLi 1 : 1.2 -78°C-rt, hexanesd -b

11 tBuLi 1 : 5 reflux, 48 h, hexanes -b

12 ZnEt2 1 : 2 rt, 2 h, toluene -b

13 ZnEt2 1 : 140 rt, 2 h, toluene 4 (89%)
14 H2O 1 : 110 rt, 3 h -b

15 H2O/KOH 1 : 220e reflux, 5 days 8 (98%)
16 LiOPh 1 : 5 -78°C-rt, hexanesd -b

17 LiOPh 1 : 5 reflux, 24 h, hexanes 6 (47%)
18 LiNEt2 1 : 5 -78°C-rt, hexanesd -b

19 LiNEt2 1 : 5 reflux, 24 h, hexanes 7 (47%)

a The reaction of 1 (δ31P: 154.4) was monitored by 31P-NMR-
spectroscopy; isolated yields are given;
b Only pure BIFOP-Cl (1) was recovered (> 91%);
c MeLi 1.6 M solution in diethylether; EtLi 0.5 M solution in benzene/
cyclohexane (90/10);
d Reactions were performed at -78°C for 3 h and subsequently at rt for 
3 h;
e With KOH (1 M, 0.01 g, 0.18 mmol) in water.
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BIFOPs, endo-methyl groups are close to the phosphorus
atoms (Figure 9).

Free rotation around the fenchyl aryl bonds is hindered in
aryl fenchol derivaties by the methyl-methylene-bifurca-
tion of the fenchane scaffolds (Scheme 4). These fenchyl
aryl dihedral angles (O1-C2-C3-C1, FAA, Scheme 4) are
crucial for the "bite" of the chiral diol unit and are con-
strained between 30° and 46° (Table 2), similar to
fenchyl aryl angles previously analyzed in lithium fencho-
lates. [55,56] In BIFOL, the asymmetry of the H-bond
gives rise to two different fenchyl aryl angles (25° and
31°, Table 2). [69-73] Likewise, the pyramidality at the
phosphorus atoms in BIFOPs distorts the inherent C2-
symmetry of the biphenylbisfenchol units to asymmetry
(C1). Fenchanes close to the phosphorus lone pairs (with
FAA-lp) can be differentiated from fenchanes close to sub-

stituents at phosphorus (with FAA, Scheme 4). The differ-
ence between these two FAA dihedral angles is a meassure
for the BIFOP-asymmetry, which is small for BIFOP-H (3)
and BIFOP-NEt2 (7), but large for BIFOP-Cl (1) and
BIFOP-OPh (6, Table 2).

The phosphorus atoms, essential for coordination to (late
transition) metals, exhibit slightly different degrees of
pyramidality, as it is measured by angle sums (planarity)
from 300° to 309° (Table 2, Scheme 4). The degree of
encapsulation of the phosphorus atoms by the fenchane
units is measured by the distance (d) of the phosphorus
atoms to the center of the biaryl axes (C1-C1', Scheme 4).
The tightest encapsulation and fenchane embedding of
phosphorus atoms is apparent for the halophosphites
BIFOP-Cl (1, 2.471 Å) and BIFOP-Br (2, 2.476 Å, Table 2),
explaining their unusual low reactivity (Table 1).

Scheme 5: Biphenyl-2,2'-bisfenchol based phosphanes (BIFOPs) as chiral ligands in enantioselective Cu-catalyzed 1,4-additions.
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Table 2: X-ray structure geometries (cf. Scheme 4) and computed energies of BIFOL and BIFOP-X (1–7).

BIFOP (-X) Erel (kcal mol-1)a BAA (°) b angle sum (°)c FAA-lp (°) FAA (°) d (Å)d

M-BIFOL +12.5 -95.0 e - (25) (31) -
1 (-Cl) +28.4 -91.3 305.2 37.9 46.3 2.471
2 (-Br) +35. 0 -91.7 306.6 38.9 36.9 2.476
3 (-H) +27.9 -98.2 301.4 30.0 29.7 2.669
5 (-nBu) +26.3 -99.4 303.6 31.4 34.5 2.792
6 (-OPh) +27.7 -93.3 300.0 34.5 44.8 2.567
7 (-NEt2) +22.5 -91.1 309.2 35.8 35.1 2.877

a Relative Destabilization of plus (P) conformations according to B3LYP/6-31G*//PM3 computations;
b Biaryl dihedral angle between C2-C1-C1'-C2' atoms (BAA) in degree;
c Angle sum at phosphorus atom (pyramydality) in degree;
d Distance (d) between phosphorus atoms and the center of the biaryl axis (C1-C1');
e Hydrogend bonded M-conformer.
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Cu-catalyzed, enantioselecitve 1,4-additions of diethylz-
inc to 2-cyclohexene-1-one were employed as test reac-
tions for the monodentate phosphorus ligands BIFOPs 1
and 3–7 as well as the oxo-derivatives 8 and 9 (Table 3,
Scheme 5).
The low reactivity of the chlorophosphite 1 with metal
organic nucleophiles (Table 1) points to its potential suit-
ability as ligand for late, electron-rich transition metals,
such as CuI. The rate determining reductive elimination
was expected to be favored by the good metal to ligand
back bonding properties of the σ*(P-Cl) acceptor as is
well established in phosphites, i.e. σ*(P-OR), and phos-
phoramidites, i.e. σ*(P-NR2). Computed anharmonic
CO-frequencies on CuI-model complexes indeed point to
highest νCO stretching frequencies for P-ligands with
strongest acceptor character, i.e. the halophosphites
(Scheme 6). [82-86]

Scheme 6: Anharmonic B3LYP/6-31G*(C,H,N,O,F,Cl,Br) /
SDD(Cu) CO-stretching frequencies to assess metal to ligand 
back bonding characteristics.

However, under catalysis conditions, BIFOP-Cl (1) con-
verts to the ethylphosphonite BIFOP-Et (4), which yields
R-3-ethylcyclohexanone with 11% ee (Table 3). Appar-
ently, the higher Lewis acidity of organozincs supports
faster nucleophilic substitution in (1) than with organo-

lithiums (Table 1). Unprecedented however is the P-H
phosphonite BIFOP-H (3), which yields with 65 % ee a
much higher enantioselectivity than the corresponding
phosphite (BIFOL-OPh, 16%ee) and phosphoramidite
(BIFOL-NEt2, 12%ee, Table 3). A good back bonding
characteristic between halophosphites and phosphites is
indeed apparent for the P-H unit (Scheme 6). [88,89] The
relative high enantioselectivity of 3 is remarkable, as the
asymmetry of 3, measured from the difference of its
fenchyl-aryl angles, is rather small (FAA-lp = 30.0° vs. FAA
= 29.7°, Table 2). The phosphorus atom in 3 is only
slightly encapsulated by the fenchane moieties, due to the
rather long d-distance (Scheme 4, Table 2, 2.7 Å) and the
low steric shielding by the H-atom. Indeed, P-H phop-
shonite 3 coordinates tightly to CuII-ions. Metal free
BIFOP-H (3) gives in CDCl3 a 31P-NMR signal at δ = 139.6
with a 1J (P,H) coupling of 214.5 Hz. With half of an
equivalent of Cu(OTf)2, no free 1 is detectable, only a
[(1)2Cu(OTf)2] complex is evident from a 31P-NMR signal
at δ = 81.1 with a stronger 1J (P,H) coupling of 299.5 Hz.
[90-91]

Conclusion
The large steric demand of embedding fenchane units
makes phosphorus atoms in BIFOPs hardly accessible by
nucleophilic reagents and leads to an unusually high sta-
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X-ray structures of BIFOP-Br (2)Figure 2
X-ray structures of BIFOP-Br (2). Distances are given in Å. (BAA 
= biaryl angle between C2-C1-C1'-C2'; FAA-lp = fenchyl-aryl dihe-
dral angle between C1-C2-C3-O1; FAA = fenchyl-aryl dihedral 
angle between C1'-C2'-C3'-O2). The probability of ellipsoids is 
30% (CCDC 270532).

Table 3: Enantioselective Cu-catalyzed 1,4-additions of 
diethylzinc to 2-cyclohexen-1-one (cf. Scheme 5).a

L*, i.e. BIFOP(O)-X substituent X yield (%)b %ee (config.)c

1 d Cl 98 d 11 (R) d

3 H 92 65 (R)
4 Et 98 11 (R)
5 nBu 97 7 (R)
6 OPh 73 16 (R)
7 NEt2 98 12 (R)
8 (O)-H 89 2 (R)
9 (O)-Cl 87 3 (S)

a Reaction conditions: -20°C, 3 h in CH2Cl2; L*:Cu(OTf)2 ratio (2:1);
b Yield determined by GC;
c The ee's are determined by GC with the chiral column lipodex E 0.2 
µm, 50 m, 0.25 mm;
d Chlorophosphite 1 was converted to P-Et phosphonite BIFOP-Et, 4.
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X-ray structures of phosphite BIFOP-OPh (6)Figure 6
X-ray structures of phosphite BIFOP-OPh (6). Distances are 
given in Å. (BAA = biaryl angle between C2-C1-C1'-C2'; FAA-lp = 
fenchyl-aryl dihedral angle between C1-C2-C3-O1; FAA = fenchyl-
aryl dihedral angle between C1'-C2'-C3'-O2). The probability of 
ellipsoids is 40% (CCDC 270535).

X-ray structures of BIFOP-nBu (5)Figure 4
X-ray structures of BIFOP-nBu (5). Distances are given in Å. 
(BAA = biaryl angle between C2-C1-C1'-C2'; FAA-lp = fenchyl-aryl 
dihedral angle between C1-C2-C3-O1; FAA = fenchyl-aryl dihedral 
angle between C1'-C2'-C3'-O2). The probability of ellipsoids is 
40% (CCDC 270534).

X-ray structures of BIFOP-H (3)Figure 3
X-ray structures of BIFOP-H (3). Distances are given in Å. (BAA 
= biaryl angle between C2-C1-C1'-C2'; FAA-lp = fenchyl-aryl dihe-
dral angle between C1-C2-C3-O1; FAA = fenchyl-aryl dihedral 
angle between C1'-C2'-C3'-O2). The probability of ellipsoids is 
40% (CCDC 270533).

X-ray structures of BIFOP(O)-H (8)Figure 5
X-ray structures of BIFOP(O)-H (8). Distances are given in Å. 
(BAA = biaryl angle between C2-C1-C1'-C2'; FAA-lp = fenchyl-aryl 
dihedral angle between C1-C2-C3-O1; FAA = fenchyl-aryl dihedral 
angle between C1'-C2'-C3'-O2). The probability of ellipsoids is 
40% (CCDC 270537).
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bility, e.g. for the chlorophosphite BIFOP-Cl (1). While 1
converts to the P-Et phosphonite BIFOP-Et (4) during Cu-
catalyzed 1,4-additions of diethylzinc to cyclohexenone,
the P-H phosphonite BIFOP-H (3) is stable and gives even
a higher enantioselectivity than a corresponding phos-
phite or phosphoramidite. Hence, the large steric demand
and the relatively low accessibility of the phosphorus
atoms in biphenyl-2,2'-bisfenchylphosphites (BIFOPs)
founds the special suitability for BIFOP-H (3) as P-H
phosphonite ligand in transition metal catalysis. This
points to promising applications of 3 or analogue P-H lig-
ands in enantioselective catalysis.

Additional material

Additional file 1
Experimental details
Click here for file
[http://www.biomedcentral.com/content/supplementary/1860-
5397-1-6-S1.doc]

Computed geometry (PM3) of plus-(P)-BIFOP-Cl with unnatural plus-(P)-biaryl conformationFigure 9
Computed geometry (PM3) of plus-(P)-BIFOP-Cl with unnatural 
plus-(P)-biaryl conformation. Distances are given in Å. (BAA = 
biaryl angle between C2-C1-C1'-C2'; FAA-lp = fenchyl-aryl dihe-
dral angle between C1-C2-C3-O1; FAA = fenchyl-aryl dihedral 
angle between C1'-C2'-C3'-O2).

X-ray structures of phosphoramidite BIFOP-NEt2 (7)Figure 7
X-ray structures of phosphoramidite BIFOP-NEt2 (7). Distances 
are given in Å. (BAA = biaryl angle between C2-C1-C1'-C1'; FAA-
lp = fenchyl-aryl dihedral angle between C1-C2-C3-O1; FAA = 
fenchyl-aryl dihedral angle between C1'-C2'-C3'-O2). The proba-
bility of ellipsoids is 40% (CCDC 270536).

X-ray structures of BIFOP(O)-Cl (9)Figure 8
X-ray structures of BIFOP(O)-Cl (9). Distances are given in Å. 
(BAA = biaryl angle between C2-C1-C1'-C2'; FAA-lp = fenchyl-aryl 
dihedral angle between C1-C2-C3-O1; FAA = fenchyl-aryl dihedral 
angle between C1'-C2'-C3'-O2). The probability of ellipsoids is 
40% (CCDC 270538).
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