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Abstract
Activation of an inferior olivary neuron powerfully excites Purkinje cells via its climbing fiber input and triggers a
characteristic high-frequency burst, known as the complex spike (CS). The theory of cerebellar learning postulates that
the CS induces long-lasting depression of the strength of synapses from active parallel fibers onto Purkinje cells, and
that synaptic depression leads to changes in behavior. Prior reports showed that a CS on one learning trial is linked
to a properly timed depression of simple spikes on the subsequent trial, as well as a learned change in pursuit eye
movement. Further, the duration of a CS is a graded instruction for single-trial plasticity and behavioral learning. We
now show across multiple learning paradigms that both the probability and duration of CS responses are correlated
with the magnitudes of neural and behavioral learning in awake behaving monkeys. When the direction of the
instruction for learning repeatedly was in the same direction or alternated directions, the duration and probability of CS
responses decreased over a learning block along with the magnitude of trial-over-trial neural learning. When the
direction of the instruction was randomized, CS duration, CS probability, and neural and behavioral learning remained
stable across time. In contrast to depression, potentiation of simple-spike firing rate for ON-direction learning
instructions follows a longer time course and plays a larger role as depression wanes. Computational analysis provides
a model that accounts fully for the detailed statistics of a complex set of data.
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Introduction
Climbing fiber inputs to the cerebellum appear to have

a primary, yet controversial and nonexclusive, role in cer-

ebellar motor learning (Hansel et al. 2001; Boyden et al.
2004; Carey, 2011; Gao et al. 2012; D’Angelo et al. 2016;
Titley and Hansel, 2016). Activation of a neuron in the
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Significance Statement

Climbing fiber inputs to the cerebellum appear to have a primary role in cerebellar learning: the presence of
a CS is tightly linked to single-trial plasticity, and variation in CS duration affects neural and behavioral
learning. Here, we show that the duration and probability of CS responses act as correlated signals to
instruct both plasticity in the cerebellum and learning in eye movement behavior in awake behaving
monkeys. Modulation of the context of motor errors reveals impressive parallels among the probability of CS
responses, the duration of CS responses, neural learning, and behavioral learning. A computational model
based on biological measurements reproduces the statistics of a complex set of data.
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inferior olive causes a large, long electrical event called a
complex spike (CS) in the 5–10 Purkinje cells contacted
by the olivary neuron’s axon, called a climbing fiber
(Eccles et al. 1967). CSs stand out from the simple spikes
caused by mossy fiber inputs because of their irregular,
infrequent activity and long-lasting burst with a variable
number of spikelets. According to the cerebellar learning
theory (Marr, 1969; Albus, 1971; Ito, 1972; Gilbert, 1974)
and subsequent experiments (e.g., Ito and Kano, 1982;
Linden et al. 1991), climbing fiber inputs cause long-term
depression of the parallel fiber to Purkinje cell synapses
that are active at the time of the input, and the depression
leads to changes in simple-spike firing that cause motor
learning. One recent addition to the cerebellar learning
theory provides evidence that potentiation in Purkinje
cells in the absence of a CS also might contribute to
cerebellar motor learning (Schonewille et al. 2010; De
Zeeuw and Ten Brinke, 2015; Gutierrez-Castellanos et al.
2017).

The properties of the CS responses recorded in Pur-
kinje cells have a striking correlation with the amounts of
both neural and behavioral learning. Under natural learn-
ing conditions in behaving animals, the probability of a CS
response to a given sensory stimulus varies from �0.2 to
0.6 across different modalities and Purkinje cells (Gilbert
and Thach, 1977; Ojakangas and Ebner, 1994; Soetedjo
and Fuchs, 2006; Medina and Lisberger, 2008). On aver-
age, the amount of learning in a given Purkinje cell de-
pends on the probability of a CS response to a given
instructive input (Medina and Lisberger, 2008) and the
duration of the CS response (Yang and Lisberger, 2014a).
These observations raise the possibility that the duration
and probability of a CS response to a given stimulus are
subject to voluntary modulation (Najafi and Medina,
2013), and that the organism might be able to regulate the
potency of climbing fiber–mediated cerebellar learning
mechanisms depending on context. Modulation of the
synchrony across the climbing fiber inputs to a given area
(Llinas et al. 1974, Welsh et al. 1995) also could play a role
in motor learning (see Yang and Lisberger, 2013, 2014a).

In the system and cerebellar structure we study, namely
smooth-pursuit eye movements and the floccular com-
plex, a CS in response to a learning instruction on one trial
is tightly linked to both depression of simple-spike firing
rate and behavioral learning on the next trial (Medina and
Lisberger, 2008; Yang and Lisberger, 2013; Kimpo et al.

2014; Khilkevich et al. 2016). The absence of a CS is
associated with a much smaller increase in simple-spike
firing on the next trial. The reliable linkage from CS re-
sponses to neural and behavioral learning offers the oppor-
tunity both to establish additional correlations between CS
responses and neural and behavioral learning and to evalu-
ate in greater detail the properties of CS responses under
natural learning conditions.

In this article, we take advantage of our ability to quan-
tify single-trial neural and behavioral learning to show four
new features of cerebellar learning. First, modulation of
the context of instructive target motions shows new cor-
relative parallels between the probability and duration of
CS responses and the resulting neural and behavioral
learning. Second, when the system is in a stationary
learning condition, neither the probability nor duration of
CS responses fluctuates slowly over the course of a
learning session. Third, the different time courses of syn-
aptic depression and potentiation in the presence versus
absence of a CS response suggest the existence of inde-
pendent mechanisms. Fourth, comparison of the predic-
tions of computer simulations to analyses of real data
constrains a biologically motivated model of trial-over-trial
learning that can account for the statistics of a complex
set of data.

Materials and Methods
Animal preparation

We report data from experiments on two awake, be-
having adult male rhesus monkeys. The monkeys were
used for recordings from Purkinje cells in the floccular
complex during the paradigm invented by Medina et al.
(2005) for directional learning in smooth-pursuit eye
movements. Different response characteristics of the
same population of neurons have been reported in a
number of our previous papers (Yang and Lisberger,
2013, 2014a, b). Before the recordings, we implanted a
head holder to prevent head motion during experiments,
an eye coil to monitor eye position, and a stainless steel
recording cylinder to allow access to the floccular com-
plex for single-neuron recordings as detailed in Ram-
achandran and Lisberger (2005). The surgical procedures
used sterile technique, with the monkey under isofluorane
anesthesia. Monkeys received opiate or nonsteroidal an-
algesics for several days after each surgery. Procedures
were in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and had
been approved in advance by the Institutional Animal Care
and Use Committees at the University of California, San
Francisco, and Duke University.

Behavioral task
Monkeys were trained to fixate and pursue bright 0.3°

or 0.5° spots on a dark background. We presented visual
stimuli on a CRT monitor that was placed 30 cm from the
monkey’s eye, subtended a visual field of 59° � 47°, and
had a refresh rate of 80 Hz. All recordings were acquired
in a dimly lit room. After a neuron had been isolated, we
presented a baseline block to assess the preferred direc-
tion of the simple-spike responses of the Purkinje cell

R01-EY003878 and R01-NS092623 from the NIH, and by Key Research
Program of Frontier Sciences, Chinese Academy of Sciences to YY.

Acknowledgments: K. MacLeod, E. Montgomery, S. Tokiyama, S. Ruffner,
D. Kleinhesselink, D. Wolfgang-Kimball, D. Floyd, S. Happel, and K. McGary
provided technical assistance. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the NIH.

Correspondence should be addressed to Yan Yang, State Key Laboratory of
Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of
Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China. E-mail:
yyang@ibp.ac.cn.

DOI:http://dx.doi.org/10.1523/ENEURO.0115-17.2017
Copyright © 2017 Yang and Lisberger
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International license, which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is
properly attributed.

New Research 2 of 16

May/June 2017, 4(3) e0115-17.2017 eNeuro.org

mailto:yyang@ibp.ac.cn
http://dx.doi.org/10.1523/ENEURO.0115-17.2017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


under study. The baseline block comprised �80 target
motions (called trials), with 10 target motions for 850 ms in
each of eight cardinal and oblique directions at a constant
speed of 20 deg/s. Target motions followed a standard
step-ramp trajectory with a 3° eccentric step to cancel
saccades during the initiation of pursuit (Rashbass, 1961).
The main experiment delivered four learning blocks that
comprised �100–400 trials for each Purkinje cell. Mon-
keys were rewarded with droplets of fluid at the end of
each trial if they kept their eye position within an invisible
reward window around the position of the target (for
details, see Yang and Lisberger, 2013).

Experimental design
We studied Purkinje cells in the floccular complex that

showed strong modulation of simple-spike activity during
pursuit eye movements (Stone and Lisberger, 1990a).
First, we assessed the direction selectivity of simple spike
firing during tracking of step-ramp target motion in the
cardinal directions and along the 45° oblique directions.
Most Purkinje cells had a strong increase in simple-spike
responses for either ipsiversive (toward the side of record-
ing) or downward pursuit and a decrease for contraversive
(away from the side of recording) or upward pursuit
(Krauzlis and Lisberger, 1996). We defined the on-
direction and off-direction for each Purkinje cell according
to its simple-spike response. Prior papers have shown
that the direction tuning for CS responses in the floccular
complex is almost always opposite to the direction turning
for simple-spike responses (e.g., Stone and Lisberger,
1990b; Medina and Lisberger, 2008). We verified this and
assessed the direction tuning for CS responses during the
learning block by computing the probability of a CS in the
interval 75–175 ms after an on- versus off-direction in-
structive change in target direction. Almost all Purkinje
cells showed a high probability of CS responses to in-
structive changes in target direction that took the target in
the off-direction for simple-spike firing, and no CS re-
sponses to instructive changes in target direction that
took the target in the on-direction for simple-spike firing.

We customized the learning target motion for each
Purkinje cell to match its direction tuning (Medina and
Lisberger, 2008). Consider an example in which the on-
direction for simple-spike firing was downward. In a
learning trial, the first target motion would comprise a
step-ramp with a ramp in a direction orthogonal to the
on-direction of the Purkinje cell (e.g., to the right) at a
speed of 20 deg/s. After 250 ms of rightward target
motion, the target would change direction by superimpos-
ing, on the original rightward motion, a 400-ms duration
pulse of vertical motion at a speed of 30 deg/s. The
instructive target motion could be downward or upward in
the on-direction or off-direction for simple-spike re-
sponses, to create an ON or OFF learning trial. Our learn-
ing trials tell the pursuit system that “rightward motion
now means you need to emit a vertical smooth eye move-
ment in 250 ms,” and this is what the system learns.
Monkeys were rewarded for their fixation performance at
the end of the trial, and fixation contingencies were sus-
pended around the time of the change in target direction

to avoid punishing the monkeys for their natural tracking
latencies.

We used three different sequences of learning trials that
turned out to have different effects on the progression of
behavioral learning (Yang and Lisberger, 2010). In the
repeated-direction paradigm, we presented the same in-
struction on 100 consecutive trials, using two different
blocks to induce ON versus OFF learning. In the random-
order paradigm, the instruction varied randomly from trial
to trial between the ON and OFF directions with equal
probability for �400 learning trials. In the alternating par-
adigm, we presented �200 trials of instructions in the ON
and OFF directions in strict alternation.

Data acquisition and analysis
To estimate eye position, we measured voltages from a

a magnetic search coil system. The signals were passed
through an analog differentiator to create voltages proportional
to horizontal and vertical eye velocity. The differentiator in-
cluded a filter that rejected signals at frequencies �25 Hz (–20
dB per decade) and differentiated signals at lower frequen-
cies. We sampled the eye movement signals at 1 kHz on
each channel and stored them for offline analysis with
single-unit recordings.

To record the activity of single Purkinje cells, we intro-
duced homemade glass-insulated platinum-iridium mi-
croelectrodes daily through the previously implanted
cylinder and advanced them into the floccular complex of
the cerebellum. Purkinje cells showed a high level of
spontaneous simple-spike firing interrupted by occasional
CS responses at �1 CS/s. We amplified extracellular
action potentials conventionally, filtered them with a
bandpass of 300 Hz to 3 kHz, and digitized the raw traces
at 25 kHz for further processing. We used software win-
dow discriminators to view the spike train for each trial,
identify simple-spike and CS responses, and measure the
duration of a CS. We estimated the simple-spike firing
rates with a reciprocal interval algorithm (Lisberger and
Pavelko, 1986). We counted CS responses in bins with a
width of 100 ms, summed across trials that presented
identical target motions, and converted the counts to the
probability of a CS in each bin. We also measured the
duration of each CS, with the experimenter blind to the eye
velocity and simple-spike firing rate at the time and to con-
text of the CS and the details of the learning trial (Yang and
Lisberger, 2014a).

Most of our data analyses involved measuring how
simple-spike firing or eye velocity changed between two
consecutive learning trials. We call the two consecutive
trials “instruction” and “test” trials, and we define the pair
as ON or OFF learning according to the direction of the
added target motion in the instruction trial. To assess
trial-over-trial changes in firing or eye velocity, we com-
puted the firing rate (or eye velocity) on the test trial minus
that on the instruction trial for each millisecond. In some
analyses, we also assessed the actual firing rate on test
trials minus the baseline firing rate in prelearning control
trials. In both cases, we quantified learning based on the
mean values across specific brief time windows from 100
ms before to 50 ms after the time of the instructive change
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in target direction. The choice of an analysis interval that
ends 50 ms after the instructive change in target direction
ensures that our measures of learning precede any visual
feedback and therefore are related to the instruction in the
prior trial, rather than to that on the current trial.

Model of simple-spike learning in PCs
We simulated a series of OFF learning trials for each of

1000 model Purkinje cells. Although our goal was to
model the single-trial learning in the random direction
paradigm, we chose to simulate only OFF learning trials
because the model had no memory beyond a single trial.
Thus, there was no need to establish stationary learning
conditions by including the ON learning trials. We did,
however, include the small potentiation of simple-spike
firing that occurs on a test trial after an OFF learning trial
that does not evoke a CS response [see Eq. (5)].

For each trial in each model Purkinje cell, we drew a
random number to serve as the seed for deciding whether
a CS would occur and what its duration would be:

p � N�0.2� (1)

where N(b) signifies a normal distribution with a mean of
zero and a standard deviation of b. This distribution ren-
ders the occurrence of CS responses stochastic but does
not allow the underling probability to vary from trial to trial.
To accomplish the latter goal, we drew a random thresh-
old:

t � 0.8 � U(0, 1) (2)

where U(a,b) signifies a uniform distribution between a
and b. We placed a CS on each model trial if p � t. The
two steps summarized by Eqs. (1) and (2) create a situa-
tion in which the probability of a CS varies from trial to trial
because the threshold for evoking a CS (t) varies.

Next, we established a value of duration d for each CS
that is related to its probability p:

d � 8 � �r � p � ��1 � r2� � N�0.2� � 1� (3)

The value of r establishes how strongly the value of d is
related to the value of p and therefore determines the
underlying correlation between the probability and dura-
tion of CS responses. The scaling factor of 8 in Eq. (3) was
determined empirically so that the distribution of CS du-
rations would match the distribution in our data. Finally,
for the purposes of numerical simulation, we normalized
the duration to yield values mostly between 0 and 2 with
a mean of 1:

D �
d
4

� 1 (4)

We will show that analyzing the model data in bins of 10
trials failed to reveal much correlation between CS prob-
ability and duration, even when we had intentionally cor-
related CS probability and duration on single trials. We
intuited that we could increase the mean correlation,
something we might have to do to reproduce our data, by
allowing CS duration to be correlated among trials that

occur close to each other in time, i.e., to have temporal
correlations. Therefore, we devised a computational pro-
cedure that would allow us to control the correlation
between CS duration and probability on single trials com-
pletely independently of the degree of temporal correla-
tion in CS duration.

After creating the trials and a specific correlation be-
tween CS probability and duration using Eqs. (1)–(4), we
created maximal temporal correlations by sorting the trials
by CS duration. This did not change the underlying cor-
relation between CS duration and probability, but it did
create strong correlations between CS probability and
duration when analyzed in bins of 10 trials. Then, we
disrupted the temporal correlation in a systematic way by
shuffling the trials to some degree, swapping the order of
the trials for randomly chosen pairs. If we performed zero
swaps, we defined the temporal correlation as a value of
1. If we performed 0.8 swaps per trial in the model data
set, or 160 swaps when the model dataset contained 200
trials, we defined the temporal correlation as (1 – 0.8) or
0.2.

We modeled the trial-over-trial change in simple-spike
firing from trial to trial as

�SSi, i�1 |CSi � �5.5 � D � N�14�

�SSi, i�1 | � CSi � 1.7 � N�14� (5)

where �SSi,i�1 is trial-over-trial change in simple-spike
firing rate between the ith and i�1th trials, N(b) is a normal
distribution defined above, and D is the normalized dura-
tion of the CS. These distributions were chosen to allow
the trial-over-trial change in simple-spike firing to match
our observed distributions, and we will show in Results
that our approach accomplishes this goal. Our Matlab
code is available on request.

Results
Learning task and properties of single-trial learning

We report on the responses of 34 Purkinje cells that we
tested fully through three blocks of direction learning in
pursuit eye movements (Medina et al. 2005), including
random and alternating blocks (Yang and Lisberger, 2010)
of �200 trials each and a repeated block of �100 trials
(Fig. 1A). During trials that cause direction learning, eye
movements follow the trajectories illustrated in Fig. 1B.
Approximately 80 ms after the onset of target motion,
horizontal eye velocity begins to track the rightward mo-
tion of the pursuit target (red arrowhead). Early in a learn-
ing session (black traces), vertical eye velocity is mainly
reactive to the instructive vertical target motion and re-
mains close to zero until at least 50 ms after the onset of
upward target velocity. After 100 repetitions of the same
instructive trial in the repeated paradigm (blue traces),
vertical eye velocity anticipates the upward target motion
and shows a learned response that reaches around 12
deg/s in this stellar example by the time the target starts
to move upward (black arrowhead).

For OFF-direction learning trials (instruction in a Pur-
kinje cell’s off-direction for simple-spike responses), the
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instruction causes an increase in the probability of CS
responses in the interval 75–175 ms after the instruction
(Fig. 1E). In this example Purkinje cell, the probability of a
CS response during the analysis interval was 0.4 in the
random-direction learning paradigm. Following the crite-
ria established in prior studies (Medina and Lisberger,
2008; Yang and Lisberger, 2014b), we characterized this
Purkinje cell as “CS-frequent” because the probability of
a CS in the analysis interval was �0.3. We studied only
CS-frequent Purkinje cells because they (1) form the over-
whelming majority of pursuit-responsive Purkinje cells, (2)
have high probabilities of CS responses to an instructive
change in target direction, and (3) show the expected
reciprocal learned changes in simple-spike firing rate after
100 trials of learning with on- versus off-direction instruc-
tions (Medina and Lisberger, 2008; Yang and Lisberger,
2014b). We have not analyzed a small group of CS-
infrequent Purkinje cells that had a low probability of CS
responses to the instructive change in target direction.
Previous articles have shown that CS-infrequent Purkinje
cells have wrong-way learned increases in simple-spike
firing after 100 off-direction learning trials in the repeated
paradigm (Medina and Lisberger, 2008; Yang and Lis-
berger, 2014b). They are encountered only infrequently,
so our sample was not large enough to analyze them in a
meaningful way.

Our previous work (Yang and Lisberger, 2013, 2014a)
established an approach for evaluating single-trial plas-

ticity contingent on a climbing-fiber input to individual
Purkinje cells. We assembled all trials from a random-
direction learning block into pairs of consecutive trials.
We defined the first and second trial of each pair as the
instruction and test trials and selected all pairs with an
off-direction instruction on the instruction trial. Then, we
divided these pairs into two groups according to whether
the off-direction instruction evoked a CS response. We
computed the millisecond-by-millisecond difference be-
tween the simple-spike firing in the test and instruction
trial and averaged across all pairs of trials within each of
the two groups. We performed the same analysis for
groups of trial pairs defined according to the duration of
the CS response in the instruction trial.

As we have published before (Medina and Lisberger,
2008; Yang and Lisberger, 2013, 2014a), single-trial plas-
ticity of simple-spike firing rate is contingent on the pres-
ence and duration of the CS on the instruction trial.
Comparison of the red and black traces in Fig. 1C illus-
trates that the occurrence of a CS on one off-direction
learning trial is linked to a properly-timed depression of
simple-spike firing on the subsequent trial (Medina and
Lisberger, 2008; Yang and Lisberger, 2013), whereas the
absence of a CS is linked to a slight potentiation of
simple-spike firing on the subsequent trial. Fig. 1F is a
reminder that the magnitude of plasticity in simple-spike
firing rate depends on the duration of the CS response in
the instruction trial. Longer-duration CS responses in Pur-

A B C

D

E

F

Figure 1. Approaches used to study learning in the direction of smooth pursuit eye movements. A, From top to bottom, the zigzags
indicate the trajectories of the learning target motions in the repeated-direction, random-order, and alternating paradigms. B, The
superimposed traces show horizontal and vertical velocity as a function of time from the onset of target motion in example trials from
one learning block. Dashed and solid traces show target and eye movement. Black and blue traces show responses in the first versus
100th off-direction learning trials in the repeated-direction paradigm. The red and black arrowheads on the velocity records point out
the onset of the initial pursuit and the peak of the learned response in eye movements. The gray shading shows the analysis interval
for learning. C, Red and black traces show the trial-over-trial change in firing rate versus time for pairs of trials with versus without
a CS in the instruction trial. Vertical dashed line shows the time of the instructive change in target direction. C is reprinted with
permission from Yang and Lisberger (2013). D, Simple-spike firing and CS of a representative Purkinje cell in an off-direction learning
trial. The red asterisk indicates a CS. E, Raster shows the occurrence of CS responses in relation to the time of the instruction. Black
curve shows the probability of CS responses in 100 ms bins. Gray shading shows the analysis interval for CS responses. F, Different
color traces show the trial-over-trial change in firing rate versus time for pairs of trials with different durations of CSs in the instruction
trial. Vertical dashed line shows the time of the instruction. F is reprinted with permission from Yang and Lisberger (2014a).
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kinje cells on the instruction trial cause larger plasticity
and stronger learning on the test trial (Yang and Lisberger,
2014a). With this background, we now turn to our new
results.

CS properties and single-trial learning and plasticity
in different learning paradigms

The correlations between the existence and duration of
a CS response and the single-trial plasticity persist across
three different learning paradigms that introduce instruc-
tion trials in different orders. The details of the time course
of learning differed across paradigms, but the probability
and duration of CS responses predicted both simple-
spike plasticity and behavioral learning in the repeated,
random, and alternating learning paradigms. Our prior
article showed a strong correlation between the number
of spikelets in a CS and its duration (Yang and Lisberger,
2014a), so the analyses presented below would hold as
well for the number of spikelets as they do for duration.

As before, we broke each sequence of learning trials
into pairs, and we analyzed the pairs that delivered an
off-direction learning target motion in the instruction trial.
We divided these pairs into sequential groups of 10, and
in each group we measured both the average absolute
eye velocity in the analysis interval (gray shading in Fig.
1B) and the average trial-over-trial change in eye velocity
between the instruction and test trials. We analyzed only
pairs of trials with an off-direction instruction, and we
averaged across groups of 10 consecutive pairs with
off-direction instructions.

The learning curve for the trial-over-trial change in eye
velocity depended on the sequence of instructions.

In the repeated direction paradigm, the absolute
learned eye velocity reached an asymptote within 40 trials
(Fig. 2B), as we have shown before. We show the absolute
learning curve for this paradigm to aid readers in appre-
ciating the details of the trial-over-trial behavioral learning
(Fig. 2A). As the absolute learning curve saturated, the
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Figure 2. Trial-over-trial learning and properties of CS responses to the instruction with different sequences of learning tasks.
A, C, D, Time course of trial-over-trial changes in eye velocity in the analysis interval for learning in blocks of 10 trials. Different graphs
show data for repeated (A), alternating (C), and random-direction (D) paradigms. B, Time course of absolute eye velocity in the
analysis interval for learning in the repeated paradigm, again in blocks of 10 trials. E, F, The probability (E) and duration (F) of a CS
response to an instruction as a function of learning paradigm. The sets of three connected symbols present data for different Purkinje
cells tested in all three learning paradigms. Ra, random; Re, repeated; Al, alternating paradigm. After Bonferroni correction: p(Ra, Re) �
1.75 � 10–12 and p(Ra, Al) � 1.1 � 10–10 for probability; p(Ra, Re) � 1.45 � 10–3 and p(Ra, Al) � 0.02 for duration.
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trial-over-trial behavioral learning declined to close to
zero. We regard the saturation after 40 trials as a ceiling
effect that probably reflects the limits of early components
of pursuit learning. Note that the learned eye velocity of
2.3 deg/s in group 10 in Fig. 2B is considerably smaller
than the eye velocity of �12 deg/s at the time of the
instruction in the single stellar example trial of Fig. 1B. The
smaller averages in Fig. 2B result from three factors: (1)
averaging across the interval from 100 ms before to 50 ms
after the onset of the instruction instead of picking the
peak eye velocity, (2) averaging across 10 trials in each
group and across 34 neurons, and (3) the huge size of
behavioral learning in Fig. 1D in what might be the best
single-trial example in the entire data set.

In the alternating direction paradigm, trial-over-trial
learning was strong early in the learning block and de-
clined to a nonzero asymptote later in the block (Fig. 2C).
Given that alternation of instruction direction prevented
persistent behavioral learning, we have omitted the learn-
ing curves for absolute eye velocity. The negative values
of trial-over-trial learning indicate that the change in eye
velocity was in the direction of the instruction. Thus, unlike
humans who show learned eye movements in the direc-
tion of the test trial in the alternating direction paradigm
(Yang and Lisberger, 2010), monkeys showed learned eye
movements in the direction of the instruction trial. We
conclude that the monkey pursuit system does not have
access to the monkey’s potential cognitive knowledge
that the instruction directions would alternate throughout
the block of trials. Given that the direction of the instruc-
tion alternates, the difference between trials n – 1 and n
will be equal, on average, to the difference between trials
n and n � 1. Thus, the trial-over-trial change in eye
velocity for on-direction instructions was almost identical
to that for off-direction instructions, but with a positive
sign.

In the random direction paradigm, trial-over-trial learn-
ing was quite strong throughout the learning block (Fig.
2D). The negative values of trial-over-trial learning indicate
that the change in learned eye velocity between the in-
struction and test trials was in the direction of the instruc-
tive target motion in the instruction trial. Again, we show
only the data for OFF-direction learning and we omit the
curves for absolute eye velocity because the randomized
directions of the instructive target motions precluded per-
sistent behavioral learning. The learning curve for on-
direction instructions was very similar, but positive.

The probability and duration of CS responses to the
instructive change in target direction differed among
learning conditions, when averaged across the entire
learning block. The probability of a CS was higher and the
duration of CS waveforms was longer when instructions
were presented in a random order versus in repeated or
alternating sequences. In the random, repeated, and al-
ternating learning paradigms, the probability of a CS,
across all the OFF-direction trials in a learning block,
averaged 0.36, 0.24, and 0.25; the duration of CS wave-
forms averaged 8.44, 7.27, and 7.28 ms (Figs. 2E, F).
These values are lower than the peak values shown in the
next figure because they were averaged across the entire

learning block. Paired t tests with Bonferroni correction
revealed highly significant differences between the values
for the random and repeated paradigms and the random
and alternating paradigms for both duration and proba-
bility, and no difference between the values for the re-
peated and alternating paradigms. P-values appear in the
figure legend. Note that only 13 Purkinje cells are included
in Fig. 2F because that was the size of the sample in which
isolation remained good enough that we were confident
measuring CS duration across all three learning para-
digms.

Behavioral and neural learning curves in different
learning paradigms

We consider the relationship between the behavioral
and neural learning curves in two steps.

First, we look at the data for each learning paradigm
separately. To make it easier to view the relationship
between neural and behavioral learning, Fig. 3 repeats the
behavioral learning curves from Fig. 2. The trial-over-trial
learning curves follow different trajectories in different
learning paradigms, but the curves for behavioral and
neural learning are correlated within each paradigm. The
time courses of duration and probability of CS responses
align with the learning curves for simple-spike firing rate
and eye velocity (Fig. 3), suggesting some degree of
cause and effect.

In the repeated paradigm (left column of Fig. 3), the
trial-over-trial changes in eye velocity and simple-spike
firing rate were nonzero in the first 40 trials of the block,
but then declined to near zero as the absolute learned eye
velocity and firing rate reached plateaus. Over the same
time course, the probability and duration of CS responses
decreased from initial values of 0.38 and 8.3 ms to as-
ymptotes of 0.2 and 7 ms. Bin-by-bin correlation analysis
of the averages in Figs. 3A and D yielded r � 0.91. The
more telling bin-by-bin analysis on the data for each
individual Purkinje cell yielded values of r that averaged
0.13. This value seems like a poor correlation, but it is
impressive in the context of the variance of 200 (spikes/s)2

in the trial-by-trial change in simple-spike firing rate for
single trials, which reduces to 20 (spikes/s)2 for bins of 10
trials. Simulations based on adding noise with a variance
of 20 (spike/s)2 to the averages in Fig. 3D yielded values of
r less than 0.13. We conclude that the trial-over-trial
change in firing rate tracks the trial-over-trial change in
eye velocity well in the repeated-direction paradigm,
within the bounds of the noise in Purkinje cell simple-
spike firing rate. However, the degree of variation across
single trials implies that downstream neurons will have to
pool the activity of many Purkinje cells to take advantage
of the parallels between firing rate and eye velocity.

In the random-direction paradigm (middle column of
Fig. 3), the trial-over-trial changes in eye velocity and
simple-spike firing rate were steady across the entire
learning block, as were the probability and duration of CS
responses.

In the alternating-direction paradigm (right column of
Fig. 3), trial-over-trial simple-spike firing and CS probabil-
ity and duration were very similar to those in the repeated
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paradigm (compare blue and green symbols). However,
the trial-over-trial changes in eye velocity were quite dif-
ferent between the two paradigms (see explanation be-
low). Again, bin-by-bin correlation analysis of the
averages in Fig. 3C and F yielded r � 0.85. The more
telling bin-by-bin analysis on the data for each individual
Purkinje cell yielded values of r that averaged 0.15. As
before, the low value can be attributed to the noise in
simple-spike firing rate, and we conclude that firing rate

tracks the trial-over-trial change in eye velocity well in the
alternating-direction paradigm.

Second, we compare the data across learning para-
digms. The declines in CS duration and probability for the
repeated and alternating conditions were almost identical
(Fig. 3I, L). The declines in simple-spike plasticity also
agreed quite well for the repeated and alternating para-
digms (Fig. 3F), with somewhat more plasticity early in a
block of alternating-direction learning. There is, however,
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a striking difference between the amplitudes (but not the
time courses) of single-trial eye velocity learning in the
alternating-direction paradigm versus the repeated-direction
paradigm (Fig. 3C). We think the amplitude of the eye veloc-
ity learning is inflated artificially in the alternating-direction
paradigm because of the consistent superposition of two
contributions to eye velocity in the same direction: decay of
the single-trial learning that was present in the prior trial and
the actual learning that appears in the current trial. In con-
trast, the decay and acquisition of single-trial learning com-
pete with each other in the repeated paradigm, potentially
underestimating the magnitude of single-trial plasticity and
learning.

We performed two control analyses to eliminate artifac-
tual explanations for the data in Fig. 3. First, the differing
progress of eye movement learning in the different para-
digms causes small, 1–2 deg/s differences across para-
digms in the image motion across the retina caused by
instructive changes in target direction. To test whether
these tiny differences in the sensory stimuli alter CS re-
sponses, we introduced target motions in the off-direction
for simple-spike responses at speeds of 29, 30, and 31
deg/s. Across the 12 Purkinje cells we tested, CS proba-
bility did not vary systematically in relation to target speed

within this small range (Fig. 4A, B) and consistently
reached a peak that was very close to 0.4. Second, we
showed that CS probability was not modulated simply by
recent history (Fig. 4C, D). To do so, we found sequences
of trials from the random-direction block that mimicked
the alternating or repeated order of instructive target mo-
tion. We then measured the probability of a CS in the nth
trial contingent on whether the previous history followed
the repeated or alternating sequence for one, two, three,
or four trials. When embedded in the random-direction
paradigm, sequences of up to four previous repeated (Fig.
4C) or alternating (Fig. 4D) directions of instructive target
motion did not reduce the probability of a CS, which
remained close to 0.4. Thus, we conclude that the effect
of the learning paradigm on the probability of CS re-
sponses reflects modulation of climbing-fiber activity over
a longer time scale than just a few trials.

Comparison of potentiation and depression for
on- versus off-direction learning

The learning curves for simple-spike firing on the trials
that followed on- versus off-direction learning showed
interesting differences across learning paradigms, sug-
gesting two independent processes with separate mech-

29

30

31 A

-200 0 200 400

-2

0

2

Eye

Target

V
el

oc
ity

 (
de

g/
s)

Time from target motion onset (ms)
-500 0 500 1000

C
S

 p
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4
B

n=12

31 deg/s
30
29

#n-4 #n-3 #n-2 #n-1 #n-4# n #n-3 #n-2 #n-1 # n

C
S

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

Re 1 2 3 4

C

Duration of desired history of instruction direction (# trials)

0

0.2

0.4

0.6

Al 1 2 3 4

D

Figure 4. Controls showing that effect of learning paradigm depends on broader context of sequence of learning instructions.
A, Experimental design for delivering instructions with target speeds of 29, 30, or 31 deg/s. B, CS probability versus time for target
motion at different speeds. In A and B, traces of different colors show data for different target speeds. C, D, CS probability as a
function of the history of direction of instruction for the prior four trials. In C, we selected from the random paradigm sequences of
trials that repeat the off-direction target motion for up to four trials. Bar labeled Re shows CS probability in the repeated paradigm,
and bars labeled with numbers show CS probability in the random-direction paradigm after sequences of one, two, three, or four
instructions of the same direction. In D, we performed the same analysis for sequences of alternating direction instructions during the
random direction paradigm.

New Research 9 of 16

May/June 2017, 4(3) e0115-17.2017 eNeuro.org



anisms. Here, we measured simple-spike firing rate in the
interval from 100 ms before to 50 ms after the onset of
the instructive change in target direction, subtracted the
baseline from before the learning session, and averaged
across groups of 10 trials, separately for test trials that
followed on-direction versus off-direction instructions.

In the repeated-direction paradigm (Fig. 5A), as we
have shown before (e.g., Fig. 6 of Yang and Lisberger,
2014b), the neural learning curves for simple-spike firing
rate were not symmetrical for on- versus off-direction
learning. For the 34 Purkinje cells in this sample, depres-
sion more or less reached an asymptote within 30 trials. In
contrast, potentiation started more slowly and proceeded
steadily through at least the first 80 trials.

In the random-direction paradigm (Fig. 5B), in which
single-trial depression persists throughout a learning
block and is larger than single-trial potentiation (Fig. 1C),
depression accumulated throughout a 200-trial block of
trials. In the interval from 100 ms before to 50 ms after the
instructive change in target direction, simple-spike firing
rate was always smaller in the trial after on off-direction
instruction, but gradually became increasingly negative
(relative to the prelearning baseline) throughout the learn-
ing block for both directions of instruction. Paired t tests
on the averages within 10-trial bins for the 34 Purkinje
cells revealed statistically significant differences between
on- and off-direction learning for bins 5–10 (p � 0.016) but
not bins 1–4 (p � 0.53).

In the alternating-direction paradigm (Fig. 5C), simple-
spike firing was positive or negative for on- versus off-
direction learning for the first 40 trials in each direction.
Then, as complex-spike duration and probability de-
creased and trial-over-trial depression decreased, the
simple-spike firing rates became equal for on- versus
off-direction. Firing rate also started to increase steadily,

as if potentiation now was gradually dominating the weak-
ened trial-over-trial depression. Paired t tests on the av-
erages within 10-trial bins for the 34 Purkinje cells
revealed statistically significant differences between on-
and off-direction learning for bins 1–4 (p � 0.009) but not
bins 5–10 (p � 0.92).

The progression of potentiation for on-direction instruc-
tions and depression for off-direction instructions sug-
gests that these opposing mechanisms of plasticity follow
different dynamics and are differentially affected by the
sequence and predictability of instruction directions. Po-
tentiation seems to be more timid, but also more persis-
tent and inexorable, over longer sequences of learning
trials. Thus, our data are consistent with ideas about the
contribution of multiple forms of plasticity to cerebellar
motor learning, including both depression and potentia-
tion of the parallel fiber to Purkinje cell synapse (Hansel
et al. 2001; Schonewille et al. 2010; Carey 2011; Gao et al.
2012; De Zeeuw and Ten Brinke, 2015; Gutierrez-
Castellanos et al. 2017).

Data analyses to constrain a model of single-trial
learning

Our final goal at the end of this article is to develop a
computer model that explains many details of a complex
data set about single-trial learning. To constrain the
model, we next evaluate additional features of the statis-
tics of CS probability and duration during the random-
direction learning paradigm. In particular, we ask about
the correlation between the duration and probability of a
CS and about the possibility of coordinated slow fluctu-
ations of CS duration across a block of learning trials.

To evaluate correlations between CS probability and
duration, we first performed the obvious data analysis. We
broke the sequence of trial pairs from the random para-
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digm into bins of 10 pairs with an off-direction instruction
and measured the mean duration and the probability of a
CS response. Plotting probability versus duration (Fig. 6A)
revealed relationships that varied in strength from neuron
to neuron. As a general rule, the correlation between CS
probability and CS duration was weak for almost all neu-
rons, and sometimes was even negative (Fig. 6B). The
population was distributed fairly evenly around a mean
correlation of 0.05.

To interpret Fig. 6B, we need to distinguish between (a)
the underlying correlation of CS duration and probability
and (b) the measured correlation between duration and
probability. The underlying correlation determines whether
an individual CS occurs and what its duration will be. Be-
cause we cannot evaluate probability on single trials, our
data analysis does not have direct access to the underlying
correlation. The measured correlation is a product of data
analysis, which we performed by binning the data into
groups of 10 trials. Averaging across 10 trials has the po-
tential to dilute any correlations in the underlying probability
and duration so that the measured correlations become
quite small (e.g., Fig. 6B). However, it is still plausible that on
any given trial, the underlying probability of a CS is strongly
correlated with its duration.

Simulations of the model described in Materials and
Methods verified that the obvious approach of correlating
probability and duration might not reveal high correlations
even if the underlying correlation is strong. Instead, the
measured correlation between probability and duration
also depends on the strength of any slow fluctuations in
CS duration across a learning block (temporal correla-
tions). We contrived our model so that we could control
independently the temporal correlations in CS duration
and the underlying probability of correlation between CS
duration and probability. If CS duration has weak tempo-
ral correlations, then the analysis in Fig. 6 would measure
very little correlation between CS duration and probability

even if their underlying correlation were close to 1 for each
CS response. For example, the green and red curves in
Fig. 6B show the distributions of measured correlations
between CS duration and probability predicted by the
model when the correlation between duration and prob-
ability for individual CS responses was 0.5 and 1, and the
temporal correlation of CS duration was quite low (deco-
rrelation value in the model of 0.8).

The powerful impact of the temporal correlation of CS
duration on the measured correlation between duration
and probability is evident in Fig. 6C. Here, we systemat-
ically created known correlations between the probability
and duration of individual CS responses and used the
approach described in Materials and Methods to control
independently the degree of temporal correlation. When
temporal correlation was maximal (column of colored
cells at 1 on x-axis, Fig. 6C), the measured correlation of
CS duration and probability in 10 trial bins was almost
equal to the underlying correlation (values on y-axis). As
we decorrelated CS duration, moving to the right on the
x-axis, the measured correlation between CS duration
and probability declined toward zero. Any of the combi-
nations of underlying correlation and temporal correlation
below the black curve yield measured correlations be-
tween CS duration and probability that are 	0.1, and
therefore are compatible with the data in Fig. 6B.

We next evaluated temporal correlations of CS duration
directly. Fig. 7A shows the sequence of CS durations in
off-direction learning trials across random-direction learn-
ing blocks for three example Purkinje cells. Each cell
shows some runs of similar CS durations, suggesting
temporal correlation, and many runs of oscillation of CS
duration, suggesting a lack of temporal correlation. To
quantify temporal correlation, we extracted the CS dura-
tions on all pairs of consecutive trials with a CS response
and calculated the correlation coefficient. High correla-
tions between paired CS durations would suggest tem-
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poral correlations, whereas small or zero correlations
between paired CS durations would suggest an absence
of temporal correlations. For the three Purkinje cells in Fig.
7A, the correlations between successive CS durations
were 0.05, 0.34, and –0.09. Across 32 qualifying Purkinje
cells based on having �9 pairs of CS responses in con-
secutive trials (Fig. 7B), the temporal correlations aver-
aged 0.03. For the repeated and alternating-direction
paradigms, the mean correlations were 0.12 and 0.22 for
n � 15 and 10 qualifying Purkinje cells. The correlations
between the durations of successive CS responses were
slightly larger than those between the durations of pairs of
trials made up of randomly chosen CS responses (Fig. 7C,
red curves in Figs. 7B and C, mean r � –0.03, 0.12, and
–0.05 for random, repeated, and alternating-direction
paradigms). We conclude that there is at best a small
temporal correlation in CS duration. We are able to sum-
marize the possible states of the system we studied as the
area within the red polygon in Fig. 6C. This polygon is
compatible with our data on measured correlation of CS
duration and probability (Fig. 6B) and temporal correlation
(Fig. 7B).

Finally, we assessed a second-order statistical feature
of our data, namely the relationship between the separate
effects of CS duration and probability on trial-over-trial
depression of simple-spike firing rate in our data. For each
Purkinje cell in our sample, we selected the pairs of trials
with off-direction instructions in the random direction
block and divided them into groups of 10 pairs. Then, we
used the Matlab routine “partialcorr” to calculate the par-
tial correlation between each of the two properties of CS
responses (probability or duration) and trial-over-trial
changes in simple-spike firing while controlling for the
other property. A plot of the partial correlation of simple-
spike depression with CS duration versus that for CS
probability reveals a wide range of values in different

neurons (Fig. 8A, open symbols). Two features are nota-
ble. First, some neurons showed larger correlations with
CS duration, some with CS probability, and some with
both. Second, the neurons plotted in quadrants II, III, and
IV, but not in quadrant I.

A computational model of single-trial learning
We regard the cell-by-cell variation in Fig. 8A as em-

blematic of the competing effects of legitimate variation
related to trial-by-trial variation in neural responses, and
structure related to the underlying mechanisms driving
the average behavior of the system. In modeling single-
trial learning, our goal was to show that we fully under-
stand the system by capturing the structure, the variation,
and the correlations in the data. That is, we created a
model that included the variation in the parameters of CS
and simple-spike responses, and we asked whether the
model could reproduce both the structure and the variation
in Fig. 8A. The model simulated responses for sequences of
learning trials in the random-direction paradigm, but did not
include the time in milliseconds within each trial. Thus, we
made no effort to mimic the reliability/variability of CS timing
in response to instructive changes in target direction.

The model incorporated the following mechanisms:
● CS probability and durations had distributions that

matched our data (Fig. 8G, H).
● If a model Purkinje cell receives an input from its climb-

ing fiber on a given trial, then its simple-spike firing rate
on the subsequent trial is reduced by 5.5 spikes/s on
average through CS-linked trial-over-trial plasticity. If
the neuron fails to emit a CS on a given trial, then its
simple-spike firing rate is increased by 1.6 spikes/s on
average in the subsequent trial.

● The variations in the trial-over-trial depression or po-
tentiation of model simple-spike firing were based on
and mimicked the distributions in our data (Fig. 8E, F).
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● Only an off-direction instruction can evoke a CS re-
sponse and, in accordance with our data, evoked one
or zero CS responses. On-direction instructions never
evoked CS responses (Medina and Lisberger, 2008).
Therefore we did not include ON-learning trials in our
simulations.

● The CS-linked trial-over-trial depression in simple-
spike firing varied systematically as a function of CS
duration (Yang and Lisberger, 2014a).

● CS duration has low temporal correlations (decorrela-
tion parameter of 0.8), within the bounds defined by our
data (Fig. 6C).

● As shown in our prior article (Yang and Lisberger,
2010), trial-over-trial depression or potentiation of
simple-spike firing rate was forgotten within two trials.

We created a population of 1000 Purkinje cells and ran
the model for 200 off-direction learning trials. Using equa-
tions given in Materials and Methods, we varied the pa-
rameters of the model, simulated the trial-over-trial
changes of simple spike firing across the population, and
analyzed the simulated data exactly as we had analyzed
the real data to obtain Figs. 8A.

The results from simulation of the model mimicked the
data and did not depend in any obvious way on the
underlying correlation between CS probability and dura-
tion (Figs. 8B–D). The means of the partial correlations are

negative, and the different model Purkinje cells plot in
quadrants II, III, and IV of the graph.

We created the model analyzed here with the hope that
it would allow us to use the data in Fig. 8A to constrain the
underlying correlation between the probability and dura-
tion of CS responses. That it did not was a disappoint-
ment. Still, the model does provide a lesser but still
important contribution. It shows that we have a really
complete understanding of single-trial plasticity of simple-
spike responses, because we can create a model that is
based entirely on our measurements from Purkinje cells
and reproduce even the second-order statistics repre-
sented by the structure of Fig. 8A.

Discussion
Our prior articles have shown that (1) the direction of

pursuit is subject to learning (Medina et al. 2005), (2)
behavioral learning can occur after a single behavioral trial
(Yang and Lisberger, 2010), (3) there is a neural expres-
sion of single-trial learning in the simple-spike firing of
Purkinje cells in the floccular complex (Medina and Lis-
berger, 2008; Yang and Lisberger, 2014b), (4) single-trial
neural learning is tightly linked to the occurrence of a
climbing-fiber input on the prior trial (Medina and Lis-
berger, 2008; Yang and Lisberger, 2013), and (5) the
magnitude of both behavioral and neural learning on any
given trial is related to the duration of the CS caused by
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the climbing fiber on the prior trial (Yang and Lisberger,
2014a). Now, we outline additional correlations between
the size of neural learning and the properties of the CS
responses to instructions for learning. In addition, we
demonstrate a model of neural learning that accounts for
the statistics of our observations in some detail.

The system and cerebellar structure we study, smooth-
pursuit eye movements and the floccular complex, are
ideally suited for analysis of the neural basis for motor
learning because we know the anatomic and physiologic
relationship between Purkinje cells in the floccular com-
plex and extraocular motoneurons. Anatomically, floccu-
lar Purkinje cells inhibit their target neurons in the
vestibular nucleus (Lisberger et al. 1994), and these in turn
inhibit motoneurons and presumably internuclear neurons
in the abducens nucleus (Highstein, 1973). Because of the
double inhibitory connection, increases in the simple-
spike firing of floccular Purkinje cells should excite ipsi-
lateral abducens neurons and cause ipsiversive eye
movement. The physiologic relationship between Purkinje
cell activity and eye movement during baseline pursuit fits
into this anatomic framework: increases and decreases in
simple-spike firing rate are associated with ipsiversive
versus contraversive pursuit (Krauzlis and Lisberger,
1996). The arrangement seems to be analogous for Pur-
kinje cells that have vertical (downward) preferred direc-
tions (Partsalis et al. 1995). The physiologic relationship
also holds for pursuit learning (Medina and Lisberger,
2008, Yang and Lisberger, 2013): on-direction learning in
the repeated-direction paradigm leads to eye movements
in the on-direction and increases in simple-spike firing
rate (potentiation), whereas off-direction learning leads to
eye movements in the off-direction and decreases in
simple-spike firing rate (depression). The directions of the
single-trial neural plasticity studied in the present article fit
into this framework as well.

In our first description of single-trial learning in pursuit
(Yang and Lisberger, 2010), we noted that the magnitude
of trial-over-trial behavioral learning depended on the
context of a given pair of trials. Single-trial learning was
largest when we randomized the order of the instruction
directions, weaker (but in the direction specified by the
instruction) when the direction of the instructions alter-
nated, and asymptotically relatively weak when we re-
peated the same instruction direction 100 times.

In the present article, we show that both the probability
and duration of CS responses in floccular Purkinje cells
track the strength of behavioral learning. Over the course
of 100 repetitions of instructions in the same or alternating
directions, both the probability and duration of CS re-
sponses decrease in good agreement with the time
course of decreases in the magnitude of trial-over-trial
neural and behavioral learning. In contrast, the CS prop-
erties remain constant at a high level of probability and
duration, along with trial-over-trial behavioral and neural
learning, when we randomize the order of directions.
Importantly, CS duration does not show coordinated slow
fluctuations (a.k.a. temporal correlations) in the random
direction paradigm, suggesting that external modulation,
rather than intrinsic properties of the olivo-cerebellar sys-

tem, causes the highly coordinated gradual decline in CS
duration in the repeated and alternating learning para-
digms. Our control experiments show that the effects on
CS probability in the repeated and alternating paradigms
are due to the broader context set by the sequence of
instructions, not to either the recent history of instruction
directions or minor trial-to-trial variations in the retinal
image motion created by the instructive change in target
direction.

We suggest that the broader learning context set by the
sequence of learning directions leads to descending mod-
ulation of complex-spike responses (Najafi and Medina,
2013), and in turn to more or less learning on a single-trial
basis. We imagine that this modulatory capacity could be
the basis for voluntary control of the potential for learning
under conditions when learning is a good versus a bad
idea. The fact that the direction of behavioral learning is
guided by the direction of the instruction on the prior trial,
even when the instruction directions alternate reliably over
200 trials, suggests that the modulation of CS properties
occurs at a subconscious level, at least under the condi-
tions of our experiments.

Our experiments do not address whether modulation of
CS duration occurs in the inferior olive, where it might reg-
ulate the duration of the burst that travels up the climbing-
fiber axon, or in the cerebellar cortex, where the state of the
Purkinje cell membrane might regulate the duration of the
CS caused by a given burst. Mossy-fiber inputs cause Pur-
kinje cell depolarization and changes in the state of the
Purkinje cell membrane (Najafi et al. 2014) that might affect
CS duration, at least under some conditions (e.g., Warnaar
et al. 2015; Burroughs et al. 2017). In our prior article (Yang
and Lisberger, 2014a), we argued that the modulation of CS
duration occurred in the inferior olive because of a lack of
correlation between CS duration and simple-spike firing
rate, the latter an indicator of the state of the Purkinje cell
membrane. If our analysis had been able to constrain the
degree of underlying correlation of CS probability and dura-
tion, we might have been able to shed some light on the site
of the modulations.

Still, it is appealing to think that the level of excitability
across the inferior olive is a key common variable, and
that excitability fluctuates from trial to trial (Mathy et al.
2009). A higher level of excitability might increase the
chance of a response to a given sensory input and at the
same time bias the response toward a longer burst of
output spikes that would lead to a CS of longer duration
(Maruta et al. 2007; Bazzigaluppi et al. 2012) and larger
plasticity (Rasmussen et al. 2013; Yang and Lisberger,
2014a). Given that both the probability of a climbing-fiber
event and its duration alter the amount of neural learning
in the cerebellum (Medina and Lisberger, 2008; Yang and
Lisberger, 2014a), joint modulation of the two parameters
seems to be a sensible way for descending control to
modulate the amount of cerebellar learning depending on
context.

Finally, we have presented a simple computational
model that is based on our analysis of the statistics of CS
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probability and duration and of single-trial learning in
simple-spike responses. The model reproduces the par-
tial correlations between the trial-over-trial changes in
simple-spike firing and both CS duration and probability.
Given the features we built into the model, it is not sur-
prising that it reproduces our data qualitatively. The fact
that it does so quantitatively suggests that the data in this
study provide a fairly complete account of the factors that
mediate single-trial learning linked to climbing-fiber inputs
to the cerebellar cortex. We suspect that the mechanism
we call single-trial learning has broad implications, given
that it now has been uncovered in smooth-pursuit eye
movements (Medina and Lisberger, 2008), the vestibulo-
ocular reflex (Kimpo et al. 2014), and classic conditioning
of the eyelid response (Ten Brinke et al. 2015; Khilkevich
et al. 2016).
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