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Noise induced synaptopathy (NIS) and hidden hearing loss (NIHHL) have been hot topic
in hearing research since a massive synaptic loss was identified in CBA mice after a brief
noise exposure that did not cause permanent threshold shift (PTS) in 2009. Based upon
the amount of synaptic loss and the bias of it to synapses with a group of auditory
nerve fibers (ANFs) with low spontaneous rate (LSR), coding-in-noise deficit (CIND)
has been speculated as the major difficult of hearing in subjects with NIS and NIHHL.
This speculation is based upon the idea that the coding of sound at high level against
background noise relies mainly on the LSR ANFs. However, the translation from animal
data to humans for NIS remains to be justified due to the difference in noise exposure
between laboratory animals and human subjects in real life, the lack of morphological
data and reliable functional methods to quantify or estimate the loss of the afferent
synapses by noise. Moreover, there is no clear, robust data revealing the CIND even in
animals with the synaptic loss but no PTS. In humans, both positive and negative reports
are available. The difficulty in verifying CINDs has led a re-examination of the hypothesis
that CIND is the major deficit associated with NIS and NIHHL, and the theoretical basis
of this idea on the role of LSR ANFs. This review summarized the current status of
research in NIS and NIHHL, with focus on the translational difficulty from animal data to
human clinicals, the technical difficulties in quantifying NIS in humans, and the problems
with the SR theory on signal coding. Temporal fluctuation profile model was discussed
as a potential alternative for signal coding at high sound level against background noise,
in association with the mechanisms of efferent control on the cochlea gain.

Keywords: noise induced synaptopathy (NIS), ribbon synapses, temporal processing, coding-in-noise deficit,
cochlear efferent, fluctuation profile, auditory nerve
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INTRODUCTION

Noise induced hearing loss (NIHL) is typically defined and
quantified by the permanent threshold shift (PTS) caused by
noise exposure (Berger et al., 1978). In recent years, however,
this concept has been expanded by the finding in animal studies
that noise can cause a significant amount of damage to the
ribbon synapses between inner hair cells (IHC) and spiral
ganglion neurons (SGN) in the cochlea without PTS (Kujawa
and Liberman, 2009; Moser et al., 2013; Starr and Rance, 2015;
Moser and Starr, 2016; Song et al., 2016; Kaur et al., 2019;
Kim et al., 2019; Liu et al., 2019). After a brief, 2-h exposure
of noise at 100–106 dB SPL, these studies have reported an
initial loss of up to 50% of ribbon synapses. Auditory nerve
malfunctions are expected in association with such massive
damage and synapse loss, but these could not be detected by
routine audiology assessment focused on thresholds because of
the absent PTS. Damage and loss of ribbon synapses, as well
as associated functional deficits, can be collectively described as
noise-induced synaptopathy (NIS) (Chen et al., 2019a). However,
before the functional deficits were detailed and the nature of
the deficits was uncovered, the concept of noise induced hidden
hearing loss (NIHHL) was proposed to umbrella any potential
problems resulting from this pathology (Plack et al., 2014; Le
Prell and Clavier, 2017; Liberman, 2017; Liberman and Kujawa,
2017; Chen et al., 2019a; Huet et al., 2019; Kohrman et al.,
2020). One of the primary potential problems of interest is
coding-in-noise deficit (CIND), which describes an impaired
ability to perceive sound in background noise. CIND has been
speculated as the major problem in subjects with NIHHL or
NIS without PTS due to the selective damage and loss of
the ribbon synapses innervating auditory nerve fibers with
low spontaneous rates (LSR ANFs) by noise exposure and the
unique role of LSR ANFs in signal coding against high level
background noise.

Noise induced hidden hearing loss has been of special
interest in the field of audiology since the first report on
the noise induced synaptic loss without PTS in CBA mice
(Kujawa and Liberman, 2009), and it continues to gain
attraction as noise-induced synaptic damage may also occur
in humans.

Abbreviations: ABR, auditory brainstem response; AMD, amplitude modulation
detection; ANFs, auditory nerve fibers; ANCOVAs, analyses of covariance; CAP,
compound action potential; CF, characteristics frequencies; CIND, coding-in-
noise deficit; CN, cochlear nucleus; AVCN, anterior ventral CN; PCVN, posterior
ventral CN; DCN, dorsal CN; CRM, co-ordinate response measure; DPOAE,
distortion-product otoacoustic emission; DTT, digit triplet test; EAR, efferent
acoustic reflex; ECochG, electrocochleography; EFR, envelope following response;
HC, hair cells; IHC, inner HC; OHC, outer HC; HIN, hearing-in-noise; IPD,
interaural phase difference; ITD, interaural time differences; MEMR, middle ear
muscle reflex; NESI, Noise Exposure Structured Interview; NIS, noise induced
synaptopathy; NIHHL, noise induced hidden hearing loss; OC, olivocochlear;
MOC, medial OC; LOC, lateral OC; PSTH, peristimulus time histograms;
PTA, pure tone average; PTS, permanent threshold shift; SR, spontaneous rate;
L/M/HSR, low/medial/high SR; SGN, spiral ganglion neuron; SPiN, speech
perception in noise; (T)MTF, (temporal) modulation transfer function; TTS,
temporary threshold shift.

Clarification and Differentiation Between
Concepts of Noise Induced
Synaptopathy and Noise Induced Hidden
Hearing Loss
Some concepts have been used in this field widely, but their
definitions may not always be clear and are sometimes misused.
For example, the terms NIS and NIHHL are sometimes used
interchangeably. It is beneficial to make a clear differentiation
between the two. In this review, NIS covers not only the noise
induced loss of but also damage to cochlear ribbon synapses, as
well as the associated consequences to cochlear function. Moreover,
NIS can occur with or without NIHL, which is typically defined
by PTS. However, NIS usually refers to cases without PTS in this
review, unless otherwise stated. In any case, NIS mainly refers
to cochlear pathology. In contrast, NIHHL refers to any hearing
problems caused by noise other than hearing loss defined as PTS. It
is notable that while NIHHL caused directly by NIS is likely to result
from cochlear dysfunction, it could also reflect changes in central
mechanisms.

To date, although there have been a significant number of
studies on the topics of NIS and NIHHL, many knowledge
gaps remain. The pathology associated with noise-induced
synaptic damage and loss is largely understood based on studies
using laboratory animals. Since morphological evaluation of
cochlear synapses is almost impossible in humans due to ethical
limitations, animal data have been used to interpret or predict
synaptopathy in humans—a practice that is necessary but not
ideal. In doing so, large differences in noise exposures used with
animals in laboratory settings and those experienced by human
beings have been generally ignored (see details in section “Noise
Induced Synaptopathy Studies in Animal Models and Difficulty
in Translation” below).

Perceptual difficulty in background noise, which can be
referred to as a coding-in-noise deficit (CIND, the term that
will be used in this review), has been thought to be the major
problem in NIHHL. The theoretical base underlying this idea
is the functional categorization of auditory nerve fibers (ANFs)
related to spontaneous rate (SR) and the bias of noise damage
to the synapses innervating ANFs with low SR (LSR). However,
a selective loss of LSR ANFs has only been reported in two
animal studies (Furman et al., 2013; Song et al., 2016) and
cannot be confirmed in humans due to technical difficulties
in recording single unit ANF function. So far, there are no
reliable objective measurements that can precisely verify and
quantify NIS in humans (see Section “Measurements Based
on Middle Ear Muscle Reflex in NIS Detection” below). In
behavioral studies attempting to verify CIND in humans with a
history of noise exposure but no PTS, contradictory results have
been reported (see Section “Is Coding-in-Noise Deficit Really
the Major Problem of Noise Induced Synaptopathy and Noise
Induced Hidden Hearing Loss?” below). This may be related to
technical errors in some cases, but it suggests a larger problem
with the idea that a selective loss of LSR ANFs is the primary
pathophysiological mechanism underlying NIS and NIHHL.
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In this review, previous studies will be summarized to verify
the gaps in knowledge associated with the translation from
animal models to humans, to clarify relevant concepts and to
address existing confusions. The review will re-examine the
theory of SR-based functional categories, and the role of ANFs
in different SR groups in the coding of high-level sounds
against background noise. It will also address challenges with the
traditional view and will discuss a new model and its difficulties.
Limitations and controversies in studies of NIS and NIHHL will
be discussed in detail to facilitate the planning of future research.

NOISE INDUCED SYNAPTOPATHY
STUDIES IN ANIMAL MODELS AND
DIFFICULTY IN TRANSLATION

Across species, ribbon synapses between IHCs and SGNs show
similarity in their functions and structures (Nouvian et al., 2006;
Moser and Starr, 2016; Wagner and Shin, 2019). Moreover, this
synapse appears to be universally sensitive to noise damage in
the animal models investigated so far. The sensitivity of the
ribbon synapses between IHCs and SGNs to noise damage was
first investigated by Pujol et al. (1990, 1993, 1996), Puel et al.
(1994, 1998), and Pujol and Puel (1999). Due to methodological
limitations at the time, synaptic damage from noise or glutamate
agonists were considered temporary and therefore did not elicit
much attention in the field of hearing research. However, noise
damage to this synapse became a hot topic about a decade
later following a report in CBA mice showing a significant
synaptic loss after a brief noise exposure that did not cause PTS
(Kujawa and Liberman, 2009). Unlike the earlier publications,
the new research used immunohistology staining against the pre-
and post-synaptic structures, which allowed for the counting of
synaptic puncta over the whole IHCs so as to quantify the number
of synapses (see review Chen et al., 2019a). In the study using
CBA mice (Kujawa and Liberman, 2009), the initial loss of the
ribbon synapses was more than 60% in the frequency region
above 8 kHz after a 2-h expose to a band of noise at 100 dB
SPL. The synaptic loss in this mouse strain was largely irreversible
with a recovery of less than 10%, leading to a 50% permanent
loss in synapses. Interestingly, it was a dominant opinion for
many years that noise-induced synaptic loss was irreversible.
Connected to this idea, NIS was conceptually narrowed as noise-
induced synaptic loss. Lately, however, evidence has accumulated
in favor of the idea that noise-induced synaptic loss is largely
or partially reversible. A recovery of synaptic counts has been
found in guinea pigs (Liu et al., 2012; Shi et al., 2013; Song et al.,
2021), rats (Ruttiger et al., 2013; Singer et al., 2013; Bing et al.,
2015), and other strains of mice (Shi et al., 2015; Kaur et al., 2019;
Kim et al., 2019). Moreover, functional deficits in ANF units have
been found to develop with recovery of the synaptic count (Song
et al., 2016). This finding is consistent with the idea of synaptic
repair and suggests that the repaired synapses are not healthy.
In addition, intrinsic mechanisms involving neurotrophins (Sly
et al., 2016; Suzuki et al., 2016) and cochlear efferent regulation
(Maison et al., 2013; Boero et al., 2018; Ohata et al., 2021)
involved in the maintenance and repair of ribbon synapses have

been identified (see review Chen et al., 2019a). It is now more
accepted that part of the interrupted ribbon synapses can be
repaired or re-established, at least partially. It is also possible that
damage and repair may occur across surviving synapses. Since the
repaired/re-established synapses may not be normal but rather
have some functional deficits, the concept of NIS should cover
not only the loss of synapses, but also the pathology of survived
and repaired synapses.

One of the challenges in human studies of NIS and NIHHL
is the difficulty obtaining morphological evidence for cochlear
ribbon synapses. Ideally, animal data on cochlear pathology can
be used to predict the effects of noise on human cochleae.
However, this approach is hampered by a noticeable limitation of
the studies using laboratory animals: the type of noise exposure.
In order to create a significant amount of damage/loss of
synapses, the noise has usually been presented at the highest
level possible that does not cause PTS (around 100 dB SPL in
mice, and 105 dB SPL in guinea pigs and rats). Noise exposure
at such a level can cause a significant amount of synaptic loss
within a short period (e.g., 2 h). Moreover, stationary, continuous
noise exposure has usually been used. While the animal data
suggests the possibility of NIS in humans, direct translation
is not valid because the noise used in the animal studies is
unlike what humans experience outside of laboratory settings.
The noise frequently experienced by humans that has raised the
most concern comes from traffic (Munzel and Sorensen, 2017;
Nieuwenhuijsen et al., 2017; Zare Sakhvidi et al., 2018; Munzel
et al., 2020), recreational events (Ivory et al., 2014; Fulbright
et al., 2017), working in industrial settings (Stucken and Hong,
2014; Lie et al., 2016), and military activity (Pfannenstiel, 2014;
Nakashima and Farinaccio, 2015). For the purpose of this review,
noise related to military activity will not be considered because
of its limited relevance to the general population. Several general
features differentiate the noise experienced by humans from
that used in previous NIS studies with animals. First, the noise
produced by traffic, industrial settings, and recreational events is
generally of a much lower sound level than what has been used
to cause NIS in animal studies, especially when the use of hearing
preservation methods/devices is taken into consideration under
current safety standards. Currently, safety regulations ensure that
the noise levels rarely exceed 90 dB SPL. Furthermore, the long-
term equivalent (Leq) sound level of noise generated by traffic
is generally lower than 80 dBA, indicating that even though
noise levels of traffic may frequently peak at very high levels,
those instances will only last for very short periods of time
(Jagniatinskisa et al., 2017; Oiamo et al., 2017). Secondly, the
noise experienced by humans in real life is temporally fluctuated
in level (Barlow and Castilla-Sanchez, 2012; Masullo et al., 2016),
not stationary as what is used in the laboratory studies. Thirdly,
the noise experienced by humans is generally intermittent or
repeated interruptedly, with damaging doses accumulating across
long periods of time.

The resting time between the segments of noise exposure
obviously allows for the recovery or repair of potential damage
and likely changes the consequence of consecutive noise exposure
on the synapse. Therefore, the pathology caused by such noise
may be different from what is caused by a brief exposure at high
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level. Related to the level difference in noise exposure, is the
need to validate the “equal energy” hypothesis, which is generally
accepted for NIHL (Ward et al., 1981; Gomez Estancona et al.,
1983; Lindgren and Axelsson, 1983; Roberto et al., 1985; Fredelius
et al., 1987; Borg and Engstrom, 1989). However, this hypothesis
may not hold in the development of NIS. In one study, noise of
84 dB SPL was presented continuously to CBA mice for 168 h,
resulting a much higher total dose than the brief noise of 2 h
at 100 dB SPL (Maison et al., 2013). This noise exposure did
not cause a significant loss of ribbon synapses compared to the
large amount of synaptic loss in the same strain of mice after
the brief noise exposure (Kujawa and Liberman, 2009). All these
discrepancies make it invalid to predict NIS in humans using the
animal data that is currently available.

HOW CAN NOISE INDUCED
SYNAPTOPATHY BE QUANTIFIED IN
HUMANS WITH POTENTIAL NOISE
INDUCED HIDDEN HEARING LOSS?

Great efforts have been expended to quantify potential NIS
in human subjects. However, efforts in this regard are largely
hindered by the fact that it is almost impossible to observe the
synaptic status of cochleae directly in humans due to ethical
restrictions. Limited post-mortem cochlear analysis has shown
synaptic damage in subjects with noise-exposure history but
normal hearing thresholds and OHCs (Zeng and Shannon,
1995; Viana et al., 2015). However, the synaptic loss in
such samples cannot be fully attributed to noise due to the
involvement of aging.

Can the loss of ANFs by synaptic damage be verified
functionally? Theoretically, there are many measurements that
can quantify the loss of ANF function. However, to do such
measurements in a clinically applicable, non-invasive manner
appears to be very challenging. Presently, several objective
methods have been proposed for detecting NIS in human
subjects. Many of them aim to measure the change of transient
cochlear responses, while other studies aim to evaluate ANF
responses phase-locked to amplitude modulation.

Measurements Based Upon Transient
Responses
Auditory nerve fibers will not function at all when synapses with
IHCs are lost and ANFs connected by damaged synapses will
have a reduced firing rate in response to sound (Song et al.,
2016). Therefore, NIS in NIHHL will reduce cochlear neural
output to the auditory brain. For example, a reduction of wave
I amplitude of the auditory brainstem response (ABR) has been
seen in animal studies of NIS (e.g., Kujawa and Liberman, 2009).
In humans, such a reduction has been reported in subjects with
tinnitus (Schaette and McAlpine, 2011). However, several issues
suggest caution in interpreting this result as a validation of
ABR for NIS quantification. Firstly, it is not clear if and how
the tinnitus in this study was related to noise exposure and
therefore NIS, although noise exposure is one of the major causes

of tinnitus. Secondly, wave I may not be ideal for estimating
NIS clinically due to its small amplitude (<0.2 µV) and large
amplitude variation. These features suggest that the ABR wave
I may not be a reliable measurement for identifying NIS.

Several alternative ABR measures have been proposed for
NIS detection. Instead of measuring wave I directly, one study
reported using the amplitude ratio between the waves V and I
(Mehraei et al., 2016). The idea underlying this measurement
is that, while wave I is reduced by NIS, wave V is likely not
reduced or even increased as the result of increased central
gain in subjects with hidden hearing loss (HHL) (Plack et al.,
2014). Other alternatives are to measure shifts in wave V
latency with masking (Mehraei et al., 2016; Gottschalk and
Domschke, 2017) and to measure changes in the ratio between
the summating potential (SP) and the compound action potential
(CAP) in electrocochleography (ECochG) (Phillipson, 2017;
Kara et al., 2020).

Auditory brainstem response- and CAP-based amplitude
measurements tend to have poor reliability in humans due to
poor signal-to-noise ratios in far field recordings. Currently,
clinical ECochG measurement is usually conducted with
electrode placed in the external ear canal. While the CAP
amplitude obtained in such ECochG is larger than the ABR wave
I recorded from scalp electrodes, it is still not adequate for a
reliable quantification of NIS in NIHHL. Larger ECochG can be
obtained by using an electrode on the tympanic membrane or
needle electrodes placed on the cochlear promontory. However,
such electrodes are less likely to be accepted by subjects.

It is worth noting that all of these measures focus on transient
responses of ANFs to acoustic onsets. This conflicts with the idea
that noise exposure primarily damages synapses to LSR ANFs
because LSR ANFs do not contribute to the on-responses of ANFs
(Bourien et al., 2014). If noise-induced synaptic loss is really
limited or biased to LSR ANFs, transient responses should be
relatively insensitive.

Even with these limitations, positive results have been reported
using ABR to identify reduced cochlear output. For example,
reduced wave I amplitude and increased V/I ratio has been found
in subjects with a high risk of NIS (Suresh and Krishnan, 2020),
replicating similar results in subjects with tinnitus (Schaette and
McAlpine, 2011). Additionally, lower ABR wave I amplitudes
have been reported in veterans with significant history of noise
exposure (Bramhall et al., 2021). In another study, however, the
CAP amplitude was not found to be correlated with hearing
in noise function (Parker, 2020), although this study did not
address NIS explicitly.

Measurements of Phase Locking for
Noise Induced Synaptopathy Evaluation
The second approach to evaluating changes in cochlear function
with NIS is to measure phase-locked responses to amplitude
modulation, also named envelope following responses (EFR)
(Bharadwaj et al., 2015; Shaheen et al., 2015; Galvez-Contreras
et al., 2017; Kalia et al., 2017; Kobel et al., 2017; Le Prell
and Clavier, 2017). This approach is likely to be superior
to measurements based upon transient responses for several
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reasons: (1) EFR reflects ongoing responses and is not related
to the onset of stimulation. (2) Depending on the carrier
frequency, different regions of the cochlea can be targeted to
ensure testing of ANF function from regions of interest. (3)
Unlike transient responses that are generated from all categories
of ANFs when tested at high sound levels, EFR can selectively
target LSR ANFs by using high-level carriers to saturate HSR
ANFs. In this approach, shallow modulation depths are favored
(Bharadwaj et al., 2014, 2015; Chen et al., 2019b; Fan et al.,
2020), because when AM is presented at high levels, temporal
amplitude fluctuations with shallow modulation depth are in the
range where HSR ANFs are saturated. (4) The EFR test can be
easily combined with masking methods to identify CIND.

Since NIS is thought to disproportionately occur in synapses
with LSR ANFs, AM responses tested at high sound levels should
be significantly attenuated. LSR fibers are also thought to be more
important for signal encoding in high-level background noise
(Joris and Yin, 1992; Moser and Starr, 2016; Plack et al., 2016;
Kobel et al., 2017; Liberman and Kujawa, 2017), because they are
robust with respect to masking (Costalupes, 1985; Young and
Barta, 1986). Therefore, AM responses should be better suited
to detect coding deficits in noise than transient responses such
as ABR and CAP, which are dominated by onset responses from
high-SR fibers (Bourien et al., 2014). This inference is supported
by a study that found a more robust decrease in EFR phase-
locking than in ABR wave I amplitude in CBA mice with cochlear
synaptopathy [established by an octave-band noise (8–16 kHz)
exposure at 98–99 dB SPL for 2 h; Shaheen et al., 2015].

In this study, Shaheen reported changes in the temporal
modulation transfer function (TMTF) in mice with NIS (Shaheen
et al., 2015). An AM signal with a high carrier frequency was
used to target the cochlear region most likely to have NIS. The
EFR was recorded in the far field using scalp electrodes. TMTFs
from the control mice showed a bandpass pattern with the best
modulation frequency located close to 1 kHz. The ANF origin
of this peak was identified by the loss of this peak in the mice
exposed to a noise that caused a significant amount of synaptic
loss in the high frequency region. Similar changes in TMTF were
reported in mice treated with cochlear application of ouabain
(Parthasarathy and Kujawa, 2018). In this report, ouabain was
applied with a dose that selectively killed LSR ANFs. In one
of our previous studies in guinea pigs, we measured EFR in
both the near field (recording from a round window electrode)
and far field (from a scalp electrode) (Chen et al., 2019b).
When a high frequency carrier (16 kHz) was used, a significant
reduction in near-field EFR amplitude was seen across a wide
range of modulation frequencies (from ∼100 to ∼1000 Hz),
suggesting that the damage to ribbon synapses reduced phase
locked responses of ANFs in a way that was not selective to
modulation frequency. However, such a reduction was not seen
in the far-field EFR recorded from the scalp. This result indicates
that the sensitivity of the far-field EFR is low.

In human studies, positive reports are available showing a
reduction of EFR amplitude in subjects with potential NIHHL
(Bramhall et al., 2021). A recent study also proposed recording
EFR with multi-band complex tones to measure the impact of
NIS on cochlear responses (Wang et al., 2019). This approach

likely reduces EFR testing time and allows for the evaluation of
NIS across a larger frequency range more efficiently. However, the
application of EFR for the purpose of identifying NIS needs to be
optimized. A promising new approach involves the measurement
of EFR to stimuli with rectangular envelopes, since these should
be more sensitive to neural damage and less sensitive to changes
in the cochlear amplifier. Several studies suggest that these may be
more sensitive to NIS (Verhulst et al., 2018; Vasilkov et al., 2021)
and more predictive of CIND (Mepani et al., 2021).

Measurements Based on Middle Ear
Muscle Reflex in Noise Induced
Synaptopathy Detection
The middle ear muscle reflex (MEMR) plays a role in protecting
the cochlea from damage by loud sounds. This reflex is defined
by an increased stiffness of the middle ear ossicular chain due to
the contraction of middle ear muscles. In humans, the stapedius
muscle is the major player in the MEMR. When it is evoked,
excitation of IHCs and SGNs is reduced (Simmons, 1960; Borg,
1968). Since the activation of this reflex depends on the strength
of the input from auditory nerves, the loss of ANFs due to
synaptopathy may reduce the MEMR. Utilizing the MEMR to
detect NIS has recently been explored, and it is a compelling idea
considering the measurement of this acoustic reflex can easily and
non-invasively be integrated into clinical audiology assessments
(Valero et al., 2018).

As outlined by Bharadwaj et al. (2019), the hypothesis that
the MEMR can be used as an objective measure of NIS detection
stems from the likelihood that LSR ANFs play an important role
in the MEMR circuit (Liberman and Kiang, 1984; Rouiller et al.,
1986; Kobler et al., 1992; Bharadwaj et al., 2019). Since noise is
thought to selectively damage synapses with LSR ANFs (Furman
et al., 2013; Song et al., 2016), the MEMR should be weakened in
subjects with NIS.

The connection between the loss of ANFs and MEMR
function has been examined in animal studies. In one study, reflex
growth function was measured in mice with varying degrees of
NIS (Valero et al., 2018). To avoid attenuation by anesthesia, the
mice were tranquilized briefly with isoflurane to allow for the
fixation of plastic couplers in their ear canals with cyanoacrylate
(Valero et al., 2016). Their surgically affixed head-plates were then
secured atop a freely spinning platform on which they could walk
at will; the MEMR was tested 15 min after the isoflurane was
removed (Valero et al., 2018). The results indicated that both
MEMR threshold elevation and magnitude reduction were scaled
linearly with percentage of synapse loss, which ranged from 4
to 50% in the 22–45 kHz region. When the reflex elicitor was
filtered to stimulate the region with the most synaptopathy, there
was a stronger correlation between MEMR change and synaptic
loss. Conversely, the correlation was the weakest in the non-
synaptopathic region. Since the MEMR was not eliminated but
obtained at higher thresholds even in subjects with 50% loss of
ANFs, it is possible that ANFs in all three SR categories drive the
MEMR (Valero et al., 2018) and NIS induces MEMR deficits due
to the reduced number of ANFs. Therefore, MEMR is likely to be
a useful metric of NIS.
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Positive results have been found in human studies as well
(Wojtczak et al., 2017; Mepani et al., 2020; Shehorn et al.,
2020). For example, Shehorn et al. (2020) examined relationships
between level-dependent speech intelligibility (rollover) and the
wideband MEMR in adult participants aged 21–54 with normal
hearing thresholds. The subjects were grouped based upon
whether they had sought hearing help. Lifetime noise exposure
was determined by self-report via the Noise Exposure Structured
Interview (NESI), which resulted in marginally higher scores
in the help-seeking group. The study found that the MEMR
magnitude of help-seeking individuals was weaker. To determine
the role of various factors (as covariates), including participant
group, gender, age, pure tone average (PTA), tinnitus, ABR wave
I amplitude, NESI, the side of the MEMR elicitor and elicitor
level on MEMR magnitude (the dependent variable), analyses of
covariance (ANCOVAs) using general mixed-effects models were
performed. The results showed that the significant predictors
were, in order of inclusion, elicitor level, elicitor side, and NESI.
There was a significant interaction between NESI and elicitor
level: for low-elicitor levels particularly, MEMR magnitude
decreased with increasing lifetime noise exposure (Shehorn et al.,
2020). This study thus agrees with the abovementioned animal
research (Valero et al., 2016, 2018).

On the other hand, other studies have found negative results
for the use of the MEMR in NIS. For example, one study
showed no evidence in human participants for changes in
MEMR threshold or growth related to NESI score when using
a contralateral BBN elicitor (Causon et al., 2020). Another
study examined the relationship between MEMR thresholds and
tinnitus, difficulties with speech perception in noise (SPiN) and
noise exposure (Guest et al., 2019a). The results of this work
also revealed no relation between MEMR and noise exposure.
However, the authors of this study refer to a prior study by
Wojtczak et al. (2017), which revealed a large reduction in
MEMR amplitude (by a factor of roughly four) in participants
with tinnitus compared to a control group. In that study, all
participants with tinnitus reported excessive and repeated noise
exposure. This highlights the possible impact of methodological
differences on the likelihood of detecting a relationship.

Validation and Comparison Across the
Objective Measurements
There are noticeable discrepancies in many of the studies
of objective measurements of cochlear synaptopathy. Several
studies have been conducted with the intention of examining
these discrepancies and offering a comparison of the objective
measurements detailed above (Guest et al., 2019a; Kaur et al.,
2019; Prendergast et al., 2019).

The work by Guest et al. (2019b) assessed the reliability
of seven specific measures that fall within the three types of
measurement discussed in sections “Measurements Based Upon
Transient Responses,” “Measurements of Phase Locking for Noise
Induced Synaptopathy Evaluation,” and “Measurements Based
on Middle Ear Muscle Reflex in Noise Induced Synaptopathy
Detection.” The measures examined in the study were ABR wave
I amplitude, ABR wave I growth, ABR wave V latency shift

in noise masking, EFR amplitude, EFR growth with stimulus
modulation depth, MEMR threshold and an MEMR across-
frequency difference measure. The participants of the study
consisted of 30 women aged 18–30 and were of a single sex
due to known sex differences in electrophysiological response
amplitudes. Each participant attended two test sessions, during
which all seven measures were assessed. Pure-tone audiometry
and distortion-product otoacoustic emissions (DPOAE) were
also assessed during the test sessions, to ensure normal cochlear
mechanical function.

In addition to examining the reliability of each measure
individually, the study also made 18 comparisons across the
proxy measures of synaptopathy. The results of the study indicate
that measures of EFR amplitude and MEMR threshold are highly
reliable measures in humans. The results also indicate that ABR
wave I amplitude can be a highly reliable measure if proper
care is taken regarding consistency in electrode placement,
participant state, and other factors influenced by the researcher
or clinician. It should be noted that clicks were used to elicit
the ABR in this study, as well as research-grade recording
equipment. If adopting ABR amplitude measures, the authors
advised that the investigator assess the reliability of their own
ABR measurements due to the lower ABR reliability found in
their own work (Guest et al., 2019a). Similar results were found in
a study that examined the test-retest reliability of raw measures,
which found good reliability in MEMR threshold and moderate
reliability in ABR wave I amplitude (Kamerer et al., 2019).
However, despite the strong reliability of these raw amplitude and
threshold measures, no correlations were observed between any
of the proxy measures of cochlear synaptopathy. This broadly
suggests that the participants did not possess synaptopathy or
that the proxy measures were not sensitive to synaptopathy
(Guest et al., 2019b).

In a separate study, proxy measures including ABR and
EFR were evaluated by examining the effects of age and noise
exposure (Prendergast et al., 2019). This study consisted of
156 participants, all with hearing thresholds within normal
limits. Lifetime noise exposure was quantified using a structured
interview aimed at determining the amount of time spent in
environments with noise exceeding 85 dBA. In addition to
ABR and EFR, psychophysical tasks such as interaural phase
difference (IPD) and amplitude modulation detection (AMD)
thresholds were examined, as well as the co-ordinate response
measure (CRM) and digit triplet test (DTT) speech tasks. In
short, the results of this study showed no evidence of age- or
noise-induced cochlear synaptopathy via the proxy measures
that were examined. Focusing on EFR and ABR for the purpose
of this review, this work found no evidence for a relationship
between age or noise exposure and EFR or ABR amplitudes.
Therefore, by using these proxy measures, the results suggest
that there is minimal effect of recreational noise exposure
on auditory function for individuals with normal audiograms,
which is inconsistent with the predicted effects of synaptopathy
(Prendergast et al., 2019).

At this moment, it is too early to make a clear conclusion
regarding which (if any) of the objective measures can be used
to reliably verify NIS in humans.
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IS CODING-IN-NOISE DEFICIT REALLY
THE MAJOR PROBLEM OF NOISE
INDUCED SYNAPTOPATHY AND NOISE
INDUCED HIDDEN HEARING LOSS?

Coding-in-noise deficit refers to a coding deficit in background
noise, specifically when examined with signals presented at
relatively high sound levels or speech presented at normal
levels with high-level background noise. This deficit has been
hypothesized to be the major hearing problem associated with
NIS and NIHHL (Furman et al., 2013; Bharadwaj et al., 2014;
Plack et al., 2014; Kobel et al., 2017; Le Prell and Clavier, 2017;
Liberman, 2017; Liberman and Kujawa, 2017; Hesse and Kastellis,
2019; Huet et al., 2019; De Siati et al., 2020; Hertzano et al.,
2020; Henry, 2021), based on the functional categorization of
ANFs by SR and the disproportionate impact of noise damage
on the synapses innervating LSR ANFs. Compared to ANFs
with high SR (HSR), LSR ANFs have higher thresholds and
larger dynamic ranges (Liberman, 1978, 1982, 1988; Liberman
and Beil, 1979; Taberner and Liberman, 2005), and are therefore
more important for signal coding at high sound levels (Schalk
and Sachs, 1980; Winter et al., 1990). Moreover, LSR ANFs
appear to function better for coding signals masked by high-level
background noise (Costalupes et al., 1984). Unfortunately, ribbon
synapses innervating this group of ANFs are more sensitive
to noise damage (Fucci et al., 1997a,b; Furman et al., 2013;
Song et al., 2016).

While the hypothesis sounds reasonable, the supporting
evidence is weak. At present, there are no solid data from
animal studies showing CIND in subjects with NIS. Our group
examined the coding of amplitude modulation in background
noise using the envelope-following response recorded from the
round window and did not find any differences between the
control and the noise-exposed group with significant synaptic
loss (Chen et al., 2019b; Fan et al., 2020). A positive result has
only been reported in a single study that used a paradigm of pre-
inhibition of a startle response to airpuffs. A noise burst presented
in a background noise was used as the pre-inhibitor (Lobarinas
et al., 2017). The report showed reduced pre-inhibition in the
noise-exposed group, suggesting a deficit in hearing the noise
burst in the background noise. However, noise-induced damage
to ribbon synapses was not documented in the study. It is notable
that the coding-in-noise deficit was seen only in the rats that
were exposed to the noise at 109 dB SPL, but not at 106 dB
SPL, which should have been adequate to produce significant
NIS. Two limitations make the data interpretation difficult: (1)
the pre-pulse inhibition of the startle responses involves the
central auditory system, which may compensate for changes in
cochlear function related to synaptopathy; and (2) the signal-to-
noise ratio (SNR) between the pre-pulse inhibitor and the masker
must be at least 20 dB in order to show clear inhibition in this
paradigm. This is much higher than the SNR used in most signal-
in-noise tasks, such as speech-in-noise measures conducted at
ratios between –10 and +10 dB (Billings et al., 2017; Maamor
and Billings, 2017; Best et al., 2018; Billings and Madsen, 2018;
Yeend et al., 2018).

In human subjects with histories of noise exposure but normal
hearing thresholds, there is a lack of consensus concerning the
existence of CIND or hearing-in-noise (HIN) problems as well as
a lack of morphological evidence and functional data indicating
loss or damage of ribbon synapses. There exist many negative
publications (Fulbright et al., 2017; Grinn et al., 2017; Grose
et al., 2017; Le Prell and Clavier, 2017; Prendergast et al., 2017a,
2019; Yeend et al., 2017; Guest et al., 2018, 2019a; Valderrama
et al., 2018), while positive reports are also available (Alvord,
1983; Kujala et al., 2004; Stone et al., 2008; Kumar et al.,
2012; Stamper and Johnson, 2015; Liberman et al., 2016; Tepe
et al., 2017; Meehan et al., 2019). For example, the study by
Grinn et al. (2017) looked at the effects of long-term self-
reported noise exposure as well as a loud recreational event
on several audiologic measurements including ECochG. One of
the main findings of the study was that there was no evidence
of noise-induced decreases in human CAP amplitude in either
the retrospective or prospective analyses. Contrarily, the study
by Liberman et al. (2016), which assessed college students
categorized into low-risk and high-risk groups based on self-
report of noise exposure, found an increased SP/AP ratio in the
high-risk group. As shown by the examples above, comparisons
across studies are difficult due to differences in methodology and
subject characteristics. Inconsistent and unreliable methods for
quantifying noise exposure (e.g., self-report measures), coupled
with a lack of morphological information renders it impossible
to confirm the existence of NIS. Moreover, the methods used to
identify CIND vary across different studies, some of which need
to be validated (see section “The Role of Temporal Processing
Deficits in Coding-in-Noise Deficit” for details). Therefore, it
remains a mystery as to whether CIND is the major functional
deficit in NIS and NIHHL.

QUESTIONING THE ROLE OF LOW
SPONTANEOUS-RATE AUDITORY
NERVE FIBERS IN CODING-IN-NOISE
DEFICIT

Equivocal results and a lack of consensus from studies
investigating CIND in both animals and human studies with
(potential) NIS makes it necessary to re-examine the hypothesis
that CIND is the major deficit associated with NIS and NIHHL,
as well as the theoretical basis of this idea (i.e., that noise damage
to ribbon synapses innervating LSR ANFs is the major pathology
of NIS without PTS and that LSR ANFs are critical for coding
signals at high levels and in background noise).

It is important to note that synaptic damage by noise is biased,
but not limited, to synapses innervating low-SR ANFs. Since
this group of ANFs constitutes only a small proportion of the
total population of ANFs (Liberman, 1978), medium-SR (MSR)
and even HSR ANFs are not spared when 50% of synapses are
lost following a damaging noise exposure. Secondly, interrupted
synapses can be repaired, including those innervating LSR ANFs.
In Guinea pigs, a significant reduction of LSR ANFs was observed
shortly after a noise exposure that initially destroyed ∼50% of
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synapses in the high frequency region. However, the percentage
distribution of ANFs across SR groups recovered 1 month later in
spite of an ∼18% loss in the total number of remaining synapses
(Song et al., 2016). This suggests that synapses with low-SR ANFs
are also partially re-established.

The idea that the coding of high-level signals relies purely
on L/MSR ANFs (because HSR ANFs firing rates are saturated
at high levels) has also recently been challenged (Carney, 2018).
This idea is based on the assumption that ANFs code sound
level via average firing rate. This assumption was challenged by
many aspects of Carney’s review. For example, for such a coding
scheme to work, the increase in the average firing rate with sound
level must be larger than the variability change in firing rate with
sound level. Since variability also increases with sound level, this
would require rate-level functions that accelerate with level to
compensate for the variability increase; such rate-level functions
are not seen for any type of ANF (Siebert, 1965; Viemeister,
1988; Winter and Palmer, 1991; Delgutte, 1996; Heinz et al., 2001;
Colburn et al., 2003; see Carney, 2018 for more details).

Models that combine ANFs of different thresholds and
dynamic ranges, and over a range of characteristics frequencies
(CFs) have been proposed to explain psychophysical level
discrimination, which is roughly constant for wideband sound
(Delgutte, 1987; Viemeister and Bacon, 1988; Winter and Palmer,
1991; see review Delgutte, 1996). These models are forced to make
problematic assumptions. For example, the wide dynamic range
of LSR ANFs does not exist for CFs below 1500 Hz (Winter
and Palmer, 1991). The limited dynamic range of low-CF LSR
ANFs is consistent with the importance of cochlear compression
for creating the wide dynamic range of ANFs at higher CFs
(Yates et al., 1992) and with physiological evidence based on ANF
responses, suggesting that cochlear gain is relatively low for low
CFs (Sewell, 1984; Cooper and Yates, 1994).

FLUCTUATION PROFILE MODEL FOR
COCHLEAR CODING OF HIGH-LEVEL
SOUND

After challenging the idea that the coding of high-level sound
relies on LSR ANFs, Carney proposed a model for the coding of
high-level spectra via HSR ANFs, called the temporal fluctuation
profile model (Carney, 2018). Temporal fluctuations exist in
complex signals such as speech (Figure 1). For example, in
voiced speech sounds, all harmonics are integer multiples of the
fundamental frequency (f 0) such that neighboring harmonics
are separated by f 0. The amplitude envelope arising from the
combination of harmonics is thus modulated at this frequency,
giving rise to ANF firing patterns that fluctuate at f 0. For average
speech levels (65–70 dB SPL), temporal fluctuation of HSR ANF
responses is minimal near spectral peaks (e.g., formants) because
they are saturated. However, HSR ANFs in spectral troughs
are not saturated and show strong temporal fluctuation by the
responses phase-locked to f 0 (e.g., in the single unit study in
cats; Schilling et al., 1998). The contrast in fluctuation strength
between ANFs tuned to peaks versus trough frequencies gives
rise to a temporal fluctuation-profile, which mirrors the spectrum

FIGURE 1 | Fluctuation profile of ANF response to vowel /ae/ spectrum,
which is in the foreground. The model peristimulus time histograms (PSTHs) of
HSR ANFs are presented at formant peaks (F1 = 700 and F2 = 1800 Hz) and
troughs. Temporal fluctuation is large at trough frequencies and small nor
none at the formants, forming the dips in the fluctuation amplitude that mirrors
the formants. Adapted from Carney (2018).

of the voiced speech sound. To make this model work, the
signal presentation level must be able to generate differences
in temporal fluctuation between spectral peaks and troughs. At
very high levels, it is possible that HSR ANF responses will be
saturated (and thus non-fluctuating) at both spectral peaks and
troughs, such that the model would not work. Therefore, the
usefulness of the model appears to be limited to a narrow range
of levels (where peaks but not troughs give rise to saturated
responses in HSR ANFs).

This model can be used to interpret potential problems
in coding speech and other high-level sounds in subjects
with NIS. While this model reasonably illustrates the potential
contribution of HSR ANFs to the coding of these high-
level sounds, the contribution of L/MSR ANFs that are NOT
saturated is ignored. When L/MSR ANFs are included, the
fluctuation contrast across frequency should be reduced in
comparison with a model including only HSR ANFs, because
L/MSR ANFs are not saturated and may show little difference
in temporal fluctuation between spectral peaks and troughs,
at least in healthy cochleae. Interestingly, if NIS is associated
with a selective loss or damage to synapses serving L/MSR
ANFs, NIS should lead to stronger fluctuation contrast across
frequency, thereby predicting better coding for speech. This
conflicts with the idea that the damage and loss of L/MSR
ANFs in NIS should negatively impact the coding of speech
and other high-level sounds; rather, speech coding should be
improved by the enhanced fluctuation profile resulting from the
lost contribution of L/MSR ANFs.
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FIGURE 2 | The efferent feedback loops controlling the OHC gain. The short loops going through lower brainstem are marked by redlines. The thickness of the line
represents the relative strength in the typical loop from PVCN to MOCNs (green dots). The loop from the small cell cap in AVCN to MOCN is thought to be selective
receiving input from L/MSR ANFs. The relative strength of this loop is unknown. The long feedback loop (blue lines) includes the projection from both AVCN and
PVCN cores to IC, which is sensitive to the low-frequency temporal fluctuation. The fluctuation is inherited and enhanced in the descending projection from IC to
MOCNs. AVCN/PVCN, anterior/posterior ventral cochlear nucleus; DCN, dorsal cochlear nucleus; MOCN, medium olive cochlea neurons; MSO, medium superior
olive; IC, inferior colliculus.

THE ROLE OF COCHLEAR EFFERENT IN
NOISE INDUCED SYNAPTOPATHY AND
FLUCTUATION PROFILE MODEL

The Potential Role of Medial
Olivocochlear Control in Fluctuation
Profile Model
The fluctuation profile appears to be inherited in the midbrain
(inferior colliculus, IC), where neurons have response rates that
vary systematically with the frequency and amplitude of low-
frequency fluctuations on their inputs from cochlear nuclei
(CN) (Joris et al., 2004). The low-frequency fluctuations of ANF
responses are accentuated by CN neurons which, either directly
or via other brainstem nuclei, may relay fluctuation profiles to
IC neurons, in which the profile is somehow enhanced (Joris
et al., 2004). Furthermore, the fluctuation profiles in IC may
provide a feedback control mechanism via efferent control to the
cochlear gain in a way that can possibly enhance the contrast of
the fluctuation profile (Carney, 2018).

Olivocochlear neurons (OCNs) in the lower brainstem are
a direct source of cochlear efferent control. They are divided
into two groups: medial (MOC) and lateral (LOC) neurons. The

function of MOC neurons is better understood; these are known
to control OHC gain. Carney’s model proposes two feedback
loops for this gain control mechanism as summarized in Figure 2.
In the long loop (blue lines in Figure 2), the fluctuation profile
established in the ANFs is mapped in CN, which projects to IC
and then down to MOC neurons (ANF-CN-IC-MOC-cochlea).
In the short loop through the lower brain stem (ANF-CN-
MOC-cochlea, red lines in Figure 2), there is a branch receiving
projections of L/MSR ANFs in the small cell cap in the marginal
shell of the anteroventral cochlear nucleus (AVCN), which then
project to MOC neurons (Ye et al., 2000). A large majority
of neurons in the small cell cap in cat AVCN have LSRs and
very wide dynamic ranges (Ghoshal and Kim, 1996), consistent
with the fact that their inputs arise from L/MSR ANFs (Leake
and Snyder, 1989; Liberman, 1991; Ryugo, 2008). However, the
feedback control in this branch is sensitive to firing rate and not
temporal fluctuation. On the other hand, it is widely accepted
that the ascending pathway from CN to MOC neurons is mainly
through the posterior ventral cochlear nucleus (PVCN) (Figure 2;
see review by Guinan, 2006), which is not specific to input
from L/MSR ANFs (Thompson and Thompson, 1991; de Venecia
et al., 2005; see review Guinan, 2006). In Guinea pigs, lesions
in PVCN, but not the other subdivisions, produce long-term
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decreases in the strength of the MOC-mediated efferent acoustic
reflex (EAR). The degree of cell loss within the dorsal part of
the PVCN determines the effect of the lesion on the strength of
the EAR, as measured in the adaptation of distortion product
otoacoustic emissions (DPOAEs) (de Venecia et al., 2005). The
authors suggest that multipolar cells within the PVCN have the
distribution and response characteristics appropriate to be the
MOC reflex interneurons. It is an open question as to whether
the PVCN-MOC branch of the lower brainstem loop relies upon
input from the LSR ANFs and whether the output of this branch
is regulated by efferent projections from fluctuation-sensitive
neurons in the IC downstream. There is evidence suggesting that
PVCN neurons responsible for the MOC EAR are likely those
with chopper histograms and sharp tuning (Brown et al., 2003).
However, the SRs and dynamic ranges of these neurons have
not been specified.

At this moment, the relative importance between the short and
the long loop is unclear. In a study by Gummer et al. (1988) a few
medial efferent neurons showed a short latency (5 ms), which is
consistent with a direct input from CN neurons to MOC neurons
(1988). However, the group delays were longer for most neurons
(8.2± 1 ms), indicating the involvement of a another relay, likely
in the IC (Gummer et al., 1988). Alternatively, the long group
delays could be accounted for by a direct CN connection plus a
long delay in medial efferent dendrites.

Inferior colliculus neurons are sensitive to low-frequency
fluctuations from the ascending pathway (Joris et al., 2004). They
have bandpass modulation transfer functions (MTFs) with best
modulation frequencies near the fundamental frequency (f 0) of
male speech (Krishna and Semple, 2000; Carney et al., 2016);
MOC neurons also have bandpass MTFs (Gummer et al., 1988).
This indicates that they are likely excited by descending inputs
from IC neurons, although it is not clear why the frequencies of
human speech would have any relevance for the animals used in
those studies. Nevertheless, Carney suggests that the fluctuations
in the descending pathway from IC to MOC neurons can enhance
the fluctuation profile in ANFs: those ANFs in channels near
formant peaks produce less fluctuation, which would result in
a weaker MOC excitation through the IC-MOC regulation and
then less or no cochlear gain reduction, while those ANFs
in channels near troughs produce stronger fluctuations that
would excite MOC neurons more strongly, resulting in a greater
decrease of cochlear gain. Therefore, the ANFs in the trough
channels would be farther away from the level of saturation
because of this regulation, while the ANFs in the peak channels
would remain saturated.

To make this hypothesis work, one must assume that, when
the cochlea is stimulated with temporarily fluctuated signals at a
low level, a larger MOC efferent inhibition of cochlear gain would
be seen, at least within a certain level range. However, this level
effect is opposite to what has been observed in previous studies
observing the efferent suppression of otoacoustic emissions and
CAP. In such studies, the suppressor is presented contralaterally
(contralateral suppression, or CS) for an easy differentiation of
the afferent response from the suppressing stimulus. Available
data unanimously show larger CS in both OAE (Moulin et al.,
1993; Zhang et al., 2007) and CAP (Puria et al., 1996) with a

higher suppressor level. However, in those studies, all CS signals
are generally stationary. If fluctuation plays a dominant role, as
suggested above, the level effect would be opposed by the activity
of the long loop when a fluctuated suppressor (such as an AM
tone or noise) is used: there would be greater CS for a low-level
suppressor (at least within a certain range). However, this may
not be seen because efferent control in the short loop through
the small cell cap is not determined by temporal fluctuation but
rather by overall firing rates of ANF inputs. The efferent control
in this pathway should have a larger CS effect at a higher CS level.
In one study, efferent suppression of OAEs was observed using
an AM signal to evoke contralateral suppression. While the result
showed that the suppression was increased with modulation
depth, the suppression was observed at only one suppressor level
(Maison et al., 1997). Level effects for efferent suppression of OAE
and CAP with fluctuated suppressors have never been observed.

Furthermore, speculation about cochlear gain control
regulating IHC/ANF saturation conflicts with the fact that
the gain reduction is NOT observed for high sound levels
but for low levels close to response threshold. This is seen
in CAP (Wiederhold and Kiang, 1970) and single ANF
responses (Guinan and Stankovic, 1996) evaluated with medial
olivocochlear body (MOCB) stimulation, as well as in studies of
contralateral suppression of DPOAEs (Chery-Croze et al., 1993;
Kujawa et al., 1993; Zhang et al., 2007; Atcherson et al., 2008;
Sun, 2008; Chambers et al., 2012; Danesh and Kaf, 2012) and
CAP (Kawase and Liberman, 1993; May and McQuone, 1995;
Puria et al., 1996; Popelar et al., 2001; Chabert et al., 2002; Najem
et al., 2016). Therefore, such gain control is not likely to enhance
fluctuation profiles in ANF responses to high-level sound.

Protective Effect of Efferent on Ribbon
Synapses
Evidence is available for the protective role of medial efferent
function against noise damage to the synapse. For example,
exposure to a noise of 84 dB SPL for 168 h caused a 40% loss
of afferent synapses in mice in which surgical de-efferentation
to OHCs (not de-efferentation of LOC) was created in the
olivocochlear body (OCB) pathway (Maison et al., 2013), while
the synaptic loss by this noise was minimal in the control mice.
The evidence for MOC protection of OHCs also comes from
genetic studies. For example, a point knock-in in a subunit
of nicotinic receptor alpha 9 enhanced efferent inhibition and
reduced noise induced hearing loss in mice (Taranda et al., 2009;
Boero et al., 2018).

While the medial efferent feedback provides EAR via the
regulation of OHC gain, the functional role of the lateral
efferents targeting afferent terminals underneath IHCs is much
less understood. However, a few studies have provided positive
data indicating a protective role of the lateral efferents. Noise
exposure has been found to reduce the strength of OC function
(Sliwinska-Kowalska and Kotylo, 2002; Peng et al., 2010). This
reduction is likely related to noise-induced damage to the afferent
system (such as NIS, which weakens the EAR circuit). Other
results have suggested a protective effect against noise damage
by LOC fibers. Evidence shows that dopaminergic LOC fibers
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may exert tonic inhibition to prevent excitotoxicity (Ruel et al.,
2001). Moreover, selective removal of LOC neurons has shown
to increase cochlear nerve excitotoxicity (Darrow et al., 2007;
Lendvai et al., 2011).

THE ROLE OF TEMPORAL PROCESSING
DEFICITS IN CODING-IN-NOISE DEFICIT

Temporal Processing Disorders in Noise
Induced Synaptopathy Without
Permanent Threshold Shift
While CIND is questionable as the major problem resulting from
NIS, temporal processing deficits have been demonstrated as
being associated with NIS in both animal and human subjects.
Auditory system signal processing is highly distinguishable
from that of other sensory systems, such as vision, due
to its high temporal resolution (Hirsh, 1959; Ronken, 1970;
Leshowitz, 1971). Temporal processing disorders have been
reported in subjects with presbycusis (Schneider and Hamstra,
1999; Pichora-Fuller and Souza, 2003; Gordon-Salant, 2005;
Martin and Jerger, 2005; Walton, 2010; Humes et al., 2012), also
known as age-related hearing loss, and in subjects with auditory
neuropathy (Kumar and Jayaram, 2005; Vlastarakos et al., 2008;
Narne, 2013; Lobarinas et al., 2020). Since NIS is a type of
auditory neuropathy, temporal processing difficulties are likely to
occur in subjects with NIS.

The pathological locus of NIS is the ribbon synapses between
the IHCs and the SGNs, which happens to be the first speed-
limiting site of auditory processing along the ascending auditory
pathway. It is well recognized that the primary function of the
presynaptic ribbons is to facilitate neurotransmission through the
synapses (Moser et al., 2006; Safieddine et al., 2012; Moser and
Starr, 2016). Therefore, damage to ribbons would be expected
to give rise to limitations of auditory processing speed (Buran
et al., 2010; Jing et al., 2013), likely resulting in temporal
processing disorders.

In a single unit study, a development of temporal processing
deficits was clearly associated with ribbon synapse repair after a
damaging noise exposure (Song et al., 2016). In this study, a noise
exposure of 105 dB SPL for 2 h was given to albino Guinea pigs.
This noise led to an initial synaptic loss of approximately 50% in
the high frequency region. Within the month following the noise
exposure, temporal coding deficits developed along with partial
recovery of the number of ribbon synapses. The temporal coding
deficits manifested as a delayed onset peak of ANF firing as well as
a reduced peak rate. Since the deficits were not seen shortly after
the noise exposure, but only a month later after the synaptic count
had largely recovered, it was concluded that the repaired synapses
had presented problems with encoding signal onset (Song et al.,
2016). A second study executed by the same researchers reported
similar temporal processing deficits as measured in ABR and CAP
in guinea pigs exposed to the same noise (Shi et al., 2013).

Temporal processing disorders resulting from noise exposure
have also been investigated in human participants, both
objectively and behaviorally. For instance, past objective studies
have used ABR wave V in order to identify temporal coding

deficits in humans following noise exposure (Mehraei et al.,
2016; Prendergast et al., 2017a). In the study by Mehraei et al.
(2016), it was found that the masking-induced wave-V latency
shifts were correlated with changes in ABR wave-I amplitude,
which may reflect the number of functional ANFs. In the
mice observed in the study, it was demonstrated that NIS
reduced wave-I amplitude growth with sound level. Notably,
the amount of wave-V latency shift in noise was also reduced.
Among the human participants in this study, those with small
masking-induced wave-V latency shifts (which likely would be
associated with smaller ABR wave-I amplitude and a larger
loss of synapses) performed poorer on a sound localization
task requiring discrimination of interaural time differences
(ITD) in sound envelopes (Mehraei et al., 2016). This result
suggests that NIS may result in temporal processing deficits. In
another objective study, a correlation was found between poor
envelope following responses (EFR) and poor ITD threshold,
which was representative of poor temporal resolution (Bharadwaj
et al., 2015). Poor EFR (i.e., reduced amplitude and/or phase-
locking value) has also been reported as evidence of temporal
processing disability in subjects with NIS (Bharadwaj et al.,
2014; Shaheen et al., 2015; Parthasarathy and Kujawa, 2018;
Prendergast et al., 2019).

A connection between CIND and temporal processing
disorders has also been found in humans from behavioral
studies. In one study, Snell et al. found that individuals with
poorer gap detection thresholds showed significantly poorer
word scores as the level of background babble increased
(Snell et al., 2002), suggesting that temporal processing could
play an important role in understanding speech in noise.
More evidence is available for temporal processing deficits
with NIS. In one study, participants who had been exposed
to noise had trouble discriminating a temporally fluctuating
noise from a more stationary noise than those without noise
exposure (Stone et al., 2008). In another study, noise-exposed
train drivers were found to perform poorer than controls
in various tests of temporal processing ability, including gap
detection, modulation detection and duration pattern detection.
The poorer temporal resolution was also correlated with poor
speech recognition in noise (Kumar et al., 2012). In light of
evidence for the functional role of ribbon synapses in temporal
processing and the sensitivity of the synapse to noise, as
well as the apparent connection between temporal processing
deficits and difficulty of hearing in noise, it is reasonable to
assume that noise damage may cause CIND by degrading
temporal processing.

However, reports refuting the connection between temporal
processing deficits and CIND from NIS also exist. For instance,
one study examined the auditory processing abilities of middle-
aged participants with normal hearing thresholds by measuring
AM detection thresholds. In this study, no clear relationship
between noise exposure and auditory perception was found
(Yeend et al., 2017). In another study, a significant but
weak correlation was found between speech-in-noise deficits
and temporal processing deficits in noise-exposed groups with
normal hearing thresholds (Prendergast et al., 2017b). In both of
those reports with negative results, the subjects in the noise group
were selected based upon self-report and might not have had NIS.
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Is Temporal Processing Disorder a
Concern for Evaluating Coding-in-Noise
Deficit?
The review above suggests that temporal processing deficits are
likely to occur in individuals with NIS and may give rise to
speech-in-noise deficits (or CIND). Logically, the evaluation of
CIND should take temporal processing deficits into account,
since temporal processing is involved in the detection of signals
in background noise. As outlined in section “Noise Induced
Synaptopathy Studies in Animal Models and Difficulty in
Translation,” the real-world noise experienced by humans tends
to be temporally modulated. In such noise, it is possible to detect
signals in the dips of the masker. However, such listening in the
dips likely depends on robust temporal processing. To mimic
real life hearing in noise challenges, maskers used in experiments
investigating coding ability in background noise should also be
temporally modulated. However, this issue has received scant
attention in research designs—particularly in studies of CIND
with NIS in animal models.

In behavioral studies with human participants, both stationary
and modulated maskers (such as multi-talker babble) have been
used in speech-in-noise tests in order to examine potential
deficits in subjects with NIS, but the temporal characteristics of
the masker have received insufficient focus, and there are no
comprehensive comparisons of the masking effect from maskers
with varying temporal features. For example, in one study
reviewed above, stationary noise was used as the masker and
no differences were found between the noise-exposed group and
the control group in the speech-in-noise task (Prendergast et al.,
2017b). In another study examining the effect of noise-induced
tinnitus on speech-in-noise understanding in young adults,
participants with noise-induced tinnitus showed worse speech-
in-noise performance than non-tinnitus controls regardless of
whether the masker was stationary or modulated (Gilles et al.,
2016). However, there was no control group without noise
exposure used in this study. Only the study by Kumar et al.
(2012) appeared to confirm worse speech-in-noise performance
in noise-exposed participants by using multi-talker babble as
the masker (Kumar et al., 2012). However, the masking effect
of the multi-talker babble was not compared to a stationary
masker. It is therefore evident that a valid comparison cannot
be made across the available studies to differentiate the effects of
masker types (stationary versus modulated). To date, there are no
comprehensive evaluations of whether a temporally modulated
masker is superior to a stationary masker in a speech-in-noise test
used to identify CIND in subjects with NIHHL.

IS THE SYNAPTIC DAMAGE AND REPAIR
RESPONSIBLE FOR THE TEMPORARY
THRESHOLD SHIFT AND RECOVERY?

Cochlear threshold recovery after a non-PTS-inducing noise
exposure co-occurs with synapse count recovery and/or repair
of damaged synapses. This co-occurrence has been considered
by some researchers as evidence supporting synaptic repair as

the mechanism of temporary threshold shift (TTS) recovery
(Robertson, 1983; Puel et al., 1997; Shi et al., 2015; Wang et al.,
2015). However, this idea conflicts with our understanding of
the physiological mechanisms that determine cochlear threshold.
It is well recognized that noise-induced reductions in auditory
sensitivity are mainly due to damage to outer hair cells (OHC),
which provide active gain for soft sounds (Hudspeth, 1997; Szalai
et al., 2011). Threshold recovery following TTS is associated with
a full recovery of OHC function, demonstrated by a recovery of
otoacoustic emissions (OAE) (Subramaniam et al., 1994; Chang
and Norton, 1996; Kujawa and Liberman, 2009) and cochlear
microphonics (CM) (Wang et al., 1992, 2011; Chen et al., 1995;
Chen and Liu, 2005; Chen and Zhao, 2007). In addition, repair of
stereocilia and the tectorial membrane have been considered as
potential mechanisms underlying the resolution of TTS in several
studies (Sohmer, 1997; Nordmann et al., 2000; Wang et al., 2002,
2011; Tsuprun et al., 2003). To the extent that noise-induced
damage to OHCs and surrounding structures is reversible, this
reversibility provides a reasonable account for the recovery of
cochlear thresholds following noise exposure.

Noise-induced IHC and synapse damage and repair are
less likely to be involved in threshold recovery. Each IHC is
innervated by more than 10 SGNs, and noise damage tends to
be selective to synapses innervating high-threshold fibers that
have low spontaneous spike rates (SR) (Furman et al., 2013;
Song et al., 2016). Damage/repair or disruption of these synapses
should not result in any change in thresholds, similar to results
obtained via ouabain-induced cochlear damage at low doses
(Bourien et al., 2014). This is further supported by differences
in the time courses for the recovery of ABR threshold and
CAP amplitude, which are related to the total number of ANFs
that are functional. In a series of experiments using Guinea
pigs, we found that ABR threshold shifts induced by brief noise
exposures at 106 dB SPL were completely recovered a week
later, with continuing recovery of CAP amplitudes and synapse
counts occurring well after that time point. The hypothesis that
moderate damage to IHCs and their synapses with SGNs may
not impact thresholds is also supported by the finding that up
to a 60% loss of SGNs, due to the selective IHC death induced
by carboplatin in chinchillas, does not affect cochlear thresholds
(Salvi et al., 2016).

Extant data cannot fully rule out changes in synaptic
sensitivity that may occur in parallel with damage and repair
of OHCs and surrounding structures. Since OHCs provide
positive feedback in sound conduction, such changes in synaptic
sensitivity would need to be observed by stimulation bypassing
these OHC-based effects (to rule out the slim possibility that a
temporary reduction in synaptic sensitivity is responsible for the
noise-induced TTS).

TEMPORARY CONCLUSION AND
FUTURE TASKS

Figure 3 presents a summary of this review in the attempt to
show what we current know as well as gaps in our knowledge
concerning NIS and NIHHL.
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FIGURE 3 | Summary on what we know and what we do not know in the research of NIS and NIHHL. Note that NIS without PTS is overlapped with NIHHL of
peripheral origin. The dashed lines without question markers indicate where the connection remain to be speculation and need to be verified.

Conceptually, NIS is largely but incompletely overlapped with
NIHHL, since NIS can occur with or without PTS. While NIS
refers to the peripheral effect of noise, NIHHL should also cover
problems with central origin.

Studies of NIS and NIHHL have received wide interest for
more than 10 years since the discovery of substantial ribbon
synapse loss following a brief noise exposure that did not cause
PTS in CBA mice (Kujawa and Liberman, 2009). Unlike what
was seen in this earliest report, many studies have found that
the initial synapse loss can be partially recovered. Based upon
two available single unit studies in Guinea pigs, the noise damage
appears to be biased to synapses innervating LSR ANFs (Furman
et al., 2013; Song et al., 2016). However, in one of the two reports,
this issue was observed dynamically, and the result showed
that a normal distribution of ANFs across SR category was
re-established with the partial recovery of total synaptic count.

Translation of animal data on NIS to humans is challenging
due to the large differences in noise exposure used in animal
research studies and the noise experienced in real human life.
Hypothesized NIS in humans is also difficult to confirm due to
a lack of morphological data and reliable objective tests that can
quantify a loss of ANF function.

Functionally, CIND has been considered to be the major
functional problem associated with NIS and NIHHL based upon
the theory of SR-based ANF categorization and the finding of a
disproportionate loss of LSR ANF after noise exposure. However,
CIND has yet to be confirmed as a consequence of NIS in
either animals or humans, suggesting a possible problem with the
hypothesis. The hypothesis that speech encoding (and speech-
in-noise encoding) is compromised in NIS because it depends
disproportionately on LSR ANFs, which are selectively damaged
by noise exposure, is further challenged by the fluctuation
profile model. This model contends that speech is more robustly

encoded by fluctuation profiles conveyed via HSR ANFs, and that
LSR ANFs play a more important role in efferent control via the
LOC and MOC. However, there are several unresolved issues for
this model that remain to be validated, including the role of MOC
function in this model.

Temporal processing disorders have been shown to be the
most likely functional deficit associated with NIS, and these
may be connected to hearing difficulties in noise, particularly
with temporally modulated maskers. However, further research
is required in humans, with particular attention paid to: (1)
better quantifications of noise exposure and consistent use of
control groups, (2) better quantifications or evaluations of NIS,
(3) careful comparisons of maskers with different temporal
characteristics to allow for the evaluation of the impact of
temporal processing deficits on hearing in noise.
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