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metabolic axis response to global
ischaemia in brain, heart, liver and kidney
in a rat model of cardiac arrest
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Abstract

Background: Cellular energy failure in high metabolic rate organs is one of the underlying causes for many
disorders such as neurodegenerative diseases, cardiomyopathies, liver and renal failures. In the past decade,
numerous studies have discovered the cellular axis of LKB1/AMPK/mTOR as an essential modulator of cell
homeostasis in response to energy stress. Through regulating adaptive mechanisms, this axis adjusts the energy
availability to its demand by a systematized control on metabolism. Energy stress, however, could be sensed at
different levels in various tissues, leading to applying different strategies in response to hypoxic insults.

Methods: Here the immediate strategies of high metabolic rate organs to time-dependent short episodes of
ischaemia were studied by using a rat model (n = 6/group) of cardiac arrest (CA) (15 and 30 s, 1, 2, 4 and 8 min CA).
Using western blot analysis, we examined the responses of LKB1/AMPK/mTOR pathway in brain, heart, liver and
kidney from 15 s up to 8 min of global ischaemia. The ratio of ADP/ATP was assessed in all ischemic and control
groups, using ApoSENSOR bioluminescent assay kit.

Results: Brain, followed by kidney showed the early dephosphorylation response in AMPK (Thr172) and LKB1
(Ser431); in the absence of ATP decline (ADP/ATP elevation). Dephosphorylation of AMPK was followed by
rephosphorylation and hyperphosphorylation, which was associated with a significant ATP decline. While heart’s
activity of AMPK and LKB1 remained at the same level during short episodes of ischaemia, liver’s LKB1 was
dephosphorylated after 2 min. AMPK response to ischaemia in liver was mainly based on an early alternative and a
late constant hyperphosphorylation. No significant changes was observed in mTOR activity in all groups.

Conclusion: Together our results suggest that early AMPK dephosphorylation followed by late
hyperphosphorylation is the strategy of brain and kidney in response to ischaemia. While the liver seemed to get
benefit of its AMPK system in early ischameia, possibly to stabilize ATP, the level of LKB1/AMPK activity in heart
remained unchanged in short ischaemic episodes up to 8 min. Further researches must be conducted to elucidate
the molecular mechanism underlying LKB1/AMPK response to oxygen supply.
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Background
Under conditions of energy stress, it is critical for all tis-
sues to adjust their metabolic demands to their energy
supplies [1]. During metabolic stress situations, adeno-
sine monophosphate protein kinase protein (AMPK)
acts as the master of cell energy regulator, establishing
homeostasis via shutting off the ATP consuming ana-
bolic pathways while it switches on the catabolic path-
ways, producing ATP [2, 3]. AMPK is a highly conserved
serine/threonine protein kinase composed of a catalytic
α-subunit and two regulatory β and γ-subunits. Previous
studies demonstrated that metabolic stress, which in-
creased the ratio of ADP, and consequently AMP to
ATP, activated AMPK α-subunit to more than 100 folds
through its phosphorylation at Threonine 172 (Thr172)
[4, 5]. One of the main kinases to mediate AMPK phos-
phorylation is liver kinase b1 (LKB1), originally was in-
troduced as a tumor suppressor enzyme [6, 7]. LKB1 is
believed to be constitutively active, however its higher
phosphorylation at Serine 431 (Ser431) in response to
some stimuli such as ischaemia, increases the activation
of these kinase. This causes it to phosphorylate AMPK
more rapidly if AMP binds to AMPK γ-subunit [8, 9].
Apart from LKB1/AMPK role in cell energy homeosta-
sis, they contribute to cell proliferation, cell polarity
regulation, gene transcription and cellular growth
[10, 11]. A substantial part of this regulatory role is ap-
plied through mammalian target of rapamycin (mTOR),
one of AMPK targets, with many suggested roles in cell
metabolism, growth and proliferation [12]. Phosphoryl-
ation of AMPK at Thr172 inhibits mTOR activity and
consequently cell growth and proliferation. That assists
cells in putting a hold on using energy resources for cell
proliferation and growth during energy stress [13]. AMPK
activation is also mediated by reactive oxygen spices
(ROS) and calcium calmodulin in an independent way to
ADP/ATP ratio [14, 15]; however the rational of cell pref-
erence in choosing the mechanism of AMPK activation
under different circumstances is still under investigation.
Hypoxic damage particularly to high metabolic rate

tissues is one of the main underlying causes for the or-
gans’ failure due to many factors such as initial ischae-
mic damage, the consequent oxidative stress damage or
the combination of both. Consequently, a wide range of
cardiomyopathies, liver and renal failure, and acute brain
damage due to ischæmic stroke or the long-term conse-
quence as Alzheimer’s disease lead to a high rate of mor-
tality in humans [16–21]. The high sensitivity of these
organs to energy stress makes it a vital requirement for
their cells to recruit an immediate strategy for a constant
and rapid monitoring of energy level by their metabolic
regulators. Here we examined the immediate reaction of
LKB1/AMPK/mTOR central metabolic axis, in response
to a global ischaemia in these organs. By using a reversible

model of cardiac arrest in rat, which was developed in our
laboratory [22], we investigated the time-dependent phos-
phorylation level of LKB1 (Ser431), AMPK (Thr172) and
mTOR (Ser2448) along with their non-phosphorylated
forms (total proteins) in brain, heart, liver and kidney. The
energy situation, presented by ADP/ATP ratio at any time
point of ischaemia was also assessed separately in these
tissues, in order to study the involvement of ATP levels, as
the possible mechanism in changing LKB1/AMPK/mTOR
activation under ischaemia.

Methods
Animal experiments
The animal experiments in this study were approved by
the Animal Ethic Committee of Flinders University. The
study was completed in accordance with the South Aus-
tralian Prevention of Cruelty to Animals Act 1985 fol-
lowing the Australian Code of Practice for the Care and
Use of Animals for Scientific Purposes, 2004.

Animal preparation
Forty-two Sprague-Dawley rats were supplied by Labora-
tory Animal Services of the University of Adelaide. The
animals were randomly divided into 7 groups (1 control:
anesthesia only, 6 ischaemic groups, n = 6 in each). The
rats were kept in Flinders University Animal Facility
with free access to food and water until they reached the
minimum age of 3 months and the body weight of
250-350 g. Twelve hours before experiments, the rats
were fasted with free access to water. On the day of the
experiment, anesthesia was initiated by intraperitoneal
injection of Ketamine (Sigma, 343,099) and Xylazine
(Sigma, X1251), 100 mg/kg and 10 mg/kg body weight,
respectively. The tail vein was cannulated using a 22G
0.90 mm intravenous catheter for drug and volume
(Saline) delivery. The chest was shaved to provide a clear
area for defibrillator electrodes’ attachment and the elec-
trocardiogram was recorded constantly via chest leads
using a defibrillator/monitor (Philips HeartStart MRX,
Philips Healthcare INC, USA). Oxygen saturation and
pulse rate were monitored constantly and were recorded
every 5 min via a Pulse-oximeter attached to the animal’s
paw. Ventilation was performed via endotracheal intub-
ation using a 16-gauge cannula inserted in the trachea
and connected to a specific volume-controlled small ani-
mal ventilator with supplemental oxygen at 70 bpm and
tidal volume adjusted to 6 mL/kg. Cardiac arrest (CA)
was achieved using two phases of transoesophageal alter-
nating current (AC) as previously described (17). Briefly,
a pacing catheter (5F) with two end ring electrodes and
a 0.5 cm gap was inserted into the oesophagus to a
depth of 6–6.5 cm and connected to a current generator
ensuring that the current was applied close to the heart
without generating irreversible respiratory muscle
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paralysis. Two phase electrical stimulation using AC
current consisting of 50 Hz AC 24 V (phase 1), followed
by 50 Hz AC 18 V (phase 2) in order to generate the
least oesophageal thermal injury. Ventilation was
stopped during the period of CA. CA was confirmed
through the electrocardiogram monitor, showing high
voltage AC current and a loss of pulse detected by the
oximeter within a few seconds after applying the current.
Different durations of current (15 and 30 s and 1, 2, 4
and 8 min) caused CA for the relative periods. To obtain
brain, heart, liver and kidney samples at the end of CA
periods, the animal was decapitated under general
anesthesia and the required tissues were immersed im-
mediately in liquid nitrogen and kept in – 80 °C freezer
until further analysis.

Antibodies
Mouse monoclonal phospho-liver kinase b1 (LKB1)
(Ser431; sc-271,924), rabbit polyclonal LKB1 (H-75;
sc-28,788), rabbit polyclonal phospho-adenosine mono-
phosphate kinase protein kinase (AMPK) (Thr172; #2531),
rabbit polyclonal AMPK (#2532), rabbit polyclonal
phospho-mammalian target of rapamycin (mTOR)
(Ser2448; #2971) and rabbit-polyclonal mTOR (#2972)
antibodies were purchased from Cell Signalling. Mouse
monoclonal beta actin (ab6276) antibody was purchased
from Abcam, USA. Secondary antibodies were purchase
from Jackson Immuno Research, USA (HRP donkey anti-
mouse and anti-rabbit).

Tissue homogenates for western blot
The middle 1/3 of the frozen brain containing left par-
ietal cortex and hippocampus, left heart ventricle, mid-
dle 1/3 of left kidney containing cortex, medulla, and
pelvis, and the left lateral lobe of liver were homoge-
nized in homogenizing extraction buffer containing pro-
tease inhibitors of Pepstatin A (Sigma, P5318, 1 μg/ml)
and Leupeptin (Sigma, L2884, 1 μg/ml). The homogen-
ate was centrifuged at 1000×g for 5 min at 4 °C and the
supernatants were stored at − 80 °C until analysed.

Protein quantification
By using an EZQ assay kit (BioRad, Hercules, CA), the
total protein in each sample was measured following the
manufacturer’s protocol. Briefly, 10 μL of sample, 25 μL
of 4 times sample buffer (100% glycerol, 1 M Tris/HCl
pH 6.8, SDS, beta-mercaptoethanol, H2O) and 65 μL
H2O were combined. Ten μL of this solution was added
to 90 μL of H2O. One μL of samples and standard solu-
tion (serial dilutions of ovalbumin) were loaded on assay
paper in triplicate each in 96-well plates and absorbance
was measured using an Image Master VDS-CL
(Amersham Biosciences) and quantified by CareStream
molecular imaging software.

Western blot analysis
To analyse electrophoretic mobility of p-LKB1 (Ser431),
LKB1, p-AMPK (Thr172), AMPK, p-mTOR (Ser2448) and
mTOR, 30 μg of each sample in sample buffer was
loaded to each well of Any kD™ TGX Stain-free gel
(Bio-Rad, 569,033), along with 1 well of 5 μL Precision
Plus Protein™ Dual Color Standards (Biorad, Hercules,
CA, USA). The current (100 V, 300 mA) was applied to
the gel for 20 min, to separate the proteins based on
their molecular weights. After standard SDS-PAGE sep-
aration, the proteins were transferred onto Polyvinyli-
dene Difluoride (PVDF) membrane at 100 V for 30 min.
Following electroblotting, the membranes were blocked
for 1 h at room temperature in a solution of 5% non-fat
dry milk in Tris-buffered saline containing 0.1% Tween
20 (pH 7.6). The separate membranes were incubated
overnight at 4 °C with primary antibodies of mouse
monoclonal p-LKB1 at Ser431 (1:500), rabbit polyclonal
LKB1 (1:500), rabbit polyclonal p-AMPK at Thr172

(1:1000), rabbit polyclonal AMPK (1:1000), rabbit poly-
clonal p-mTOR at Ser2448 (1:500) and rabbit polyclonal
mTOR (1:500). The membrane were incubated (1 h)
with the HRP secondary antibodies (donkey anti mouse,
1:3000; donkey anti rabbit, 1:1000) on following day.
The blots were then developed using an ECL and the
chemiluminescence signal detection was performed
using Fuji LAS4000 imager and quantified by Care-
Stream molecular imaging software, and were corrected
by actin levels.

ADP/ATP ratio measurement
The tissue ratio of ADP/ATP was measured via biolumin-
escent detection of ADP and ATP levels using ApoSEN-
SOR bioluminescent assay kit (BioVision) following
manufacturer’s instruction. Briefly, the tissues were ho-
mogenized in 6% trichloroacetic acid (TCA) for 1 min
followed by 5 min centrifuge at 6000 g. After collecting
supernatant, TCA was neutralized by tris-acetate. Stand-
ard curves were produced with known levels of ADP and
ATP and the background luminescence was measured
using a Wallac Victor2 1420 multi-label counter. The total
ATP was quantified by the addition of the reaction mix-
ture, containing luciferase and luciferin. ATP present in
the samples is utilized for the luciferase-catalyzed
conversion of luciferin to oxyluciferin. The production of
light was quantified as value A by measuring the lumines-
cence, immediately followed by the addition of an
ADP-converting enzyme that converts intracellular ADP
to ATP and measurement of luminescence (value B). The
second luminescence value (value B) represents light gen-
erated by total ADP and ATP present in the reaction mix-
ture. After correcting for background luminescence, value
A was subtracted from value B to calculate light generated
by ADP alone, and ADP/ATP ratio was calculated.
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Statistical analysis
All of the data in the current study were analysed using
IBM SPSS Statistics version of SPSS Software. The data
are expressed as the mean ± SD. One-way ANOVAs was
used to assess the differences between the means of the
groups followed by post hoc Tukey’s. Significance was
defined as p < 0.01.

Results
Recording cardiac activity by electrocardiograph (ECG)
during cardiac arrest (CA)
To produce a global ischaemia, cardiac arrest was gener-
ated by applying 2 phases of trans-oesophageal AC current
(50 Hz, 24 V followed by 50 Hz, 18 V) under general an-
aesthesia, while ECG was recorded via attached electrodes
to the rat’s chest. The EEG records showed no heart
rhythm during duration of 15 s (Fig. 1a), 30 s (Fig. 1b),
1 min (Fig. 1c), 2 min (Fig. 1d), 4 min (Fig. 1e) and 8 min
(Fig. 1f) of applying AC current, confirming CA.

ADP/ATP ratio in brain, heart, kidney and liver during in
ischaemic and control groups
To determine whether short episodes of ischaemia (15 s
up to 8 min) affects cellular energy levels, we quantified

ADP and ATP concentration and measured the ADP/
ATP ratio in brain, heart, liver and kidney of control and
ischaemic groups. ADP/ATP ratio was significantly in-
creased in brain following 2 min ischaemia (One Way
ANOVA, followed by TUKEY HSD, *p < 0.001, vs con-
trol group) in a time-dependent manner (One Way
ANOVA, followed by TUKEY HSD, **p < 0.01, 4 min vs
2 min, and 8 min vs 4 min ischaemia) (Fig. 2a, e). In
other organs ADP/ATP ratio was enhanced significantly
after 4 min ischaemia (One Way ANOVA, followed by
TUKEY HSD, *p < 0.001, vs control group) (Fig. 2b-d, e),
which was time-dependent in heart and liver (One Way
ANOVA, followed by TUKEY HSD, **p < 0.01, 8 min vs
4 min ischaemia) (Fig. 2b, c, e).

Effect of global ischemia on p-LKB1 (Ser431) /LKB1 in
brain, heart, liver and kidney
Previous studied showed the major role for LKB1 as an
upstream kinase to facilitate AMPK phosphorylation in
response to energy stress [6, 7]. To investigate and com-
pare the activation level of LKB1 (p-LKB1 (Ser431)/LKB1
ratio) under ischaemia in our experimental organs, west-
ern blot analyses were carried out using left parietal cor-
tex and subcortical hippocampus, left heart ventricle, left

Fig. 1 Electrocardiograms of six durations of global ischaemia generated by trans-oesophagus AC current, confirmed by cardiac arrest (CA). a 15 s
of CA b 30 s of CA c1 min of CA d 2 min of CA e 4 min of CA f 8 min of CA
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middle area of cortex, medulla and pelvis, and the left lat-
eral lobe of liver homogenates of ischaemic and control
(anesthesia only) groups. A significant dephosphorylation
of LKB1 (Ser431) was observed in brain after 30 s ischae-
mia up to 4 min (One Way ANOVA, followed by TUKEY
HSD, *p < 0.001, vs control group), followed by a recurrent
rephosphorylation after 8 min of ischaemia (Fig. 3a, e).
The similar dephosphorylation of LKB1 (Ser431) was seen
in liver following 2 min while dephosphorylation was con-
tinued to 8 min of ischaemia (One Way ANOVA,
followed by TUKEY HSD, *p < 0.001, vs control group)
(Fig. 3c, e). LKB1 showed some levels of dephosphoryla-
tion at Ser431 after 30 s up to 8 min in heart tissue, how-
ever the difference was not significant (Fig. 3b, e). In liver,
2, 4 and 8 min of ischaemia, caused some LKB1 hyper-
phosphorylation at Ser431, but the difference was not sig-
nificant from control group (Fig. 3d, e). In all groups,

β-actin levels remained the same, reflected equal loading
across all lanes. All values were corrected by actin
densities.

Effect of global ischemia on p-AMPK (Thr172) /AMPK in
brain, heart, liver and kidney
We examined the level of phosphorylated AMPK
(p-AMPK) at Thr172 and the total AMPK to evaluate
and compare the level of AMPK activation as the imme-
diate regulator of cell energy in brain, heart, liver and
kidney under time-dependent global ischaemia. AMPK
dephosphorylated (Thr172) significantly after 30 s and
dephosphorylation continued up to 1 min (One Way
ANOVA, followed by TUKEY HSD, *p < 0.001, vs con-
trol group). Rephosphorylation of AMPK (Thr172) oc-
curred after 2 min and became substantially higher than
control group after 8 min of ischaemia (One Way

Fig. 2 ADP/ATP ratio in six groups of time-dependent ischaemia and control group (anaesthesia only). a Brain b Heart c Liver d Kidney. I-15
s: 15 s ischemia, I-30 s: 30 s ischemia, I-1 min: 1 min ischemia, I-2 min: 2 min ischemia, I-4 min: 4 min ischemia, I-8 min: 8 min ischemia *p < 0.001
all groups vs control (One Way ANOVA, followed by post hoc Tukey’s). **p < 0.01 I-8 min vs I-4 min and I-4 min vs I-2 min ischaemia (One Way
ANOVA followed by post hoc Tukey’s). Error bars depict the SD
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ANOVA, followed by TUKEY HSD, *p < 0.001, vs con-
trol group) (Fig. 4a, e). A similar pattern of AMPK de-
phosphorylation at Thr172 was observed in kidney,
starting after 1 min, when significant rephosphorylation
at Thr172 occurred after 8 min of ischaemia (One Way

ANOVA, followed by TUKEY HSD, *p < 0.001, vs con-
trol group) (Fig. 4d, e). AMPK activity (p-AMPK
(Thr172)/AMPK) was not changed significantly in heart
of ischaemic groups (Fig. 4b, e). AMPK showed
alternative hyperphosphorylation at Thr172 in ischaemic

Fig. 3 Western blot analysis results of p-LKB1at Ser431 and total protein of LKB1 assessment from a brain b heart c liver and d kidney tissues of
ischaemic and control groups. All values are expressed as percent change relative to control group and were corrected by the Actin level. e Protein
band intensities of p-LKB1 (Ser431), LKB1 and Actin. I-15 s: 15 s ischemia, I-30 s: 30 s ischemia, I-1 min: 1 min ischemia, I-2 min: 2 min ischemia, I-4 min:
4 min ischemia, I-8 min: 8 min ischemia. *p < 0.001 all groups vs control (One Way ANOVA, followed by post hoc Tukey’s). Error bars depict the SD
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liver tissue in 15 s, 1, 4 min, which continued to 8 min
(Fig. 4c, e). In all groups, β-actin levels remained the
same, reflected equal loading across all lanes. All values
were corrected by actin densities.

Effect of global ischemia on p-mTOR (Ser2448) / mTOR in
brain, heart, liver and kidney
The role of mTOR signalling pathway in ischemic dis-
ease have been suggested recently [23]. To address any

Fig. 4 Western blot analysis results of p-AMPK at Thr172 and total protein of AMPK assessment from a brain b heart c liver and d kidney tissues of
ischaemic and control groups. All values are expressed as percent change relative to control group and were corrected by the Actin level. e Protein
band intensities of p-AMPK (Thr172), AMPK and Actin. I-15 s: 15 s ischemia, I-30 s: 30 s ischemia, I-1 min: 1 min ischemia, I-2 min: 2 min ischemia, I-4 min:
4 min ischemia, I-8 min: 8 min ischemia *p < 0.001 all groups vs control (One Way ANOVA, followed by post hoc Tukey’s). Error bars depict the SD
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early alteration of mTOR activity during short ischaemic
events in four major high metabolic rate organs, the ra-
tio of p-mTOR at Ser2448 (active form) to total mTOR
was evaluated. In kidney tissue, mTOR showed some
levels of phosphorylation (Ser2448) after 30 s to 4 min is-
chaemia, however the difference was not significant. In
all other tissues, mTOR activity (p-mTOR (Ser2448)/
mTOR) was remained unchanged in ischaemic groups
compare to control (Fig. 5a-e). In all groups, β-actin
levels remained the same, reflected equal loading across
all lanes. All values were corrected by actin densities.

Discussion
The current study revealed a range of various early strat-
egies of brain, heart, kidney and liver in activating liver
kinase B1 (LKB1), adenosine monophosphate protein
kinase protein (AMPK) and mammalian target of rapa-
mycin (mTOR) signalling pathways in response to is-
chaemia. To our knowledge, this the first time that
LKB1/AMPK/mTOR immediate ischaemic response of
high metabolic rate tissues have been studied in a very
short window of time (15, 30 s and 1, 2 min of ischae-
mia). These major solid organs have the highest rates of
metabolism and consequently the highest sensitivity to
energy stress. There are numerous studies, reporting
that ischaemic injuries to brain, heart, kidney and liver
are leading causes of mortality and disability around the
world [16, 17, 24–26]. It is generally agreed that the first
immediate protective reaction against ischaemia is medi-
ated by a complex cellular metabolic pathway of LKB1/
AMPK/mTOR in almost all tissues. AMPK plays a cen-
tral role in this axis as the master of energy regulators
[5, 6]. Previous studies showed the enhanced level of
AMPK phosphorylation (Thr172) in response to energy
stress, especially when the situation persisted [2, 27].
Our results demonstrated a high level of AMPK activa-
tion, particularly in brain, kidney and liver, especially in
the presence of persistent ischaemia up to 8 min. Con-
sistent with the studies on longer period of hypoxia,
AMPK hyperphosphorylation (Thr172) in our study, was
associated with a substantial reduction in ATP levels
(a significant increase in ADP/ATP), which was reached
to its maximum decline at 8 min.
ATP drop down, along with increasing in production

of reactive oxygen spices (ROS) are from the major acti-
vators of AMPK [11, 14]. Here, the ATP level was the
same as control up to 1 min, for the brain, and up to
2 min for the other tissues in our study. We showed the
first significant brain ATP decline after 2 min, while for
the other organs it did not reduce before 4 min. Winn et
al. [28] previously reported that in brain, the level of
ATP reduced to half within the first minute of ischae-
mia, while AMP elevated to 10 times and ADP doubled.
In our study, however, the initial significant change in

brain ADP/ATP was observed after 2 min. We believe
this difference is due to our improved system of brain
isolation, based on an immediate immersing of the skull
and the brain (same as the other organs) in liquid nitro-
gen. Under this condition, the tissues had zero time to
consume any ATP during tissue isolation process, which
could cause a substantial difference when it comes to an
accurate evaluation of ADP to ATP ratio.
It was previously reported that decreasing cellular

ATP (an increase in ADP and consequently AMP/ATP
ratio), increased AMP binding to AMPK α-subunit,
leading to AMPK phosphorylation at Thr172 residue and
its activation. Activated AMPK switches off biosynthetic
pathways that consume ATP while it switches on the
one that generate more ATP. Our findings, showing a
substantial decrease in ATP in longer periods of ischae-
mia, especially after 8 min could explain our other ob-
servation of AMPK hyperphosphorylation (Thr172) in
brain and kidney, while these organs also presented the
higher sensitivity in reacting to ischaemia, compare to
other tissues.
The phosphorylation of AMPK is facilitated by LKB1,

the other member of this metabolic axis. This AMPK
upstream serine/threonine kinase [8, 10, 11] facilitates
AMPK phosphorylation at Thr172 in an ATP-dependent
[5, 6, 10] and ATP-independent manner [14, 29], with its
Ser428 phosphorylation (equals to Ser431 in rodents) is
essential for AMPK activation [30]. Despite what we hy-
pothesized, the immediate impact of ischaemia on
LKB1/AMPK axis was not their activation in this study.
Instead of hyperphosphorylation, AMPK was subjected
to a significant dephosphorylation at Thr172 after 30 s
and 1 min ischaemia, while the ratio of ADP/ATP
remained unchanged. This finding supports the previous
reports, including ours, showing an immediate dephos-
phorylation of some cellular peptides such as tau and
AMPK, rather than their hyperphosphorylation, in re-
sponse to hypoxic situations in brain [31–33]. Not only
AMPK, but also LKB1 was dephosphorylated (Ser431) in
brain and liver to significant levels, and in heart but not
to significant levels. LKB1 is constitutively phosphory-
lated at Ser431 [34, 35], and its dephosphorylation, along
with AMPK dephosphorylation at Thr172 could be con-
sidered as an immediate response to ischaemia. This is
consistent with previous reports, suggesting protein de-
phosphorylation as an immediate response to ischaemia
[32, 33], and possibly in order to save valuable energy by
avoiding making phosphate bonds under energy stress.
As the ADP/ATP levels did not show a dramatic

change in 15 and 30 s and 1 min ischaemic brains, and
in 15 and 30 s and 1 and 2 min in other tissues in our
study, we suggest that the observed dephosphorylation
of AMPK (Thr172) and LKB1 (Ser431) were
ATP-independent events. AMPK dephosphorylation
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Fig. 5 Western blot analysis results of p-mTOR at Ser2448 and total protein of mTOR assessment from a brain b heart c liver and d kidney tissues
of ischaemic and control groups. All values are expressed as percent change relative to control group and were corrected by the Actin level.
e Protein band intensities of p-mTOR (Ser2448), mTOR and Actin. I-15 s: 15 s ischemia, I-30 s: 30 s ischemia, I-1 min: 1 min ischemia, I-2 min: 2 min
ischemia, I-4 min: 4 min ischemia, I-8 min: 8 min ischemia *p < 0.001 all groups vs control (One Way ANOVA, followed by post hoc Tukey’s). Error
bars depict the SD
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(Thr172), however was affected possibly by LKB1 de-
phosphorylation (Ser431), regardless of cell ATP levels.
Longer periods of ischaemia up to 4 min caused AMPK
rephosphorylation (Thr172) in brain, and it reached to a
significant hyperphosphorylation after 8 min in our
study. Rephosphorylation and hyperphosphorylation of
AMPK in our brain samples occurred in parallel with a
significant drop down in ATP (showing by ADP/ATP in-
crease), which is consistent with the expected effect of
energy stress on AMPK [5, 6]. Rephosphorylation of
LKB1 however occurred with a delay, staring at 8 min is-
chaemia. It supports our hypothesis, suggesting that al-
teration in AMPK phosphorylation during short
episodes of ischaemia is an ATP-independent
phenomenon, but could be a consequence of LKB1de-
phosphorylation in brain. Our results also suggest that
during longer periods of ischaemia and a dramatic de-
crease in ATP, AMPK phosphorylation was not affected
by p-LKB1 status. As AMPK could also be activated in a
Ca2+/calmodulin-dependent protein kinase kinase β
(CaMKKβ)-dependent but LKB1-independent way [29],
this observed finding in our study could be a conse-
quence of such an activation, although it requires future
studies to confirm.
Our data demonstrated that the first reaction of both

LKB1 and AMPK in brain and kidney is dephosphoryla-
tion, rather than hyperphosphorylation. Either this de-
phosphorylation works as a backup to refill the cellular
energy source or simply occurs to save the cells from
spending the valuable energy on phosphate bonds to
phosphorylate proteins, requires further investigations.
Among the investigated tissues in this study, liver was

the only one that showed a progressive LKB1 dephos-
phorylation (Ser431) in parallel with liver’s ATP drop
down, and not before that. Dephosphorylation of LKB1
(Ser431) started with a delay compare to brain, after
2 min and continued to 8 min. On the other hand,
AMPK hyperphosphorylation (Thr172) started quite early
after 15 s of ischaemia in liver and was repeated in an al-
ternative pattern of relapse of phosphorylation in 30 s
and 2 min with hyperphosphorylation (Thr172) in be-
tween (1, 4 and 8 min ischaemia). Previously, it was
shown that ATP concentration remains stable in liver
most of times, unless sever hypoxic situation occurs.
During an ultimate hypoxic insult, however, hepatic
AMPK activation acts as the fundamental strategy to
protect cells against hypoxic damage [36]. Our findings
showed the same ADP/ATP level in the liver of early
(15 s, 30 s, 1 min, 2 min) ischaemic groups as control
group while ATP drop down started at 4 min and sub-
stantially decreased after 8 min ischaemia. LKB1 dephos-
phorylation pattern in liver was almost the same as
brain, although starting with a delay and continued up
to 8 min. That suggests the higher sensitivity of brain

LKB1 pathway, in sensing early ischaemia and the later
ADP/ATP increase. The pattern of alternative AMPK
hyperphosphorylation (Thr172) of liver in our study, pro-
posed a possible role for AMPK early activation as im-
mediate strategy to stabilize hepatic ATP levels. Increase
in AMPK activation after 15 s ischaemia, followed by
returning to baseline phosphorylation after 30 s, and re-
peating this pattern after 1, 2 and 4 min ischaemia,
could justify the observed stable pattern of ADP/ATP ra-
tio in liver in our results, same as previous findings,
showing ATP stability of hepatic cells in other studies
[36]. Eight min ischaemia, however could be considered
as a sever insult, forcing AMPK to remain hyperpho-
sphorylated (Thr172), while the significant dropdown in
ATP level also persisted.
Our results demonstrated an increase in ADP/ATP ra-

tio in heart and kidney after 4 min ischaemia. Here, kid-
ney showed the higher sensitivity to very short episodes
of ischaemia secondary to brain, reaching to maximum
increase in ADP/ATP after 4 min ischaemia. We ob-
served some decreased activity of LKB1 (p-LKB1
(Ser431)/LKB1) in heart and increased LKB1 activity in
kidney, but surprisingly the level of changes were not
significant. A significant dephosphrylation of AMPK
(Thr172) after 1 min ischaemia continued until 4 min,
followed by a hyperphosphorylation (Thr172) in 8 min in
kidneys. It suggested that kidney followed the same pat-
tern as brain in AMPK dephosphorylation and hyper-
phosphorylation with a small delay in starting
dephosphorylation. While previous studies supported
our observation of AMPK hyperphosphorylation after
8 min, in longer period of ischaemia (30 and 45 min)
[37], the literature’s substantial studies in reporting the
immediate reaction of AMPK in kidney in response to
ischaemia are very limited.
Despite decreasing ATP after 4 and 8 min ischaemia,

AMPK did not show a significant activation (p-AMPK
(Thr172)/AMPK) in ischaemic hearts up to 8 min.
Previous studies showed that 30 min low-flow ischemia
increased the activity of α1 and α2-subunits of AMPK
up to three folds [27], however AMPK activity during
shorter episodes of ischaemia have not been investigated.
Our results suggest that during short episodes of
ischemia, activation of AMPK is not the immediate
mechanism of choice for heart in response to ischaemia,
at least compare to brain and kidney. One explanation is
the simultaneous activation of Akt pathway in the heart
under ischaemia, which was reported previously [38].
This activation, in particular in heart, inhibits AMPK
phosphorylation [39], although revealing the exact
mechanism of this interaction in heart tissue requires
further investigation.
Next, we examined the activity of mTOR, as the third

element of LKB1/AMPK/mTOR cellular metabolic axis.
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We observed no substantial difference in mTOR activity
level (p-mTOR (Ser2448)/mTOR) between ischaemic and
control groups in any of our four tested organs. Phos-
phorylation of AMPK was reported to reduce the activa-
tion of mTOR pathway as evidenced by reduced
phosphorylation of mTOR on Ser2448 [12]. Previous
studies indicated enhanced mTOR activity in brains of
rats following 3 and 6 h reperfusion after 10 min ischae-
mia [40]. Matsui et al. [41] reported an increase in
AMPK activity with a concurrent decrease in phosphor-
ylated mTOR in heart cell after 2, 6 and 24 h of ischae-
mia, however there are no results on immediate
response of mTOR pathway to very short events of is-
chaemia, such as what we have examined in the current
study. Here, we believe that during ischaemic periods,
only immediate strategies of protecting cells could be
observed while a significant change in mTOR activity
needs longer periods of ischaemic insult. In the other
hand, it seems that enhanced level of mTOR activity,
which is important in many cellular functions such au-
tophagy and cell proliferation, requires the establishment
of damage, and would not act as an energy sensor, in the
same way that LKB1 and AMPK work.

Conclusion
In conclusion, our results indicate that immediate ische-
mic response of brain and kidney consists a nearly simi-
lar pattern of early ATP-independent AMPK
dephosphorylation (Thr172) followed by a possible
ATP-dependent hyperphosphorylation at Thr172 (with
the higher sensitivity of brain in sensing early ischae-
mia). This response is different from liver’s AMPK pat-
tern of phosphorylation, which is mostly based on early
repeated episodes of hyperphosphorylation (Thr172) and
relapse (to the baseline phosphorylation level), and even-
tually an established AMPK hyperphosphorylation
(Thr172) in longer periods of ischaemia. We hypothesize
that liver uses this pattern to minimize cellular ATP
changes, however additional studies are necessary to
confirm this hypothesis. Finally the possible higher in-
volvement of Akt pathway in the heart with its inhibitory
action on AMPK, could explain the heart minimum
changes of immediate LKB1/AMPK activity in response
to ischemia among all four organs. Further investigations
are required to reveal the other underlying mechanisms
such as cellular levels of calcium and ROS generation in
creating these differences in ischaemic response between
high metabolic rate tissues.
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