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Abstract: Declines in physiological functions are the predominant risk factors for age-related diseases,
such as cancers and neurodegenerative diseases. Therefore, delaying the aging process is believed to
be beneficial in preventing the onset of age-related diseases. Previous studies have demonstrated that
Graptopetalum paraguayense (GP) extract inhibits liver cancer cell growth and reduces the pathological
phenotypes of Alzheimer’s disease (AD) in patient IPS-derived neurons. Here, we show that GP
extract suppresses β-amyloid pathology in SH-SYS5Y-APP695 cells and APP/PS1 mice. Moreover,
AMP-activated protein kinase (AMPK) activity is enhanced by GP extract in U87 cells and APP/PS1
mice. Intriguingly, GP extract enhances autophagy in SH-SYS5Y-APP695 cells, U87 cells, and the
nematode Caenorhabditis elegans, suggesting a conserved molecular mechanism by which GP extract
might regulate autophagy. In agreement with its role as an autophagy activator, GP extract markedly
diminishes mobility decline in polyglutamine Q35 mutants and aged wild-type N2 animals in C.
elegans. Furthermore, GP extract significantly extends lifespan in C. elegans.

Keywords: GP extract; neurodegenerative disease; Alzheimer’s disease; amyloid-β; autophagy; longevity

1. Introduction

Aging is a normal physical process characterized by a general decline in physiological
functions and behavioral capacity, leading to reduced vitality and eventually death [1,2]. As
humans age, cellular damages accumulate, increasing the risk of disease formation. Among
these age-related diseases, neurodegenerative diseases, such as Alzheimer’s disease (AD),
Parkinson’s disease, and Huntington’s disease (HD), have garnered much attention due to
the lack of effective treatment and accompanied economic burdens.

AD is the most common cause of dementia in people who are older. Amyloid plaques
and neurofibrillary tangles (NFTs) in the brain, composed of abnormally folded amyloid-
β42 (Aβ42) and phosphorylated tau proteins, are the pathological hallmarks of AD [3].
Autophagy has been recognized as a critical cellular mechanism in maintaining cellular
homeostasis by degrading aggregated proteins and damaged organelles [4]. Recently,
autophagy has been shown to mediate Aβ metabolism and tau assembly [5]. Numerous
studies also demonstrate that autophagy dysfunction has been indicated in AD progres-
sion [6–9]. Furthermore, several pieces of evidence suggest that enhancing autophagy could
promote the degradation of pathologic protein aggregates in AD and HD models [10–14].

Nutrients 2021, 13, 4317. https://doi.org/10.3390/nu13124317 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-2273-2793
https://orcid.org/0000-0002-3737-3877
https://orcid.org/0000-0002-2699-116X
https://doi.org/10.3390/nu13124317
https://doi.org/10.3390/nu13124317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13124317
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13124317?type=check_update&version=4


Nutrients 2021, 13, 4317 2 of 14

Loss of protein homeostasis is a key hallmark of aging [2]. Thus, autophagy activation
is also suggested to be beneficial for lifespan or health span in animals. Consequently, most
of the interventions that extend lifespan in model organisms usually elevate autophagic
activity [15]. Several lines of evidence have demonstrated that autophagy machinery is
required for longevity regulation in animal models [16]. Recently, studies have shown that
genetic activation of autophagy prolongs lifespan in mice [17,18], indicating the plausible
application of autophagy activators in delaying the aging process and the onsets of age-
related diseases.

Graptopetalum paraguayense (GP) is an edible succulent plant. In Taiwan, GP has been
used as a medical herb to prevent liver disorders and lower blood pressure. Recent research
has revealed that an extract of GP, HH-F3, could inhibit the proliferation of liver cancer
cells, could lessen liver fibrosis in rats, and could reduce the secretion of Aβ and the
phosphorylation of Tau proteins in induced pluripotent stem cell (iPSC)-derived neurons
from AD patients [19–22]. This study further investigated the underlying mechanisms by
which GP extracts reduce AD-associated pathological phenotypes in neuroblastoma SH-
SYS5Y-APP695 cells and APP/PS1 mice. Furthermore, we demonstrated that GP extracts
could reduce the mobility decline and could extend lifespan in C. elegans.

2. Materials and Methods
2.1. Preparation of GP Extract

The extraction method of GP HH-F3 was established previously [22,23]. In brief,
frozen GP leaves were ground and lyophilized at −20 ◦C. Next, 15 g of lyophilized GP
powder was mixed with 100 mL 100% ethanol for 5 min and then centrifuged at 1500× g
for 5 min. The pellet was suspended in 10 mL of 30% dimethyl sulfoxide (DMSO), followed
by 9300× g centrifuge for 5 min. The supernatant was fractionated into four fractions
(F1–F4) by a Sephadex LH-20 column. The F3 fraction, termed HH-F3, was identified to be
the active fraction.

2.2. Cell Culture

Human neuroblastoma SH-SY5Y cells were maintained in MEM/F12 (Gibco BRL,
Grand Island, NY, USA) with 10% fetal bovine serum (FBS, Gibco BRL), 100 U/mL peni-
cillin, and 10µg/mL streptomycin sulfate. SH-SY5Y cells were stably transfected with the
vector containing the full-length APP695 isoform. Stable clones with plasmid expression
were maintained by growing cells in the selective medium containing G418. Human GBM
cell line U87 was maintained in Dulbecco’s Modified Eagle Medium (Gibco BRL), sup-
plemented with 10% FBS and 1% penicillin-streptomycin (Gibco BRL). Human colorectal
cancer cell line HT-29 was cultured in McCoy’s 5A medium (Gibco BRL) supplemented
with 10% FBS and 1% penicillin-streptomycin. All cells were maintained at 37 ◦C in 5%
CO2. Cells were seeded at the density of 3 × 105 cells/6 cm dish for at least 16 h before
drug treatment.

2.3. Cell Viability Assay

The colorimetric MTT metabolic activity assay was used to determine cell viability.
Cells were incubated with minimum essential medium containing 0.5 mg/mL MTT

(Sigma-Aldrich, St. Louis, MO, USA) for one hour. After incubation, the medium was
aspirated, and the resultant formazan crystals were dissolved in DMSO. The absorbance
intensity at 600 nm was measured by a microplate reader.

2.4. Extracellular Aβ1-40 and Aβ1-42 Detection

The SH-SY5Y-APP695 cells were treated with 0, 10, 30, and 50 µg/mL HH-F3 for 24 h.
The conditioned medium was then harvested and centrifuged in the presence of 1 mM
phenymethylsulfonyl fluoride (PMSF). Aβ1-40 and Aβ1-42 accumulation was assayed
by Amyloid beta 40 human ELISA kit (KHB3481, Invitrogen, Waltham, MA, USA) and
Amyloid beta 42 human ELISA kit (KHB3442, Invitrogen), respectively.
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2.5. Western Blot Assay

The cells were lysed in buffer containing 50 mM HEPES, 2.5 mM EDTA, 1 mM PMSF,
5 µg/mL aprotinin, and 10 µg/mL leupeptin; 30 µg of protein lysate were electrophoresed
on 8 or 10% SDS-PAGE gels and transferred to methanol-activated PVDF membranes. The
membranes were blocked with 5% non-fat skim milk and incubated with primary antibod-
ies at 4 ◦C overnight. Western blotting was visualized by peroxidase-conjugated secondary
antibodies and ECL chemiluminescent substrate (Immobilon Western Chemiluminescent
Substrate, Millipore, Burlington, MA, USA). The quantification of target protein bands with
reference to control bands (for each concentration) used the ImageJ Gel Analysis program.

The following primary antibodies were used: anti-Aβ1-40 (A-8326, Sigma-Aldrich),
anti-Aβ1-16 (MAB 5208. Merck, Kenilworth, NJ, USA), anti-APP-CTF (AB5352, Merck),
anti-IDE (AB9210, Merck), anti-NEP (AB5468, Merck), anti-LC3 (2775, Cell Signaling
Technology, Danvers, MA, USA), anti-p62 (8025S, Cell Signaling Technology), anti-p-
AMPK(Thr172) (2535S, Cell Signaling Technology), anti-AMPK (2532S, Cell Signaling
Technology), anti-GAPDH (GTX100118, GeneTex, Hsinchu, Taiwan), and anti-actin (AC-15,
Novus, Centennial, CO, USA). Secondary antibodies: HRP-linked anti-rabbit IgG (7074,
Cell Signaling Technology) and HRP-linked anti-mouse IgG (Jackson ImmunoResearch
Laboratories, West Grove, PA, USA).

2.6. Mouse Studies

APPswe/PS1dE9 (APP/PS1) double transgenic mice were purchased from Jackson
Laboratory (No. 005864, Bar Harbor, ME, USA). Breeding was conducted using female
transgenic mice and their male wild-type siblings. Mice were maintained under a 12 h/12 h
light/dark cycle in constant conditions of temperature (24 ◦C) and humidity (55–65%) with
free access to food and water. All procedures were approved by the Institutional Animal
Care and Use Committee at the National Research Institute of Chinese Medicine (IACUC
No.:105-417-1).

2.7. Feeding Protocol

HH-F3 powder was dissolved in H2O. HH-F3 (300 mg/kg/day) or H2O were admin-
istered orally to wild-type and APP/PS1 mice for 30 days.

2.8. Thioflavin-S (ThS) Fluorescent Staining in Brain Sections

Dry sections of mouse brains were incubated with fresh and filtered 1% ThS solution
for 60 min, followed by washing twice with 70% ethanol and twice with water.

2.9. Detection of Soluble and Insoluble Aβ

Frozen cerebral hemispheres were homogenized in homogenization buffer (320 mM
sucrose, 2 mM EDTA, 20 mM Tris-HCl, pH 7.4) with protease and phosphatase inhibitors
(Roche, Basel, Switzerland). SDS-soluble (2% SDS) fractions and FA-extracted (70% formic
acid) fractions were obtained by stepwise ultracentrifugations.

2.10. L1000 Expression Profiling

The gene expression of the HT29 cells treated with 5 µg/mL HH-F3 for 6 h was
profiled using the L1000 platforms by Genometry Inc., Cambridge, MA, USA [24]. In short,
mRNA transcripts of HH-F3 treated cells were captured from the whole cell lysates by o
ligo-dT plates. The cDNAs were generated by reverse transcription from mRNA and then
amplified using PCR. The PCR amplicon was then hybridized to barcoded Luminex beads
to exhibit the expression levels of specific genes. The expression of 978 landmark genes
was analyzed.
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2.11. Gene Set Enrichment Analysis (GSEA)

GSEA analysis was performed in GSEA software version 4.0.3 (Broad Institute, MA,
USA). The study was proceeded using the C2 gene set collections from the MSigDB v.7.2.
with 1000 permutations.

2.12. C. elegans Strains

All strains were maintained at 20 ◦C on NGM plates seeded with E. coli OP50. NGM
plates with UV-killed bacteria were used for all experiments with HH-F3. The following
strains were used in the study: Wild-type Bristol N2; DA2123: adIs2122[gfp::lgg-1 + rol-
6]; OP433: wgIs[hlh-30::TY1::EGFP::3xFLAG + unc-119(+)]; CF1038: daf -16(mu86), and
AM140: rmIs132[unc-54p::Q35::YFP]. DA2123, OP433, and wild-type Caenorhabditis elegans
(N2) strains were obtained from the Caenorhabditis Genetic Center at the University
of Minnesota.

2.13. GFP::LGG-1 Puncta Quantification

GFP::LGG-1 foci formation was visualized in L3 stage animals (DA2123) that were
treated with either control (vehicle) or HH-F3 from hatching. Fluorescence images of the
animals were taken via an Olympus BX63 microscope (Olympus, Tokyo, Japan) using
Microsuite software (Olympus). Fifteen to twenty animals were scored for seam cell
GFP::LGG-1 puncta accumulation.

2.14. HLH-30::GFP Nuclear-Cytoplasmic Ratio (N/C Ratio) Quantification

Synchronized worms carrying integrated hlh-30::gfp arrays were treated either in
vehicle or HH-F3 from hatching. Fluorescence images of the Day 1 adult animals were
taken and scored blindly for the nuclear accumulation of HLH-30::GFP protein in the
intestinal cells. The quantification was perforemd by measuring the total GFP fluorescence
intensity of the entire cell and the nucleus area of the first six intestinal cells (Int1* and Int2*
cells) using Olympus Microsuite software. Cytosolic GFP intensity was calculated by the
following equation, IntDen (whole cell)−IntDen (nucleus)

Area ( whole cell)−Area (nucleus) . The N/C ratio of HLH-30 in a given
cell was obtained by dividing the nuclear signal by the cytosolic signal. At least 50 animals
(1–4 cells per worm) were scored per experiment.

2.15. Mobility Analysis in C. elegans

Thrashing assays were carried on at least 12 worms. Individual stage-synchronized
worms were placed in M9 buffer. Thrashes produced by each worm for one minute were
counted after one minute equilibration period. A single thrash was defined as the bending
of the body to the outermost angle and then back to the initial posture. Experimental data
are shown as mean ± SEM. Statistical comparisons were conducted using Student’s t-test.

2.16. Lifespan Analysis in C. elegans

Lifespan analyses were conducted at 20 ◦C as described previously [25,26], and 60–90
animals were tested in each experiment. The viability of the worms was scored every two
days. In all experiments, the pre-fertile period of adulthood was used as day 0 for lifespan
analysis. Stata 12 (StataCorp, College Station, Texas, USA) software was used for statistical
analysis to determine the means and percentiles. In all cases, p values were calculated
using the log-rank (Mantel–Cox) method.

3. Results
3.1. GP Extract Inhibits the Secretion of Amyloid-Aβs in the Human Neuroblastoma
SH-SY5Y-APP695 Cells

Recently, the study by Wu et al. demonstrated that the GP extract, HH-F3, significantly
reduces Aβ secretion in AD patient iPSC-derived neurons [22]. Previous studies have
shown that the overexpression of APP695 in human SH-SY5Y cells significantly increases
Aβ40 and Aβ42 secretion [27]. To further explore the molecular mechanisms of HH-F3 to
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reduce the AD-associated phenotypes, we used SH-SY5Y cells that stably expressed wild-
type human APP695 as the cell culture model. We first treated SH-SY5Y-APP695 cells with
HH-F3 at concentrations of 10, 30, and 50 µg/mL for 24 h. The cytotoxic effect of HH-F3
was evaluated by cell viability assay. No cytotoxic effect was observed in SH-SY5Y-APP695
cells even at the highest concentration of HH-F3 (Figure 1a). We then assessed the impact
of HH-F3 on the secretion of Aβ40 and Aβ42 in SH-SY5Y-APP695 cultured medium by
ELISA assay. Our results indicated that HH-F3 treatment for 24 h markedly reduced Aβ40
and Aβ42 secretion at the dosage of 50 µg/mL (Figure 1b), which is also the same effective
concentration applied to the AD-iPSC derived neurons [22]. Thus, SH-SY5Y-APP695 cells
serve as a proper cell model to further study the molecular mechanisms of HH-F3 in the
regulation of amyloid secretion. We next examined whether full-length APP levels in SH-
SY5Y-APP695 cells were affected by HH-F3 treatment. As shown in Figure 1c, the amounts
of full-length APP were not changed by the treatment of HH-F3. Meanwhile, HH-F3 did
not affect the levels of major amyloid degrading proteases, such as insulin-degrading
enzyme (IDE) and neprilysin (NEP), neither in the cell lysate of SH-SY5Y-APP695 cells nor
in the conditioned medium (Figure 1c).

Figure 1. GP extract HH-F3 reduced Aβ40 and Aβ42 secretion from SH-SY5Y-APP695 cells. SH-SY5Y-APP695 cells were treated
with varying HH-F3 concentrations at 0, 10, 30, and 50 µg/mL for 24 h. (a) Effects of HH-F3 on cell viability. (b) Levels of Aβ1–40
and Aβ1–42 were assayed by ELISA in media of SH-SY5Y-APP695 cells treated with HH-F3. (c) NEP and IDE were measured by
Western blot in the cell lysates and conditioned medium of SH-SY5Y-APP695 cells treated with indicated concentrations of HH-F3.
Data were analyzed by Student’s t-test. Levels of significance are shown as ** p < 0.01 and *** p < 0.001.
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3.2. GP Extract Reduces the Plaque Formation in the Cerebral Cortex of APP/PS1 Transgenic Mice

We then investigated the effects of HH-F3 in APP/PS mice model of AD. The APP/PS1
transgenic mouse is widely used in various aspects of AD-related study. In this study,
HH-F3 was administrated to 140-day-old APP/PS1 mice orally at 300 mg/kg/day for 30
days. There were no significant differences in the body weight between the control and
HH-F3-treated groups after a 30-day treatment (Figure 2a). To test whether HH-F3 could
reduce the Aβ deposition in APP/PS1 mice, we performed thioflavin-S (ThS) fluorescent
staining to detect Aβ plagues in the cerebral hemisphere of APP/PS1 mice fed with or
without HH-F3. Our results indicated that Aβ deposit formation in the cerebral hemisphere
is markedly reduced by 48% after a 30-day HH-F3 treatment (Figure 2b,c). Furthermore,
through Aβ1-40 and Aβ1-42 ELISA assays, we found that both soluble and insoluble
Aβ1-40 levels in the cerebral cortex were significantly reduced in the HH-F3-treated group
(Figure 2d,e). The amounts of soluble Aβ1-42 slightly decreased in the HH-F3-treated mice.
However, the data were not statistically significant (Figure 2d).

Figure 2. GP extract HH-F3 diminished amyloid plaque formation and Aβ levels in the cerebral cortex of APP/PS mice.
HH-F3 at 0 or 300 mg kg− 1 per day was given to 5-month-old APP/PS1 for 30 days. (a) The body weights of APP/PS1
mice fed with or without HH-F3. (b) ThS-stained Aβ plaques in the cerebral cortex region of APP/PS1 mice fed with or
without HH-F3. (c) The number of relative total areas in the cerebral cortex region. (d) Levels of Aβ40 and Aβ42 in the
soluble fraction from the brain homogenates of APP/PS1 mice treated with or without HH-F3. (e) Levels of Aβ40 and Aβ42
in the insoluble fraction from the brain homogenates of APP/PS1 mice treated with or without HH-F3. Data were analyzed
by Student’s t-test. Levels of significance are shown as * p < 0.05.

3.3. GP Extract Activates AMPK in U87 Cells and the Cerebral Cortex of APP/PS1 Mice

To gain an overview of the altered pathways after HH-F3 treatment, differentially
expressed genes of HT29 cells treated with 50 µg/mL HH-F3 were subjected to Gene Set
Enrichments Analysis (GSEA). The results indicated that genes associated with HD, AD,
and AMPK signaling were significantly enriched in HH-F3-treated cells (Supplementary
Figure S1), suggesting that HH-F3 might reduce neurodegeneration via the activation of
AMPK pathways.

As described earlier, the GSEA analysis of HH-F3-treated cells revealed significantly
enriched AMPK pathways. To further confirm the effects of HH-F3 in AMPK signaling,
glial U87 cells were treated with HH-F3 at a concentration of 10, 25, and 50 µg/mL for 24
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h. We accessed the activity of AMPK by measuring the phosphorylation at the Thr172 of
AMPK (pAMPK). HH-F3 treatment significantly activated AMPK in U87 cells, as shown by
the elevated pAMPK/AMPK ratios (Figure 3a). Previous studies have indicated that AMPK
signaling pathways [28] are dysregulated in the brains of APP/PS1 mouse model and human
AD patients. Thus, we examine if HH-F3 reduces AD pathology by elevating AMPK signaling
in APP/PS1 mice. Our results demonstrated that the levels of phosphorylated AMPK and
total AMPK in the cerebral cortex of APP/PS1 mice were reduced (Figure 3b), suggesting the
downregulation of AMPK signaling pathway. Intriguingly, a 30-day HH-F3 treatment could
markedly restore the levels of both pAMPK and AMPK (Figure 3b), supporting that HH-F3
might act as an AMPK activator to reduce pathological conditions in APP/PS1 mice.

Figure 3. GP extract HH-F3 enhanced AMPK activity in U87 cells and APP/PS mice. (a) Western blot analysis of AMPK
phosphorylation (Thr172) and AMPK in U87 cells treated with 0, 5, 25, and 50 µg/mL of HH-F3 for 24 h. Mean ± SD
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for three biological replicates. Data were analyzed by Student’s t-test. * p < 0.05. (b) Western blot analysis of AMPK
phosphorylation (Thr172) and AMPK in the cerebral cortex of APP/PS1 mice treated with or without HH-F3 for 30 days.
Western blot quantification of AMPK phosphorylation (Thr172) (c) and AMPK (d) in the cerebral cortex of wild-type mice
and APP/PS1 mice treated with or without HH-F3. The results are expressed as mean ± SD. * p < 0.05 and *** p < 0.001. The
mean value of pAMPK/AMPK ratios from wild-type mice was normalized to one.

3.4. Autophagy Is Elevated by GP Extract Both in Cells and C. elegans

Several pieces of evidence have indicated that autophagy dysregulation occurs in both
AD patients and animal models [29–31]. Moreover, numerous studies have reported that the
genetic or pharmacological activations of autophagy could reduce amyloid accumulation
and prevent cognitive decline in AD-mouse models [32–35]. According to our data shown
above, HH-F3 treatment could increase the activity of AMPK, one of the key autophagy
regulators. Thus, we tested whether HH-F3 ameliorates AD pathology through activation
of autophagy. Neurons and glia are the two major types of cells in the brain. Glial cells, such
as astrocytes, microglia, and oligodendrocytes, are also critical in AD pathogenesis [36].
Research has shown that autophagy in glial cells plays a key role in reducing extracellular
Aβ around neurons [37,38]. Here, we monitored the autophagic activity in the HH-F3-
treated glial U87 cells and neuronal SH-SY5Y-APP695 cells by analyzing the turnover of
microtubule-associated protein 1A/1B-light chain 3 (LC3), a maker of autophagosomal
membrane. As shown in Figure 4, an HH-F3-dependent increase in the levels of LC3-II,
the lipidated LC3, suggests that the induction of autophagy was enhanced by HH-F3
treatment in both U87 and SH-SY5Y-APP695 cells. Furthermore, we found that p62 levels
were significantly reduced in SH-SY5Y-APP695 cells at the dosage of 50 µg/mL HH-F3
(Figure 4b), indicating that HH-F3 could indeed activate autophagy flux.

Figure 4. GP extract HH-F3 activated autophagy in U87 and SH-SY5Y-APP695 cells. (a) The expression
of LC3-I and LC3-II in U87 cells treated with 0, 5, 25, and 50 µg/mL for 24 h. The bands were analyzed
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by quantitative densitometry. The ratio of LC3-II/LC3-I was determined after normalization to
GAPDH. (b) Western blot analysis of LC3-I, LC3-II, and p62 in SH-SY5Y-APP695 cells treated with
0, 5, 25, and 50 µg/mL for 24 h. The folds of the mean grayscale of LC3-II/LC3-I and p62 to actin
among treatments are shown on the right. Mean ± SD for 2–3 biological replicates. * p < 0.05,
** p < 0.01, Student’s t-test.

Next, we examined whether HH-F3 could activate autophagy activity through an
evolutionarily conserved mechanism. To do so, we performed the HH-F3 treatments in
the nematode C. elegans. We used the transgenic worms carrying GFP::LGG-1, the worm
homolog of LC3, to detect autophagy activity. Increased levels of GFP::LGG-1 puncta
commonly represent the activation of autophagy. Here, GFP::LGG-1 mutants were treated
with 0, 20, and 40 µg/mL HH-F3 from hatching. After a two-day HH-F3 treatment, the
levels of LGG-1/LC3 puncta in the seam cells were remarkably increased (Figure 5a),
indicating autophagy activation.

We further tested whether HLH-30/TFEB, the master transcription factor for au-
tophagy and lysosome biogenesis, is involved in HH-F3-induced autophagy activation.
The nuclear localization of HLH-30/TFEB, which moves into the nucleus upon stimuli, was
analyzed by using transgenic animals expressing HLH-30::GFP protein. Our results indi-
cated that HH-F3 could markedly trigger HLH-30/TFEB nuclear translocation in C. elegans
(Figure 5b), suggesting that HLH-30/TFEB might mediate the HH-F3-induced autophagy.

Figure 5. GP extract HH-F3 activated autophagy in C. elegans. (a) GFP::LGG-1/LC3 punctae were examined in the
hypodermal seam cells of L3 larval stage animals expressing lgg-1p::gfp::lgg-1 treated with 0, 20, and 40 µg/mL HH-F3
from hatching (n > 20). (**** p < 0.0001, One-way ANOVA test) (b) Distribution of HLH-30/TFEB::GFP was visualized
in Day 1 adult worms expressing hlh-30::gfp treated with 40 µg/mL HH-F3 from hatching. The nuclear/cytosol ratios of
HLH-30::GFP in the intestinal cells are shown. (**** p < 0.0001, Chi-squared test).
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3.5. GP Extract Extended Lifespan in C. elegans in a Daf-16-Independent Manner

As the above results show, HH-F3 could promote autophagy activity across species.
The stimulation of autophagy has been shown to enhance the turnover of aggregated
proteins, such as TDP-43 and huntingtin. Therefore, we asked whether HH-F3 could reduce
the pathological phenotypes induced by disease-associated protein aggregation in other
model organisms. Here, we used C. elegans expressing fluorescently tagged polyglutamine
(polyQ) in the body-muscle cells to study the effects of HH-F3 in polyQ pathogenesis. The
transgenic animals carrying 35 polyglutamine repeats (Q35) were treated with 20 µg/mL
HH-F3 from L4 larval stage, and the mobility of Day 5 adults was determined by thrashing
assay. In the Q35 mutants treated with vehicle, the locomotion decreased to 30% in Day
5 Q35 worms. However, Day 5 Q35 worms treated HH-F3 still maintain 70% of mobility
in Day 1 adult animals (Figure 6a). Thus, HH-F3 could significantly lessen the mobility
decline caused by polyQ-mediated toxicity in the muscle cells.

Figure 6. GP extract HH-F3 increased the health span and lifespan of C. elegans through a daf-16/FOXO-independent
pathway. (a) Relative mobility of Day 5 Q35 animals treated with vehicle control or 20 µg/mL HH-F3. Data are mean ± SEM
as a percentage of the Day 1 vehicle control. (b) Relative mobility of Day 7 wild-type animals treated with vehicle control or
20 µg/mL HH-F3. Data are mean ± SEM as a percentage of the Day 1 vehicle control. (* p < 0.05, **** p < 0.0001, Student’s
t-test) (c) Lifespan analysis of wild-type N2 worms treated with or without 20 µg/mL HH-F3. (d) Lifespan analysis of daf-16
mutants treated with or without 20 µg/mL HH-F3. The detailed results of lifespan analysis are shown in Supplementary
Table S1.
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Increasing evidence has indicated that autophagy might serve as a common down-
stream effector in aging processes. Since HH-F3 could activate autophagy in the mam-
malian cells and nematodes, we tested whether HH-F3 could slow down the aging process
and extend lifespan in C. elegans. First, we verified if HH-F3 treatment could prevent
mobility decline during aging. We performed thrashing assays on Day 1 and Day 7 adult
wild-type N2 worms treated with vehicle or 20 µg/mL HH-F3. As shown in Figure 6b,
the mobility in Day 7 N2 worms fed with the vehicle was reduced by 40% compared with
the Day 1 animals. However, there was no significant difference between the mobility of
Day 1 and Day 7 worms treated with HH-F3 (Figure 6b), indicating that HH-F3 treatment
could prevent mobility decline in aged animals. Next, we performed lifespan analysis on
wild-type N2 animals treated with 20 µg/mL HH-F3. We found that 20 µg/mL HH-F3
significantly increases animals’ lifespan by 14–16% (Figure 6c, Table S1).

DAF-16, a FOXO transcription factor in C. elegans, is the key mediator for several
longevity pathways, such as insulin/IGF-1 signaling and germline signaling. We then
further investigated whether DAF-16/FOXO is required in HH-F3-induced lifespan exten-
sion. We thus performed lifespan analysis in daf-16 null mutants treated with vehicle or
20 µg/mL HH-F3. As shown in Figure 6d, HH-F3 could still increase the lifespan of daf-16
mutants by 11.3%, suggesting that the lifespan extension induced by HH-F3 treatment was
not dependent on daf-16/FOXO.

4. Discussion

Our study has shown that GP extract, HH-F3, markedly reduced amyloid-β secretion
in both SH-SY5Y-APP695 cells and APP/PS1 mice. Furthermore, amyloid plaque formation
in APP/PS1 mice was lessened after a 30-day HH-F3 treatment, suggesting that HH-F3 is a
potential therapeutic candidate for AD treatment. To elucidate the molecular mechanisms
of HH-F3 to reduce AD pathology, we identified that HH-F3 could activate autophagy
in U87 and SH-SY5Y-APP695 cells. Moreover, the activation of autophagy by HH-F3
was observed not only in the mammalian cells but also in C. elegans. Our findings have
suggested that HH-F3 might promote autophagy through a conserved pathway across
species, further supporting its plausible application in humans.

Loss of protein homeostasis (proteostasis) has been described as one of the hallmarks
of aging [2,39]. Since the autophagy-lysosomal pathway is one of the main cellular mech-
anisms in maintaining proteostasis [40,41], autophagy activation has been thought to be
beneficial to longevity [16]. Indeed, studies from various model organisms have shown the
essential role of autophagy in the regulation of longevity [15,16]. Furthermore, enhancing
autophagic activity by overexpressing autophagy genes could extend the lifespan of flies
and mice [17,42]. Since AMPK and TFEB/HLH-30 are two critical regulators in autophagic
activity [18], presumably, AMPK and TFEB/HLH-30 might also affect longevity regulation.
Indeed, several lines of evidence have also demonstrated that AMPK and HLH-30/TFEB
are both involved in lifespan regulation in C. elegans [43–45]. Moreover, the overexpression
of AMPK and HLH-30/TFEB could extend lifespan in C. elegans [43,44,46]. Thus, pharma-
cological activation of AMPK or HLH-30/TFEB might also promote lifespan and health
span in animals. Given the fact that HH-F3 could activate AMPK and HLH-30/TFEB, we
presumed that HH-F3 might have longevity effects. Indeed, our results have indicated that
HH-F3 significantly delayed the mobility decline and extended the lifespan of wild-type
animals. Furthermore, HH-F3 greatly reduced polyQ pathology in C. elegans, supporting
the negative effect of HH-F3 in age-associated decline of proteostasis. Through a genetic
epistasis analysis, we further found that daf-16/FOXO transcription factor is not required in
the longevity effect of HH-F3. Our results in both AD models and C. elegans suggest that
the GP extract HH-F3 might act as an autophagy activator to maintain proteostasis, slowing
down the aging process and delaying age-related disease onset. Therefore, HH-F3 may be
a potential pharmacological candidate for the future development of anti-aging drugs.
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