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keratinocytes exposed to UVA light
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Graziella Eliza Ronsein,1,* and Paolo Di Mascio1,2,*

SUMMARY

The effects of UV light on the skin have been extensively investigated. However,
systematic information about how the exposure to ultraviolet-A (UVA) light, the
least energetic but the most abundant UV radiation reaching the Earth, shapes
the subcellular organization of proteins is lacking. Using subcellular fractionation,
mass-spectrometry-based proteomics, machine learning algorithms, immunofluo-
rescence, and functional assays, we mapped the subcellular reorganization of the
proteome of human keratinocytes in response to UVA light. Our workflow quan-
tified and assigned subcellular localization for over 1,600 proteins, of which
about 200 were found to redistribute upon UVA exposure. Reorganization of
the proteome affected modulators of signaling pathways, cellular metabolism,
and DNA damage response. Strikingly, mitochondria were identified as one of
the main targets of UVA-induced stress. Further investigation demonstrated
that UVA induces mitochondrial fragmentation, up-regulates redox-responsive
proteins, and attenuates respiratory rates. These observations emphasize the
role of this radiation as a potent metabolic stressor in the skin.

INTRODUCTION

Ultraviolet-A (UVA) light (315–400 nm) constitutes about 95% of all UV radiation (UVR) that reaches the Earth

(Schuch et al., 2017). The causal association between UVR exposure and skin cancer is well established, but

epidemiology has little capacity to distinguish between the carcinogenic effects of UVA and UVB (El Ghissassi

et al., 2009). At the molecular level, the effects of UVA and UVB in skin cells are of different nature, suggesting

that each wavelength range defines a different path toward malignant transformation (Premi et al., 2015).

For example, UVB is absorbed by pyrimidines, giving rise to cyclobutane pyrimidine dimers (CPD) and

pyrimidine (6-4) pyrimidone photoproducts. Thus, UVB’s carcinogenic action depends on the direct

generation of mutagenic DNA lesions (Schuch et al., 2017). On the other hand, UVA photons are poorly

absorbed by the DNA, being more relevantly absorbed by other cellular chromophores (Ikehata, 2018).

In this sense, UVA relies on the generation of photoexcited species, such as singlet oxygen, that may

lead to oxidative damage (Wondrak et al., 2006).

Skin cells orchestrate complex responses to light stress, coordinating gene expression, metabolism, and

protein function (Chen et al., 2014). Protein function is fine-tuned in a sophisticatedmanner, involvingmod-

ulations in abundance, chemical modifications, and spatial and temporal delimitations (Thul et al., 2017).

Mutational dynamics are the primary driver of carcinogenesis. However, the modulation of metabolism

and protein function can contribute to this process by impacting signaling, organelle interactions, and

cell fate decisions on apoptosis, senescence, or malignant transformation (deGruijl et al., 2001; El Ghissassi

et al., 2009). Importantly, besides impacting cell fate decisions, UV-induced changes in cellular physiology

can alter differentiation and stem cell division, accelerating the growth of mutant cell clones in the skin. In

this sense, changes in cellular physiology may be numerically more important to cancer development than

the original oncogenic mutations (Klein et al., 2010).

Even though the effects of UVR on DNA modification (Moreno et al., 2020), gene expression (He et al.,

2004), protein expression (Edifizi et al., 2017), and post-translational modifications (Elia et al., 2015; Zhou
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et al., 2016) have been investigated, information about how specific UVR components shape the subcellular

organization of proteins in cells is still lacking. Advances in high-throughput mass spectrometry (Breker and

Schuldiner, 2014; Larance and Lamond, 2015), microscopy (Mattiazzi Usaj et al., 2016; Thul et al., 2017), and

machine learning applications for these techniques (Gatto et al., 2014a; Lundberg and Borner, 2019) allow

proteome-wide investigations into subcellular localization dynamics and organellar communication in cells

under stress. Spatial or organellar proteomics workflows may combine cell fractionation with mass spec-

trometry to characterize changes in protein levels in multiple subcellular niches (Lundberg and Borner,

2019). Indeed, methods such as protein correlation profiling (PCP; Andersen et al., 2003; Foster et al.,

2006), Hyperplexed Localisation of Organelle Proteins by Isotope Tagging (HyperLOPIT; Geladaki et al.,

2019; Mulvey et al., 2017), and other organellar mapping approaches (Itzhak et al., 2017; Jean Beltran

et al., 2016) have been developed to monitor protein dynamics over space in an unbiased manner.

The principle behind these methodologies is to quantify the distribution of proteins across subcellular frac-

tions under different biological conditions. The fractionation profiles of proteins reflect the complexity of

subcellular localization better than the presence or absence in a single purified fraction. Thus, they are used

as an input for learning algorithms, allowing the classification of subcellular localization. Recently, a

machine learning pipeline classified translocation events between subcellular niches by allowing the

comparison of fractionation profiles under different biological conditions (Kennedy et al., 2020).

In light of these advances, we used spatial proteomics coupled with machine learning techniques to sys-

tematically analyze the subcellular reorganization of the proteome of skin cells in response to UVA radia-

tion. Our results show that a low UVA dose, equivalent to about 20 min of midday sun exposure (Halliday

and Rana, 2008), leads to spatial remodeling of the skin cells’ proteome. We found that the spatial stress

response relies on changes in mitochondrial dynamics, redox modulations, and a nucleocytoplasmic trans-

location triggered by DNA damage. Furthermore, our results provide a resource for further investigations

of UVA-triggered protein dynamic events.

RESULTS

Workflow used to investigate proteome remodeling of skin cells under UVA light stress

An overview of the experimental protocol is shown in Figure 1A. In the experimental pipeline, HaCaT skin

cells were exposed to a non-cytotoxic low dose of UVA light (6 J/cm2, using a simulator of the solar UVA

spectrum) or kept in the dark under the same environmental conditions. Mock-treated and UVA-exposed

cells were collected, the plasmamembranes were lysed in a hypoosmotic solution, and the organelles were

separated by differential centrifugation. Fractions were collected after each centrifugation step, and pro-

teins were quantified in each fraction by conventional label-free mass spectrometry. A total of 5,351 protein

groups were identified and quantified in 90 samples, comprising nine fractions for each of the five biolog-

ical replicates of each condition. The data set was filtered for proteins with label-free quantifications (LFQ)

greater than zero in at least 50% of all samples, yielding a matrix of 1,650 protein groups. This step was

performed to exclude proteins that were irregularly quantified across replicates and fractions. The remain-

ing missing values were imputed. Briefly, for proteins with at least four valid values across the five replicates

of a given fraction, the missing value was imputed as the average of the four valid values. The remaining

missing values were imputed as the minimum value of the sample. This imputation approach should ac-

count for both values missing at random and not random, which are commonly present in shotgun prote-

omics data sets (Dabke et al., 2021; Liu and Dongre, 2021). Figures S1–S4 show the results obtained during

optimization of the imputation method, and Figures S5 and S6 show the final imputed subcellular maps of

control and irradiated samples, respectively. Data S1 and S2 provide the unfiltered LFQ data set without

imputation and the filtered data set with imputation, respectively.

Next, to assess if the data set’s structure reflected subcellular localization, we used three complementary

approaches to inspect data quality, predict subcellular localization, and infer protein dynamic events. First,

we used t-SNE as a dimensionality reductionmethod. Proteins in the t-SNE plots were colored according to

subcellular localization information available in three different databases (Uniprot, Gene Ontology (GO),

and Cell Atlas), aiming to inspect clusters formation. Second, we used a neural networks algorithm to

assess if subcellular localization could be attributed accurately by learning the fractionation patterns of or-

ganellar markers with well-established localization. Lastly, after validating the data set’s structure, we used

the Translocation Analysis of Spatial Proteomics (TRANSPIRE) computational pipeline (Kennedy et al.,

2020), which is based on a Gaussian process classifier, to investigate changes in the subcellular landscape
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induced by UVA light in human keratinocytes. An overview of the computational workflow is presented in

Figure 1B. Some of the results obtained by TRANSPIRE were further validated by conventional biochemical

assays (Figure 1C).

Validating the resolving power of the fractionation method

Following our workflow, we first inspected the t-SNE plot generated from the filtered data set to reduce the

dimensionality and detect the presence of clusters. The plot revealed the presence of four main clusters in

distinct regions (Figure S7). When proteins were colored according to subcellular localization obtained

from three different databases (Uniprot, Cell Atlas, and GO), we found that the four clusters represented

four distinct subcellular environments: the nucleus, cytosol, mitochondria, and secretory organelles.

The database classifications were binned such that secretory organelles included proteins from the ER,

peroxisome, Golgi, lysosome, and plasma membrane (Figure S7).

Figure 1. Proteomic approach to define spatial changes in protein distribution upon light stress

(A) Experimental protocol.

(B) Computational pipelines used to define changes in subcellular organization promoted by UVA light in HaCaT cells.

(C) Validation of results using traditional biochemical assays.
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Since this analysis showed that the fractionation scheme provides the resolution necessary for well differ-

entiating these four main subcellular compartments, we curated organellar markers for each compartment

to investigate if protein localization could be classified based on the fractionation scheme. We obtained a

set of organellar markers from curating subcellular localization information available in the GO and

Uniprot. We also obtained a few classifications from a previous subcellular proteomics study (Geladaki

et al., 2019). For a protein to be considered an organellar marker, it had to be classified in both databases

as uniquely pertaining to one subcellular niche among the four compartments (i.e., cytosol, nucleus,

mitochondria, and secretory) established through dimensionality reduction. Organellar markers also had

to be consistently present and quantified in all replicates of our experiment.

Based on these criteria, 550 organellar markers were curated into four subcellular niches: the cytosol (117),

nucleus (201), mitochondria (109), and secretory organelles (123). The complete set of organellar markers

used in this study can be found in Data S3. Fractionation profiles of markers from different compartments

present characteristic shapes, demonstrating that proteins from the same subcellular niche tend to frac-

tionate similarly (profile plots, Figure 2A). The t-SNE supports the patterns observed in the profile plots,

showing that organellar markers from different compartments cluster in separate plot regions, whereas

markers of the same compartment cluster similarly (Figure 2B). These plots also reveal a shift in the mito-

chondrial cluster in the subcellular map of irradiated cells relative to controls. This shift seems to approx-

imate the mitochondrial and secretory clusters (a more detailed 2D version of this plot, with labels of the

markers, is shown in Figures S5 and S6).

Following this analysis, a neural network algorithm implemented in pRoloc (Gatto et al., 2014b), utilizing as

references of each compartment the fractionation profiles of curated organellar markers, classified proteins

into four discrete subcellular compartments. To assess the reproducibility of classifications across repli-

cates, we applied the algorithm to each of the five biological replicates of each condition separately

(the F1 scores obtained during hyperparameter optimization of the neural networks are shown in

Figures S8 and S9). The output of the algorithm can be found in Data S4. Figure 2C contains the t-SNE plots

representing the most frequent classification of each protein across the five replicates for each condition.

All of the 1,100 protein groups were classified into four subcellular niches: the cytosol (190 G 30 proteins,

considering themean and SD across replicates), nucleus (379G 83), mitochondria (180G 43), and secretory

organelles (254G 70), with slight differences in the total number of classifications between conditions (Fig-

ure 2D). All classifications obtained from the machine learning algorithm are accompanied by classification

probability scores that reflect the reliability of the assignment. In this context, low scores are often associ-

ated with profiles not directly modeled by the organellar markers used in the algorithm (e.g., multilocalized

proteins) (Jean Beltran et al., 2016). To account for multilocalized proteins, we filtered proteins with low

prediction scores (the numbers above represent the filtered classifications). Considering the filtered

data set, the subcellular localization classifications obtained for each replicate were compared to GO clas-

sifications. The results revealed that the averaged neural networks algorithm achieved a mean prediction

accuracy of 91% in control samples and 90% in treated samples (Figure 2E). Classifications were also highly

reproducible, with almost 100% of all proteins in the treated and control samples receiving the same

classification in at least three out of five biological replicates (Figure 2F).

In addition, we analyzed if the data set could provide sub-organellar resolution by differentially coloring

markers of sub-organellar compartments, protein complexes, and secretory organelles in the t-SNE

plot. Markers of sub-organellar and secretory compartments were mostly obtained from Geladaki et al.

(2019). A few markers were obtained from Uniprot, Mitocarta, and GO. The results indicate a partial divide

between the mitochondrial matrix, membrane, and nuclear subniches, such as the nucleolus, nucleoplasm,

and chromatin clusters (Figure 2G). Moreover, the t-SNE plot also reveals that specific protein complexes

colocalize in vivo. For example, our data set’s clustering of the heavy and light ribosome sub-units and the

proteasome supports the notion that the fractionation preserves the colocalization of interaction networks.

We also observe clusterization of different secretory compartments, especially the plasma membrane and

ER (details about the clusters composition in control and treated samples are shown in the t-SNEs of

Figures S11 and S12).

Altogether, these results indicate that the data set is structured in a way dependent on subcellular locali-

zation, considering compartments delimited by membranes (i.e., organelles) and compartments delimited

by protein complex formation (i.e., the nucleolus and the proteasome). This analysis provides a

ll
OPEN ACCESS

4 iScience 25, 104093, April 15, 2022

iScience
Article



comprehensive investigation of HaCaT subcellular architecture, allowing for inferences about UVA-

induced protein dynamic events.

UVA light elicits changes in the subcellular distribution of proteins

Next, we used the TRANSPIRE pipeline (Kennedy et al., 2020) to classify possible UVA-triggered protein

dynamic events in the spatial proteomics data set. This pipeline has been developed for the identification

of protein translocations. TRANSPIRE creates synthetic translocation classes from organellar markers,

trains a Gaussian process classifier based on the synthetic translocation classes, and classifies

Figure 2. Identification of subcellular patterns in HaCaT’s spatial proteomics data set

(A) Profile plots of organellar markers in the HaCaT data set. Shadowed intervals represent standard errors, and values represent means. Five biological

replicates per group were employed for the spatial proteomics experiment.

(B) 3D representation of subcellular fractionation data using t-SNE. The maps were colored according to organellar markers.

(C) t-SNE plots of all control and irradiated samples overlaid with the most frequent classifications obtained for each protein across replicates using the

neural network algorithm for predicting localization.

(D) Numbers of proteins assigned to the cytosol, mitochondria nucleus and secretory organelles by condition. Bars represent the mean number of proteins

assigned to each compartment, and error bars represent the SD.

(E) Accuracy of the neural network predictions obtained by comparing the predicted subcellular localizations with Gene Ontology information. Bars

represent means per condition, and error bars represent standard deviations.

(F) Reproducibility of classifications across replicates. Bars represent the percentage of proteins that received the same classification in 3, four or five

biological replicates out of the total 5.

(G) t-SNE plots overlaid with sub-organellar markers, colocalizing protein complexes and markers of secretory compartments.
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translocations in the actual data set. The basis of this approach relies on first concatenating the organellar

markers between the different biological conditions to produce synthetic markers. Then the synthetic

markers are further clustered to provide different translocation and non-translocation classes, allowing

the algorithm to classify the directionality of protein trafficking across subcellular niches.

The algorithm performs all possible combinations of organellar markers between conditions to generate

synthetic translocations of different classes. In this sense, ‘‘Nucleus to Cytosol’’ and ‘‘Mitochondria to

Mitochondria’’ represent two different classes. Thus, the algorithm’s output consists of the translocation

classes attributed to each protein and translocation scores, calculated as described by Kennedy et al.

(2020). False-positive rates (FPR) were calculated based on the learning model, and a stringent 0.1% FPR

threshold was applied to define a true translocation event in our data set. We tested multiple FPR

thresholds and observed that for 0.1% and 0.01% FPR, we identified about the same number of

translocations (Figure S13A). The output of the algorithm can be found in Data S5.

The classifier achieved a high level of accuracy during training (Figures S13B–S13D) and in the test data,

reaching F1 scores above 0.95 in the test set (as shown in Figure 3A). The classifier identified 217 possible

targets of translocation (FPR 0.1%) altogether. The number of proteins assigned to each translocation class

by the algorithm is shown in Figure 3B, revealing a predominance of dynamic events involving mitochon-

drial proteins. Secretory organelles also seem to play an important role to the overall translocations, sec-

ondary to mitochondria. By aligning the translocation classes in a circular plot (Figure 3C), it is possible to

see that they are not equally distributed across the four subcellular niches. Indeed, the efflux is more

intense for mitochondria, in the direction of secretory compartments. This observation possibly reflects

Figure 3. Prediction of UVA-induced translocations in HaCaT cells

(A) F1 scores obtained by the classifier in the test set.

(B) Number of proteins assigned to each translocation class by the algorithm.

(C) Circular plot representing UVA-induced translocations between subcellular niches, as identified by the classifier.

(D) Enrichment analysis of the translocation targets based on Gene Ontology terms (BP: biological process).
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the crucial role secretory organelles play in protein trafficking between different subcellular niches and the

importance of mitochondria in the stress response to radiation. Furthermore, the predominance of trans-

locations frommitochondria to secretory organelles seems to be consistent with the partial approximation

between the mitochondrial and secretory clusters in the three-dimensional t-SNE subcellular map of irra-

diated cells compared to controls (Figure 2C). Translocating proteins are significantly enriched for biolog-

ical processes related to cellular localization (‘‘cellular localization,’’ ‘‘establishment of localization in cell,’’

‘‘cellular component organization,’’ ‘‘intracellular transport’’) (Figure 3D).

Considering the list of possible translocation and the clusterization of organellar markers in the t-SNE plot,

we performed a few validations by confocal microscopy. As DNA damage and oxidative stress are impor-

tant and well-known triggers of UVA signaling in skin cells, we validated a nucleocytoplasmic translocation

triggered by DNA damage to unequivocally confirm that DNA damage is an underlying feature of UVA-

induced cellular stress response, even for a considerably low-dose exposure. As mitochondrial proteins ac-

counted for the majority of protein dynamic events, we also validated changes in mitochondrial dynamics

associated with the shift of the mitochondrial cluster in the t-SNE plots between biological conditions.

Overall, these validations emphasize DNA damage and metabolic stress as underlying features of the sub-

cellular reorganization promoted by a low dose (6 J/cm2) of the least energetic component of the solar UV

radiation in human keratinocytes.

Spatial remodeling involves mitochondrial and DNA damage signaling

We first focused on curating the translocation labels classified by the TRANSPIRE algorithm using the neu-

ral network classifications of subcellular localization in control and treated samples to validate a more strin-

gent list of possible UVA-triggered translocations. Altogether, the translocations detected by using the

neural networks algorithm were mostly covered by TRANSPIRE (Figure 4A). TRANSPIRE detects more tar-

gets than the neural networks algorithm (Figure 4A), which may be owing to differences in the conception

of the algorithms. For example, multilocalized proteins likely receive low confidence scores and are filtered

out from the neural network classifications, whereas TRANSPIRE is relatively agnostic in detecting translo-

cations for multilocalized proteins (Kennedy et al., 2020). However, we observe that for the more stringent

list of translocating proteins identified by both TRANSPIRE and the neural networks, we obtain the same

pattern of migration between subcellular compartments as for the TRANSPIRE results as a whole (Fig-

ure 4B). The more stringent list of possible translocating proteins detected by both TRANSPIRE and the

neural networks can be found in Data S6, together with enrichment analysis of this set of proteins. From

this list, we chose one nucleocytoplasmic translocation well-known to be involved in the DNA damage

response for immunofluorescence validation.

The b subunit of CSNK2 (CSNK2B) was first implicated in the DNA damage response through its interaction

with the tumor suppressor p53 (Filhol et al., 1992). CSNK2 is also involved in the phosphorylation of two

NER components (XPB, CETN2) (Coin et al., 2004; Grecu and Assairi, 2014), and its translocation to the

Figure 4. Comparison of the translocations classified by TRANSPIRE and neural networks algorithms

(A) Venn diagram representing the possible translocating proteins identified by each algorithm.

(B) Bar plot representing the translocation classes classified by the algorithm. The darker shade of bars represents

classifications obtained through the use of the neural networks and the lighter shade represents TRANSPIRE

classifications.
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Figure 5. CSNK2B translocates to the nucleus upon DNA damage induced by UVA exposure

(A) 2D t-SNE plots representing the migration of CSNK2B from the cytosolic cluster in control samples to the nuclear cluster in UVA-irradiated cells. Colors

represent the translocations predicted by the classifier (organelle of origin in controls and destination in UVA plot).
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nucleus is associated with cell-cycle arrest (Tripodi et al., 2007). Additionally, it has been demonstrated that

XPC- and XPD-deficient cells expressing higher levels of CSNK2B are more resistant to UV-induced death

(Teitz et al., 1990), especially since increases in CSNK2B lead to dramatic increases in CSNK2 activity

(Cochet and Chambaz, 1983). In our experiment, CSNK2B shifts from a central position in the cytosolic clus-

ter in controls to the interface between the cytosolic and nuclear clusters in irradiated samples (Figure 5A).

This behavior is consistent with a significant difference between groups observed for this protein in the pro-

file plot, especially in the last fraction, which is enriched with cytosolic proteins (Figure 5B). Redistribution of

CSNK2B from the cytoplasm to the nucleus upon irradiation was corroborated by immunofluorescence,

indicating that UVA exposure leads to the translocation of cytosolic CSNK2B to the nucleus (Figure 4C).

To confirm that our irradiation conditions generated significant levels of DNA damage, we performed a

modified version of the comet assay to detect different types of DNA lesions in cells following exposure

to 6 J/cm2 of UVA light (Figure 4D). The comet assay was modified through the addition of formamidopyr-

imidine-DNA glycosylase (FPG), endonuclease V (endoV), and endonuclease III (endoIII) to detect oxidized

purines, CPDs, and oxidized pyrimidines, respectively. The predominant types of lesions generated imme-

diately after the exposure to UVA are CPDs and oxidized purines, in agreement with what has been previ-

ously described for this radiation dose (Delinasios et al., 2018). However, whereas oxidized purines seem to

be efficiently removed from the DNA 1 h after exposure to the radiation. CPDs begin to be repaired soon

after irradiation and require more than 24 h to be completely repaired. The DNA lesion profile identified

here and its repair kinetics are consistent with NER activation, and thus with triggering of translocation

events associated with this pathway. Even though UVA generates lower levels of CPD than UVB, CPD

generation can still promote CSNK2B recruitment to the nucleus, leading possibly to cell-cycle arrest

and allowing for DNA repair.

UVA light promotes metabolic stress through mitochondrial fragmentation

Changes in organelle dynamics or morphology may yield hypothesis on their functional states, whereas the

distribution of proteins over subcellular niches hints at an organelle or pathway activity (Palla et al., 2022). In

this sense, cellular phenotypes can be influenced both by organelle properties (i.e., morphology and dy-

namics) and by the distribution of molecules over the cell. Supervised learning algorithms applied to spatial

proteomics data sets are designed to detect translocations of proteins between subcellular niches (Gatto

et al., 2014b; Kennedy et al., 2020). Conversely, changes in organelle dynamics are more likely to lead to

systematic alterations in the fractionation profiles of all proteins localized in the affected organelle. This

happens because changes in organelle morphology and dynamics may lead to differential sedimentation

patterns of the whole organelle during differential centrifugation.

The first evidence we found of a change in mitochondrial dynamics involves the shift of the mitochondrial

cluster in the subcellular t-SNE map of irradiated samples relative to controls (as previously shown in

Figures 2B and S5–S6). Following this finding, we investigated possible alterations in the fractionation pro-

files of mitochondrial markers, as evidence of broader changes in the fractionation profiles of mitochondrial

proteins, which would not be detected by TRANSPIRE or the neural networks algorithms. For this purpose,

the fractionation profiles of organellar markers in control samples were overlaid with the fractionation pro-

files of organellar markers in UVA-irradiated samples (Figure 6A). These plots reveal that the fractionation

profile of mitochondrial markers in irradiated samples displays a subtle shift relative to controls. Other com-

partments do not show a change in fractionation profiles comparing UVA and non-irradiated samples. Even

though the shift in the fractionation profile of mitochondrial markers is subtle, it is consistently observed

across many structural mitochondrial proteins (as exemplified in Figure 6B).

Figure 5. Continued

(B) Profile plot obtained for CSKN2B in controls and irradiated samples. Lines represent the means of relative abundance, and shadowed intervals represent

the standard errors.

(C) Representative immunofluorescence images showing CSNK2B translocation from the cytosol to the nucleus after exposing HaCaT cells to UVA light.

CSNK2B was immunostained (green), and the nucleus was stained with Hoechst (blue). Three independent replicates per group were analyzed. The bars

indicate the 20 mm scale.

(D) Comet assay results for control and irradiated cells. Representative images of randomly scored comets in slides from all conditions are represented on

the left. The graph shows the semi-quantification of each type of DNA damage over time. Points represent Olive Tail Moments scored for all measured cells,

and black bars represent the medians of all points (n = 4 independent experiments). In this case, CPD quantification represents the sum of CPDs and abasic

sites. The number of abasic sites is at most equal to the oxidized purine number. Subtracting the averages of oxidized purines from the CPD quantification

data still leaves a CPD repair curve with the same general time-course.
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Figure 6. UVA induces changes in mitochondrial morphology that are associated with changes in protein fractionation

(A) Profile plots of organellar markers in control and irradiated samples. Lines represent the means of relative abundance, and shadowed intervals represent

standard errors.
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To confirm that the alterations in the fractionation profiles of mitochondrial markers between conditions

might represent alterations in mitochondrial morphology and dynamics, we immunolabeled a respiratory

chain component (COX4I1), which is not expected to translocate, and performed an IF experiment. As

shown in Figure 6C, in controls, COX4I1 displays the typical tubular, interconnected appearance of the

mitochondrial network, which can be observed through the diffuse aspect of the fluorescence labeling,

and forms punctate structures in irradiated samples, a sign of UVA-induced mitochondrial fragmentation

(as has been similarly observed by Kowaltowski et al., 2019).

To determine if changes in the fractionation profiling of non-translocating and non-structural mitochondrial

proteins could also reflect mitochondrial fragmentation, we investigated the spatial redistribution of

fumarase (FH) and ornithine aminotransferase (OAT) in irradiated cells. OAT and FH were not detected

as translocations, considering the stringent 0.1% FPR threshold we used in the TRANSPIRE analysis. We

also monitored PDHA1 in the same experiment to check for colocalization of structural (PDHA1) and

non-structural mitochondrial (OAT and FH) proteins, since PDHA1 is a structural mitochondrial protein

and also not expected to translocate. Importantly, FH and OAT display similar fractionation patterns (Fig-

ure 7A). Both proteins display decreasing levels in the first fractions (1–3) of irradiated samples compared to

controls, accompanied by increased levels in the last fraction (Figure 7A). Immunofluorescence images

show that OAT and FH display the same pattern of subcellular localization as PDHA1, indicating that trans-

location to other subcellular compartments does not seem to occur. Instead, the fluorescence pattern

confirmed the same mitochondrial fragmentation phenomenon observed for labeling of structural

mitochondrial proteins (COX4I1 and PDHA1), reinforcing our previous results (Figures 7B and 7C). These

results demonstrate that, even though the learning algorithms detected translocations of mitochondrial

components, there is another layer of biological information in our spatial proteomics data set: systematic

changes in the fractionation profiles of mitochondrial markers are a consequence of mitochondrial

fragmentation.

Since cells displaying fragmented mitochondria usually have a reduced respiratory capacity (Sabouny and

Shutt, 2020), we measured oxygen consumption rates in HaCaT cells exposed to UVA light using a

Seahorse Analyzer XF24 to validate the functional impact of mitochondrial fragmentation. Accordingly,

basal and maximal mitochondrial respiration decrease in irradiated cells compared to control samples,

supporting the notion of electron transport chain dysfunction (Figure 8A). Changes in mitochondrial

respiration were accompanied by a decrease in the cell’s reductive power up to 24 h after irradiation

(MTT results, Figure S14), without losses in viability, as inferred by the trypan blue exclusion assay (Fig-

ure S14). However, we are careful to point out that we did not perform a specific assay for apoptotic cells.

The reduction in the cell’s reductive power occurs in a radiation dose-dependent manner (Figure S14).

Since UVA light is known to cause oxidative and genotoxic stresses (Schuch et al., 2017), we tested if a 6

J/cm2 dose of UVA could promote alterations in the levels of stress-responsive proteins one and a half

hour after radiation exposure. We opted for performing the total proteome analysis at a later time point

than the spatial proteomics experiment because we reasoned that alterations in protein levels owing to

synthesis/degradation would be a longer term response compared to early signaling dynamic events.

We also chose this time point because we intended to look at changes in protein levels that resulted

from the mitochondrial and DNA damage we detected previously via the comet assay and respirometry.

After this period, 138 proteins were significantly modulated between groups (Figure 8B), the general

enrichment analysis of up and down-regulated proteins is shown in Figure 8C. Focusing on stress-respon-

sive proteins (Figure 8B), we observed the up-regulation of DNA damage response components (RAD23B

and XRCC6), a few DNA replication licensing factors, antioxidant enzymes (GSTP1 and PRDX1), and heat

shock proteins. Additionally, a few sub-units of the electron transport chain complexes and a few redox-

responsive proteins (CAT and PRDX3) were down-regulated, possibly owing to depletion, as has been

already described for the cell under stress induced by UVA radiation (Maresca et al., 2006). This data set

and the enrichment analysis of differentially abundant proteins are provided in Data S7. Additionally,

the lists of proteins exclusively present in one biological condition are provided in Data S8.

Figure 6. Continued

(B) Profile plots of representative proteins from the mitochondrial membrane. Lines represent the means of relative abundance, and shadowed intervals

represent standard errors.

(C) Immunostaining of COX4I1 (green). The nucleus was stained with Hoechst (blue). Two biologically independent experiments were performed, with

similar results obtained. The bars indicate the 20 mm scale.
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Figure 7. Changes in the fractionation profiling of proteins from the mitochondrial matrix in UVA-exposed cells compared to controls reflect

mitochondrial fragmentation

(A) Profile plots obtained for FH and OAT in control and irradiated samples. Lines represent the means of relative abundance, and shadowed intervals

represent standard errors.
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By analyzing the fold change of proteins between treatments in a compartment-specific fashion (Figure 8D),

we found that the fold change of mitochondrial proteins is significantly lower when compared to the whole

proteome (p = 1.47 3 10�17, Wilcox test, FDR correction), suggesting that decreasing levels of electron

transport chain components recapitulate mitochondrial proteome changes as a whole. Importantly, mito-

chondrial fragmentation usually facilitates the mitophagy of damaged mitochondria (Twig and Shirihai,

2011).

These results show that exposing skin cells to UVA light impacts mitochondrial dynamics, leading to

fragmentation, respiratory dysfunction, and the up-regulation of stress response proteins.

DISCUSSION

The present study is the first to provide a map of subcellular protein reorganization induced by the UVA

component of sunlight in a skin cell type. High sensitivity MS-based proteomics coupled to machine

learning algorithms quantified and assigned subcellular localization for over 1,600 proteins in human

keratinocytes exposed to UVA light. Our unbiased approach revealed that a single low dose of UVA light

could affect the proteomic architecture of skin cells, provoking the reorganization of subcellular structures

owing to genotoxic and metabolic stresses.

In this work, about 12% of the identified and quantified proteins (over 200 proteins from a total of 1,600)

relocalized in response to UVA exposure. Our results showed that redistribution of proteins across subcel-

lular niches encompass different phenomena, such as changes in organelle dynamics and translocations.

After considering all redistribution events, important modulators of cellular metabolism, mitochondrial

function, protein trafficking, signaling pathways, and DNA damage response were identified.

Previously it was reported that DNA damage response rewires metabolic circuits, fine-tuning protein

synthesis, trafficking and secretion (Chatzidoukaki et al., 2020). However, it is not clear how genotoxic com-

ponents of the sunlight affect protein localization or organelle architecture and interactions. In this work,

we confirmed that UVA exposure caused a nucleocytoplasmic dynamic event induced by DNA damage.

For instance, our algorithms detected with high confidence the nucleocytoplasmic translocation of

CSNK2B in UVA-irradiated cells, a finding further confirmed by confocal microscopy. CSNK2 has many

biological targets, maintaining cellular viability and participating in the DNA damage response (Gray

et al., 2014; Montenarh, 2016; Yefi et al., 2011). Its role in the cellular response against UVR has been

described in terms of its interaction with p53 and NER components as well as by its role in cell-cycle arrest

(Montenarh, 2016). Indeed, using the comet assay, we observed that UVA radiation leads to simultaneous

CPD formation and CSNK2B translocation, as expected. We also monitored DNA damage over time and

observed that CPDs are repaired over 24 h, indicating NER activation. Collectively, these results demon-

strate that UVA triggers a classical DNA damage signaling pathway, even though it generates lower levels

of CPD than the more energetic UVB light.

The most striking result of our systematic proteomic profiling was identifying mitochondria as one of the

main targets of UVA-induced stress. In our experiment, we detected two types of dynamic events:

redistributions of mitochondrial proteins over the subcellular space, which were detected by the

TRANSPIRE and neural networks algorithms, as well as changes in mitochondrial dynamics, which were

reflected as systematic changes in the fractionation profiles of mitochondrial markers. We showed that

UVA induces mitochondrial fragmentation, up-regulates redox-responsive proteins, and reduces the res-

piratory rate, leading to changes in the cells’ overall energetic status. Mitochondrial fragmentation de-

pends on the balance between fusion and fission, enabling adaptation to stress and different metabolic

demands (Sprenger and Langer, 2019). If fragmentation of the interconnected mitochondrial network oc-

curs transiently, it can facilitate mitophagy, for example, leading to adaptation to stress (Sprenger and

Langer, 2019). For instance, mitochondrial fragmentation and mitophagy are essential for keratinocyte

Figure 7. Continued

(B) Immunostaining of FH (green) in HaCaT cells exposed to UVA or mock-treated. PDHA1 (red) was immunolabeled as a structural mitochondrial marker.

The nucleus was stained with Hoechst (blue). Three independent experiments were performed, and similar results were obtained.

(C) Immunostaining of OAT (green) in HaCaT cells exposed to UVA or mock-treated. Similarly, PDHA1 (red) was used as a mitochondrial marker, and the

nucleus was stained with Hoechst (blue). Three independent experiments were performed, and similar results were obtained. The bars indicate the 20 mm

scale.
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Figure 8. UVA-induced changes in mitochondrial dynamics impact respiratory function

(A) Oxygen consumption rates (OCR) were measured in irradiated and control cells before and after the addition of 1 mM oligomycin, 1 mM CCCP and a

solution containing 1 mM antimycin and 1 mM rotenone (n = 4 biological replicates). Points represent means and error bars represent standard deviations of

biological replicates.

(B) Hierarchical clustering of differentially regulated proteins comparing HaCaT cells exposed to UVA versus controls (Student’s T-test, 0.05 FDR correction).

The color gradient represents z-scored LFQ intensities, and columns represent replicates (n = 6 per group). Stress-responsive proteins are highlighted.

(C) Enrichment analysis of differentially abundant proteins according to GO terms.
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cornification, a physiological process (Simpson et al., 2021). On the other hand, chronic fragmentation

may be associated with other types of cell death and tissue damage (Sprenger and Langer, 2019). Thus,

for example, it has been demonstrated that healthy and cancerous skin display different patterns of

mitochondrial organization and morphology (Pouli et al., 2016).

These results expand on previous characterizations of mitochondrial dysfunction in response to UV radia-

tion (Djavaheri-Mergny et al., 2001; Jugé et al., 2016) and show that alterations occur even with acute low-

dose exposures to UVA, the least energetic component of the UV spectrum. It has been suggested that

UVA-induced deletions in mtDNA underlie the long-term effects of UVA during photoaging (Berneburg

et al., 2004). However, our results suggest that UVA also has short-term effects on the mitochondria, acting

as a potent stressor immediately after exposure. Some endogenous metabolites have been proposed to

play a role in UVA’s photosensitization in skin cells, such as flavin-derivatives, NADH, NADPH, FADH,

urocanic acid, porphyrins, and some sterols (Wondrak et al., 2006). Mitochondria, in particular, contain

high concentrations of putative UVA chromophores, such as flavin-derivatives, NADH, FADH, and

NADPH, which could mediate the damage to this organelle.

Several studies showed that high doses of UVB irradiation (e.g., >100 mJ/cm2) trigger mitochondrial frag-

mentation in keratinocytes (Jugé et al., 2016; Wang et al., 2015, p. 1; Zhang et al., 2016, p. 1). On the other

hand, UVC (60 mJ/cm2) leads to mitochondrial hyperfusion instead of fragmentation in mouse fibroblasts,

suggesting that UVR-induced modulations of mitochondrial dynamics are complex and context-depen-

dent (Tondera et al., 2009). Our results show that even a low dose of the less energetic UVA light is capable

of inducing mitochondrial fragmentation. UVB-induced mitochondrial fragmentation is dependent on

DRP1 mitochondrial translocation, with partial roles for MFN1 and OPA1 (Jugé et al., 2016), frequently

followed by apoptosis (Wang et al., 2015; Zhang et al., 2016). In our experiments with UVA irradiation,

we did not detect strong evidence of attenuated cell viability, as inferred by the trypan blue assay.

In summary, our data set provides valuable information about UVA-triggered translocation events in

subcellular niches. Our experimental strategy employing cellular fractionation, MS-based proteomics,

and machine learning algorithms revealed UVA redistributed approximately 12% of the skin cell proteome,

highlighted by the up-regulation of redox-responsive proteins, DNA damage, and mitochondrial fragmen-

tation. Overall, our data set opens up possibilities for further investigation of UVA-triggered protein

dynamic events in less studied subcellular niches.

Limitations of the study

Our work has some limitations. First, this study is based on a shotgun, label-free proteomics quantifica-

tion approach. Data-dependent acquisition is well-known to generate a high number of missing values in

proteomics data sets, owing to the semi-stochasticity of ion fragmentation. Here we dealt with the

limitations of this technique by filtering part of the missing values and by using an imputation method

that takes into account both values missing at random and not at random. Using isotopic or isobaric la-

beling, for example, could lead to the acquisition of a more complete set of protein quantifications and

consequently to more accurate classifications of subcellular localization and translocations. Furthermore,

another limitation of our study includes the limited number of target validations. Microscopy validation is

a valuable tool to confirm and extract mechanistic information of the possible translocation targets. More

extensive, high-throughput microscopy validations of the possible translocation targets classified by the

machine learning algorithms can reveal new players in early skin tumorigenesis and early stress signaling

induced by UVA light.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

Figure 8. Continued

(D) Compartment-specific proteome changes in irradiated versus control HaCaT cells one and a half hours after UVA exposure (n = 6). The analysis of the log2

fold changes of irradiated HaCaT cells in relation to controls was performed according to (Parca et al., 2018): proteins were assigned to compartments

according to GO-terms and each compartment was tested for significant difference against the whole proteome (Wilcoxon rank-sum test with 0.5% FDR

correction). The asterisks indicate compartments with corrected p values lower than 0.05.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact: Prof. Dr. Paolo Di Mascio (pdmascio@iq.usp.br).

Materials availability

This study did not generate new materials or new unique reagents

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request. The rawMS files are pub-

licly available as of the data of the publication in the PRIDE repository. The identifier is listed in the key

resources table.

d This paper does not report original code.

d Additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL

Keratinocyte cell line

HaCaT cell line (caucasian, male), a spontaneously immortalized human keratinocyte, was cultured in 5%

CO2 at 37
�C and grown in Dulbecco’’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal

bovine serum, 100 U/mL penicillin and 100 mg/mL streptomycin. Professor Mauricio S. Baptista (Institute

of Chemistry, University of São Paulo) provided the cell line, and it was tested for mycoplasma contamina-

tion. The cell line was not authenticated.

HaCaT cells are commonly used as a pre-malignant model (Fusenig and Boukamp, 1998). HaCaT cells do

not harbor any viral sequences (Boukamp et al., 1997; Mueller et al., 2001) and were probably immortalized

as a consequence of UV-like mutations in p53 (Lehman et al., 1993). This cell line presents other character-

istics of an initiated cell line, such as increased telomerase activity, silencing of p16, and defective regula-

tion of p21 expression and function (Ren et al., 2006). Despite these alterations, HaCaT cells have a stable

chromosome content and remain non-tumorigenic (Boukamp et al., 1997). As our experiment required a

large number of cells, we opted for using an immortalized cell line, but the genetic status of this cell lineage

is well-defined. Cells were used between passages 13 and 17.

METHOD DETAILS

Irradiation conditions

An Oriel SOL-UV 2 solar simulator (Newport, USA) equipped with a Xenon arc lamp was used for cell irra-

diation. The simulator was equipped with an IR bandpass blocking filter (UG11 Glass, model FSQ-UG11,

Newport, MA, USA) plus a UVB-blocking filter (320 nm Cut-on, model SOL-UV-A-F, Newport, MA, USA)

.Emission spectra of the simulator radiation with and without the UVB-blocking filter are displayed in Fig-

ure S15. Before irradiation, the simulator’s output was measured with a dosimeter from International Light

Inc (Newburyport, MA, USA), model IL1700, with a SED033 detector. Using the IR and UVB blocking filters,

the output measured in the area where the cell plates would be positioned, at a 10 cm distance from the

light source, yielded a mean of 5.0 mW/cm2, with a maximum variation of 10% between biological repli-

cates. Each dish was irradiated for 26 min, corresponding to a total dose of 6 J/cm2, which humans can

be exposed to during routine daily living without affecting cellular viability (Figure S14). All the assays

described in this study were performed under the same UVA dosage (6 J/cm2). Cells were washed three

times with phosphate-buffered saline (PBS) and kept in PBS during irradiation (26 min). Controls were

kept in PBS and maintained in the dark at room temperature for the same amount of time.

Subcellular proteome sample preparation

For the spatial proteomics assay, two million cells were plated in 100 mm dishes 48 h before the experi-

ments (until cells reached 80–90% confluency). An entire dish containing around eight million cells yielded

at least 10 mg of protein in the fraction with the lowest yield, which was enough for mass spectrometry

analysis.
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Cells were trypsinized and harvested by centrifugation 30 min after irradiation. The cell pellet was washed twice

in PBS and incubated for 10min in 1mLof hypotonic lysis buffer (25mMTris-HCl, pH7.5, 50mMSucrose, 0.5mM

MgCl2, 0.2 mM EGTA) on ice. Cells were then transferred to a Potter-Elvehjem homogenizer and homogenized

with 30 strokes on ice (until at most 70% of cells were stained with trypan blue). After homogenization, 110 mL of

hypertonic sucrose buffer (2.5 M sucrose, 25 mM Tris pH 7.5, 0.5 mMMgCl2, 0.2 mM EGTA) was used to restore

osmolarity. The cell lysate was transferred to 2 mL tubes and centrifuged twice at 200 3 g for 5 min to remove

intact cells. The lysatewas then subjected to a series of differential centrifugations: 10003g for 10min, 30003g

for 10 min, 50003 g for 10 min, 90003 g for 15 min, 120003 g for 15 min, 150003 g for 15 min, 300003 g for

20 min and 80000 3 g for 40 min. In total, each of the five biological replicates of each condition yielded nine

fractions. The supernatant was collected because it contains the remaining cytosolic proteins. Afterward, frac-

tions enriched with different organelles were lysed in 8 M urea containing 0.1% deoxycholate. The total protein

concentrations were quantified using a BCA assay kit (Thermo Scientific), and 10 mg of protein per fraction were

digested and analyzed by mass spectrometry.

Whole-cell proteome sample preparation

For whole-cell proteome analysis, 400,000 cells were plated in 6-well plates 24 h before the experiments

and incubation was followed by irradiation. One and a half hour after irradiation with 6 J/cm2 of UVA light,

cells were washed five times with PBS, and scraped in 500 mL of a solution containing 100 mM ammonium

bicarbonate, 8 M urea and protease inhibitors (cOmplete� Protease Inhibitor Cocktail, Roche). Cell lysates

were kept on ice for 1 h and after that, they were precipitated overnight with 3 volumes of cold (�20�C)
acetone. Precipitated proteins were collected by centrifugation and acetone was discarded. Pellets

were air-dried for about 10 min and resuspended in 100 mM ammonium bicarbonate buffer containing

8 M urea. Protein concentration was measured using a Pierce� BCA Protein Assay Kit (Thermo Fisher Sci-

entific) and 10 mg of protein per sample were digested and analyzed by mass spectrometry.

Protein digestion

Aliquots corresponding to 10 mg of protein per sample were reduced with 5 mM dithiothreitol for 1 h,

alkylated with 15 mM iodoacetamide for 30 min, diluted 10-fold with 100 mM ammonium bicarbonate,

and digested by the addition of two aliquots of trypsin (1:40 and 1:50, respectively, with an interval of

4 h between the additions). The samples were digested overnight at 30 �C with agitation (400 rpm). Diges-

tion was stopped by adding 4% trifluoracetic acid (TFA), and then the samples were dried. Samples were

desalted using the StageTip protocol (Rappsilber et al., 2007). Peptides were washed ten times with 0.1%

TFA in the StageTips and eluted with 50% acetonitrile and 0.1% TFA.

LC-MS/MS measurements

Each sample was injected in an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific,

Bremen, Germany) coupled to a Nano EASY-nLC 1200 (Thermo Fisher Scientific, Bremen, Germany).

Peptides were injected into a trap column (nanoViper C18, 3 mm, 75 mm 3 2 cm, Thermo Scientific) with

12 mL of solvent A (0.1% formic acid) at 980 bar. After this period, the trapped peptides were

eluted onto a C18 column (nanoViper C18, 2 mm, 75 mm 3 15 cm, Thermo Scientific) at a flow rate of

300 nL/min and subsequently separated with a 5–28% acetonitrile gradient with 0.1% formic acid for

80 min, followed by a 28–40% acetonitrile gradient with 0.1% formic acid for 10 min.

The eluted peptides were detected in the data-dependent acquisition mode under positive electrospray

ionization conditions. A full scan (m/z 400-1600) was acquired at a 60000 resolution, followed by HCD

fragmentation of the most intense ions, considering an intensity threshold of 5 3 104. Ions were filtered

for fragmentation by the quadrupole with a transmission window of 1.2 m/z. HCD fragmentation was

performed with a normalized collision energy of 30, and the Orbitrap detector analyzed the fragments

with a 30000 resolution. The number of MS2 events between full scans was determined by a cycle time

of 3 s. A total of 5 3 105 and 5 3 104 ions were injected in the Orbitrap with accumulation times of 50

and 54 s for the full scan and MS2 acquisition, respectively. Monocharged ions or ions with undetermined

charges were not selected for fragmentation.

Comet assay

A total of 500,000 cells were plated in 6-well plates 24 h before the experiment (n = 4). After irradiation, cells were

trypsinized and collected by centrifugation. The supernatant was discarded, and cell pellets were mixed with
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100 mL of PBS. 10 mL of cell suspension was added to 90 mL of 0.5% low melting point agarose. Subsequently,

75 mL of this cell suspension was pipetted onto slides pre-coated with 1.5% normal melting point agarose. Slides

were coveredwith coverslips and kept at 4�C for 30min to allow the agarose to solidify. Next, the coverslips were

removed, and the slides were kept in a tank containing lysis buffer (2.5 M NaCl, 100 mM EDTA, 10 mM Tris, 1%

Triton X-100, and 10% DMSO, pH 10) overnight at 4�C in the dark.

After lysis, slides were washed with cold PBS three times in the dark and immersed three times in cold re-

action buffer (40 mMHEPES, 0.1 M KCl, 0.5 mMEDTA, 0.2 mg/mL BSA, pH 8) for 5 min each time. After that,

the reaction buffer or reaction buffer containing T4 endonuclease V (0.1 U/mL), FPG (0.2 U/mL) or endonu-

clease III (10 U/mL) enzymes were pipetted onto each slide. Coverslips were placed over the slides, and

they were incubated for 30 min at 37�C in the dark. The slides were then transferred to cold electrophoresis

buffer (10 M NaOH, 200 mM EDTA, pH 13 in water) and incubated for 20 min. Then, the slides were sub-

mitted to electrophoresis for 20 min at 25 V, 300 mA. After electrophoresis, the slides were immersed in

neutralizing solution (0.4 Tris, pH 7.5) three times for 5 min each time and fixed in methanol for 10 min. After

washing, all the slides were air-dried at room temperature. The DNA was stained with 20 mL of a solution

containing 2.5 ug/mL of propidium iodide for 10 min. Fifty randomly selected comets per sample were

analyzed on a fluorescence microscope (Olympus BX51) using the Komet 6 software. Two technical and

four biological replicates were analyzed per condition.

Immunofluorescence

Cells were seeded on 8-well Lab-Tek� II Chambered Coverglass plates (Thermo Scientific, 155409) under

standard cell culture conditions. Samples were fixed with ice-cold 4% paraformaldehyde in PBS without

Ca2+ and Mg2+. After removing the PFA, the cells were incubated for 20 min at room temperature with

freshly prepared permeabilization buffer (0.1% Triton X-100, PBS, pH 7.4). After that, cells were washed

in PBS three times for 5 min each time.

For cell staining, samples were first rinsed for 1 h with blocking buffer (3% fetal bovine serum, PBS, pH 7.4) at

room temperature. Then, primary antibodies (OAT, Invitrogen, PA5-66715, 1:500 v/v; Fumarase, Invitrogen

#PA5-82899, 1:500 v/v; Casein Kinase 2 beta, Abcam #ab151784, 1:500 v/v; PDHA1 [9H9AF5], Abcam

#ab110330, 1:200 v/v, and COX4I1 Abcam #ab33985, 1:500 v/v) were diluted (as indicated above) in blocking

buffer and incubated overnight at 4�C. Next, the chambered coverglass plates were rinsed three times with

PBS and cells were labeled with fluorescently conjugated secondary antibody (anti-Rabbit Alexa Fluor 488, Invi-

trogen #A-11008, 1:500 v/v; anti-Mouse Alexa Fluor 647, Abcam # ab150119, 1:500 v/v) in blocking buffer for one

hour at room temperature. Afterward, unbound secondary antibodies were removed by washing with PBS three

times for 5 min each at room temperature. Finally, nuclei were labeled with 1 mg/mL Hoechst 33342 in PBS (In-

vitrogen #H1399). Imagingwasperformed inPBS.A Zeiss LSM710 laser scanning confocalmicroscopewas used,

and cells were imaged using x63 oil immersion objective (Plan Apochromat NA 1.40). The number of biological

replicates is indicated in the legends of the Figures 5, 6, and 7.

Respirometry

One day before the experiment, on four different days, 60,000 cells were plated on XF24 cell plates

(Agilent) to measure cell respiration. After irradiation, PBS was replaced by DMEM without sodium bicar-

bonate, and cells were incubated for 1 h at 37�C and atmospheric pressure of CO2. Oxygen consumption

rate (OCR) was measured in a Seahorse XF24 Analyzer (Agilent), before and after subsequent additions of

1 mM oligomycin, 1 mMCCCP and a mix of 1 mM antimycin and 1 mM rotenone. Each compound was added

after three cycles of measurements of 3 min each. The concentration of CCCP was determined through the

previous titration. At the end of the experiments, each well was washed once with PBS and proteins were

resuspended in 100 mM ammonium bicarbonate, containing 8 M urea and 1% sodium deoxycholate. After

homogenization, protein concentration was determined by using a BCA assay kit. The OCR values were

normalized by the amount of total protein in each well. The number of biological replicates is described

in the legend of Figure 8.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pre-processing of the proteomics datasets

Raw files of all proteomics experiments performed in this study were processed using MaxQuant (Cox and

Mann, 2008). The Andromeda algorithm (Cox et al., 2011) was used for protein identification against the
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homo sapiens Uniprot database (downloaded August, 2019; 20416 entries). Error mass tolerance for

precursors and fragments were set to 4.5 ppm and 20 ppm, respectively. Cysteine carbamidomethylation

was selected as a fixed modification and methionine oxidation andN-terminal acetylation were selected as

variable modifications. Trypsin was set as digestion enzyme, with a maximum of 2 missed cleavages

allowed. Amaximum FDR of 1% was allowed both for peptides and proteins identification, and for proteins

it was calculated using a decoy database created from the reverse ordination of the protein sequences in

the Uniprot database. Protein abundances were quantified by the LFQ algorithm (Cox et al., 2014), based

on the normalized chromatographic peak integrations calculated by MaxQuant. Other parameters were

kept as default.

For the subcellular proteomics assay, each fraction was considered a different sample in the experimental

design annotation file required for the MaxQuant analysis. A matrix of relative quantification data (LFQ)

(Cox et al., 2014) for proteins in each fraction was obtained and used for subsequent analysis (n = 5

biological replicates). Each protein was normalized by the total sum of the LFQs for a given replicate/

cell map, yielding a value between 0 and 1. Proteins that were not quantified in both biological conditions

and in at least 45 of the 90 samples were filtered out to remove uninformative fractionation profiles with

missing values generated by stochastic fragmentation in the shotgun proteomics approach. Lists of

proteins exclusively present in one biological condition are provided in Data S8. We imputed the missing

values in the following manner: proteins with valid values in 4 out of 5 biological replicates in a given

fraction had their missing values imputed as the average of the 4 valid values, since these values were

more likely to be missing at random. The remaning missing values, which were more likely to be values

missing not at random due to lack of reproducibility in quantification across replicates, were imputed as

the minimum value of the sample. Other methods of imputation were tested, but this was the one that

introduced less bias in our analysis (Figures S1–S4).

For the total proteome analysis, the data was log-transformed, and matches to the contaminants and

reverse database, as well as proteins identified only by modified sites, and missing values (< 30% in all

samples) were filtered out. Statistical significance was assessed using a two-tailed Student’s T-test in the

Perseus software (Tyanova et al., 2016) with a permutation-based false discovery rate (FDR) of 5% and a

S0 parameter of 0.1. The plots were displayed in the R statistical computing environment, using standard

libraries and pheatmap. Compartment-specific proteomic analysis of the log2 fold changes of irradiated

HaCaT cells relative to controls was performed according to (Parca et al., 2018). Briefly, proteins were

assigned to compartments according to GO-terms and the fold-changes associated to each compartment

were tested for significant difference against the whole proteome (Wilcoxon rank sum test with 0.5% FDR

correction). The number of biological replicates can be found in the legend of Figure 8. The asterisks in

Figure 8 indicate compartments with corrected p-value lower than 0.05.

Dimensionality reduction

Dimensionality reduction was achieved using the t-distributed stochastic neighbor embedding technique

(t-SNE) (Maaten and Hinton, 2008). The fractionation data was plotted with different perplexity parameters

(perplexity = 30 yielded the best cluster separation). The plots were colored according to categorical

subcellular classifications from the Cell Atlas initiative (Rozenblatt-Rosen et al., 2017), Uniprot

(The UniProt Consortium, 2017) and Gene Ontology (Ashburner et al., 2000) databases, providing informa-

tion on the clusterization of different subcellular compartments. T-distributed stochastic neighbor

embedding technique was performed using the Rtsne() function from the Rtsne package in the R

environment. Results were plotted with the ggplot2 R package (Wickham, 2009) for 2D visualization and

with the 3dplot() function from the rgl R package for 3D visualization. All enrichment analysis were

performed using g:Profiler (Raudvere et al., 2019), under default configurations.

Curation of organellar markers

Organellar markers were selected based on the curation of proteins classified as pertaining exclusively to

one of the following subcellular compartments: cytosol, nucleus, mitochondria and secretory organelles,

according to Uniprot and GO classifications. We also incorporated in the marker set a few organellar

markers from a previous subcellular proteomics study (Geladaki et al., 2019). Finally, markers also had to

be present in all replicates of the experiment. Organellar markers from four different compartments

were assigned with different colors to visualize clusterization in the t-SNE plots. The secretory compart-

ment comprises proteins initially assigned to peroxisomes, endoplasmic reticulum, plasma membrane,
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Golgi apparatus and lysosomes. These organelles were grouped under the term ‘‘secretory’’ because they

share similar fractionation profiles that were not well distinguished by the machine learning algorithms in

preliminary analysis we performed.

Neural networks predictions

A supervised machine learning approach was used for the subcellular localization prediction (Breckels

et al., 2018; Gatto et al., 2014b). We used a model of an averaged neural networks algorithm (Gatto

et al., 2014b) implemented in the R package pRoloc to produce the paper’s results, but a support vector

machine was also tested and yielded similar results. The organellar markers were used to train the model

for subcellular localization prediction. Organellar markers were divided into a training and validation set

(80/20% proportion for each set) with a 5-fold cross-validation through 100 iterations of the algorithm.

We used a grid search to achieve hyperparameter tuning. The accuracy of the classifier was estimated

through the F1 score (Breckels et al., 2018), and the best hyperparameters were chosen according to the

accuracy of the classifier. The best network size decay for each replicate is described in detail in

Figure S10C. To filter low prediction scores, we adopted the method performed by Jean Beltran et al.,

2016. Briefly, we generated a null distribution of prediction scores through randomization of the empirical

scores over 1000 iterations. Then, we estimated an empirical cumulative function from the null distribution

using the R function ecdf(). Finally, we set thresholds per organelle and per sample at a cumulative prob-

ability of 0.95.

To define a translocation, we performed the same neural network analysis on the whole set of controls and

on the whole set of irradiated samples, in order to obtain a consensus classification for each biological

condition. The low scores were filtered according to the same principle described above. F1 scores

obtained during optimization of the hyperparameters are shown in Figure S10.

To compare subcellular localizations classified by the learning algorithm to GO, we used the biomaRt

(Durinck et al., 2005) and GO.db R packages.

TRANSPIRE analysis

The TRANSPIRE pipeline, developed by Kennedy et al., 2020, was used for the translocation prediction.

Curated organellar markers were utilized to generate synthetic translocations, which are then used to train

the learning algorithm in distinguishing translocation classes and consequently translocating from non-

translocating proteins. In brief, each organellar marker in the control samples is concatenated with every

other organellar marker of the treated samples, producing synthetic translocations and non-translocations

(when markers of the same compartment are concatenated). For example, a synthetic translocation that

simulates the migration of a protein from the nucleus to the cytosol would have a fractionation profile

that is characterized by the combination of a nuclear marker profile in all control samples (45 fractions)

with the cytosolic marker profile in the treated samples (also 45 fractions, yielding a total of 90 ‘‘fractions’’

per synthetic translocation).

Synthetic translocations were used to train a Stochastic Variational Gaussian Process Classifier (SVGPC) im-

plemented in TRANSPIRE through the GPFlow package (built upon the TensorFlow platform in Python).

This model is composed of a kernel function, a likelihood function, n latent variables (which account for

the number of translocation classes), a training set, and a subset of the training set used as inducing points.

The model implemented in TRANSPIRE uses softmax as a likelihood function to improve score calibration.

Hyperparameter tuning involved choosing the kernel type (squared exponential, rational quadratic, expo-

nential Matern32 and Matern52, as implemented by TRANSPIRE through GPFlow) and the number of

inducing points (ranging from 1 to 500). The synthetic translocation data were divided into training, valida-

tion, and test sets in a 50/20/20% proportion, respectively, during training. The training data was further

split into five balanced folds during hyperparameter tuning, allowing for a 5-fold cross-validation. A class

imbalance was prevented by allowing the most frequent translocation classes to have, at most, three times

more proteins than the least frequent. The best hyperparameters selected through the grid search were the

squared exponential kernel and 30 inducing points (optimization plots are shown in the supplemental

information). The results were evaluated by maximizing the evidence lower bound (ELBO) using the

Adam optimizer. Afterward, the resulting model was used to predict translocations in the actual dataset

and performance was evaluated based on the held-out test partition of the synthetic translocation data.
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The output of the TRANSPIRE pipeline entails the classification of a translocation class (e.g., ‘‘Nucleus to

Cytosol’’) for each protein plus a classifier score. The classifier score ranges from 0 to 1 for each transloca-

tion class, and the sum of the scores for all classes for each protein should be equal to 1. Class prediction is

based on the highest classifier score for a given translocation class. This score is referred to as ‘‘predicted

scores’’ in the spreadsheets in the supplemental information. Additionally, the TRANSPIRE pipeline pro-

vides a translocation score, defined as the sum of the predicted scores for all true translocation classes.

This score accounts for situations in which high classifier scores are split among at least two translocation

classes.

TRANSPIRE also allows for the computation of false-positive rates (FPR), based on the model’s perfor-

mance, setting thresholds for the translocation scores to minimize the likelihood of false positives. Herein,

we adopted a 0.1% FPR to generate a more stringent list of translocation targets. The entire pipeline was

performed as described by Kennedy et al., 2020, in Python version 3.7.6.
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