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Abstract

Background: In short-read DNA sequencing experiments, the read coverage is a key parameter to successfully
assemble the reads and reconstruct the sequence of the input DNA. When coverage is very low, the original sequence
reconstruction from the reads can be difficult because of the occurrence of uncovered gaps. Reference guided
assembly can then improve these assemblies. However, when the available reference is phylogenetically distant from
the sequencing reads, the mapping rate of the reads can be extremely low. Some recent improvements in read
mapping approaches aim at modifying the reference according to the reads dynamically. Such approaches can
significantly improve the alignment rate of the reads onto distant references but the processing of insertions and
deletions remains challenging.

Results: Here, we introduce a new algorithm to update the reference sequence according to previously aligned
reads. Substitutions, insertions and deletions are performed in the reference sequence dynamically. We evaluate this
approach to assemble a western-grey kangaroo mitochondrial amplicon. Our results show that more reads can be
aligned and that this method produces assemblies of length comparable to the truth while limiting error rate when
classic approaches fail to recover the correct length. Finally, we discuss how the core algorithm of this method could
be improved and combined with other approaches to analyse larger genomic sequences.

Conclusions: We introduced an algorithm to perform dynamic alignment of reads on a distant reference. We showed
that such approach can improve the reconstruction of an amplicon compared to classically used bioinformatic
pipelines. Although not portable to genomic scale in the current form, we suggested several improvements to be
investigated to make this methodmore flexible and allow dynamic alignment to be used for large genome assemblies.
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Background
De novo assembly algorithms classically use graph, de
Bruijn or overlap-layout-consensus, to join short sequenc-
ing reads into longer contigs. However, when the short-
reads coverage is very low, only short contigs can be
reconstructed because of the occurrence of uncovered
gaps in the sequence [1]. In this case, the availability of a
reference sequence can be beneficial to connect and order
these contigs, an approach known as reference-guided
assembly or homology-guided assembly [2, 3]. The reads
are mapped onto this reference and a contig is constructed
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by taking the consensus of the short-reads at each posi-
tion. However, some gaps in the mapping of the reads
onto the reference may remain if the available reference is
too distant phylogenetically from the sequence the short-
reads originate from. This is because the short-reads that
cannot, or can only partially, be mapped to the distant
reference are discarded or trimmed. The information con-
tained in the discarded or trimmed sequences of the reads
is therefore lost. Hence, improvements in the alignments
of the reads to the reference that are able to take advan-
tage of this unexploited information should improve the
assemblies.
Iterative referencing proposes to align all the reads to

the reference and then update the reference sequence by
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calling the consensus of the reads. Once the reference has
been updated, several additional iterations of read map-
ping/reference update can be performed to progressively
improve the results [4–8]. Significant improvements in
the mapping accuracy of the reads is achieved thanks to
this approach [9]. Subsequently, it has been shown that
dynamic approaches can offer comparable improvements
while performing less data processing, i.e. only requiring
a single iteration of read mapping [9]. In dynamic map-
ping, the reference is updated continuously as the reads
are aligned onto it in an online fashion. Hence, the infor-
mation obtained from the alignments of previous reads is
used to map future reads. Dynamic strategies can be espe-
cially useful when the read sequences are highly divergent
from the reference [9]. However, the treatment of inser-
tions and deletions (indels) remains a problem to dynamic
mappers as the coordinates of the reads have to be con-
tinuously recalculated [9] with a new indexing of the
reference.
Here, we introduce a new online read aligner, Nucle-

oveq [10], and assess how it can improve the alignment
of the reads when the reference is distant phylogeneti-
cally from the reads. This is a difficult task because, in
this case, a large portion of the reads cannot be mapped
to the reference. Using a machine learning approach, we
present an algorithm that is able to dynamically perform
substitutions and indels in the reference. The probability
of each base at each position is learned from the past read
alignments. A dynamic time warping algorithm uses these
probability vectors directly to measure the edit distance
between a read and the reference at the best alignment
position. This is contrasting from previously proposed
dynamic mapping approaches that record a counter for
the different possible variants between the sequential
updates of the reference [9]. In the present method, the
reference is updated after every read alignments. Note
that our algorithm allows the reference to be updated with
insertions and deletions at any position in the reference.
We show that, because the reference sequence is continu-
ously updated according to the alignment of the previous
reads, the alignment of the read gradually improves. We
demonstrate that this feature allows us to take advantage
of distantly related reference sequence and improve the
resulting short-reads assembly.

Results
In order to assess our method, we asked whether the
improved read alignment provided by a dynamic approach
results in better guided assemblies. We compared the
assembly obtained from the dynamic aligner to classic
assembly techniques. Briefly, we tested three assembly
pipelines referred to as: mapping, mapping of all the
reads to the reference followed by update of the refer-
ence; learning, dynamic time warping alignment of the

reads with simultaneous machine learning approach to
update the reference (Nucleoveq [10], see online Methods
for details); de novo, reference-free assembly of the reads
using a de Bruijn graph approach. Additionally, two hybrid
approaches were evaluated, the de novo + mapping and
the de novo + learning pipelines where the contigs
obtained by the de novo assembly of the reads are respec-
tively mapped and aligned before updating the reference.
A set of computer simulations was performed to compare
the reconstructed sequence obtained by these strategies
when coverage is very low (1− 5×) and with varying phy-
logenetic distances between the original sequence and the
sequence used as reference.
We used sequencing short-reads obtained from a study

of mitochondrial amplicons of the western-grey kan-
garoo, Macropus fuliginosus [11, 12]. Focusing on a
5,000 bp amplicon allowed us to conduct extensive re-
sampling of the reads. Published mitochondrial refer-
ence sequences from the following species were used as
references: the eastern-grey kangaroo (Macropus gigan-
teus, Genbank accession NC_027424), the swamp wallaby
(Wallabia bicolor, Genbank accession KJ868164), the Tas-
manian devil (Sarcophilus harrisii, Genbank accession
JX475466) and the house mouse (Musmusculus, Genbank
accession NC_005089). The computer simulations were
performed using the most divergent amplicon (Ampli-
con 3) identified by [11] which is located from position
11,756 to 16,897 in the eastern-grey kangaroo mitochon-
drial genome, total length of 5,130bp. This region contains
the mitochondrial D-loop and, at the time of this study,
the nucleotide sequence is not covered in the western-
grey kangaroo mitochondrial genome (Genbank acces-
sion KJ868120). These species were chosen at increasing
phylogenetic distance from the western-grey kangaroo
(Table 1) but with no changes in their gene order. The
homologous regions were selected in each species by
aligning the amplicon sequence to each mitochondrial
genome in Geneious version 10.2.4 [13]. Then, a region
spanning from position 11,000 bp to 1,200 bp was used for
each circular reference genome except the eastern-grey
kangaroo. For the eastern-grey sequence the homologous
amplicon region was used [11]. This was done to reduced
computational time while still keeping some part of the
sequences located outside of the target region, i.e. from
which the short-reads originate. The quality of the differ-
ent assemblies was evaluated by using two statistics: first,
the number of errors while aligning the reconstructed
amplicon and the true western-grey kangaroo ampli-
con sequences; second, the length of the reconstructed
sequence.

Reference positions covered
The total read coverage in the reference was recorded
for both the mapping and learning approaches to assess
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Table 1 The four different reference sequences used to guide the reconstruction of the western-grey kangaroo mitochondrial
amplicon from short sequencing reads

Species Genbank Start End Length Percentage

accession position position of extracted identity to

region (bp) western-grey

amplicon

Eastern-grey kangaroo NC_027424 11,749 47 5,186 91.4%

Swamp wallaby KJ868164 11,000 1,200 7,075 86.8%

Tasmanian devil JX475466 11,000 1,200 7,336 65.7%

House mouse NC_005089 11,000 1,200 6,500 59.0%

For each circular mitochondrial genome, the genome coordinates of the extracted region are indicated as well as its length. The percentage identity to the western-grey
amplicon is calculated on the homologous regions only, i.e. the non-aligned sections at the beginning and the end of the alignment are not taken into account

whether dynamic reference updates increases the reads
alignment rate. As expected, the number of bases cov-
ered increases with the number of reads sampled (Fig. 1).
However, with distant reference sequences, i.e. the Tasma-
nian devil and the house mouse, the mapping rate of the
reads is very low while the alignment rate is less affected
by the increasing phylogenetic distance of the reference.
Moreover, with these two species used as reference, the
mapping rate remains low even though the depth of cov-
erage increases. Generally, it appears that the variance in
the mapping rate is higher than for the alignment rate.

Assembly evaluation
A total of 2000 computer simulations were conducted. For
coverage values ranging from 1× to 5×, the number of
reads required to achieve such coverage was calculated
and a corresponding subset of reads was randomly cho-
sen among the full set. Then, for each of the four species
reference sequence, the five pipelines were tested. A total
of 100 replicates was performed for each setting. To com-
pute the number of errors and length of the reconstructed
sequence statistics, the pairwise alignment was computed
using the Needleman-Wunsch algorithm with affine gap
penalty scheme, the NUC44 scoring matrix and null gap
penalties at the end of the sequences. The non-aligned
sequences at the beginning and at the end of the alignment
were discarded and the remaining sequence length was
reported for comparisons between pipelines. The number
of errors was computed as theHamming distance between
the remaining aligned sequences.
Overall, the learning approaches offered the best com-

promise between limiting the error rate and recovering
the true length of the amplicon sequence (Fig. 2). In all
simulation settings, the de Bruijn graph assemblies (de
novo assembly) achieved a very low error rate. On the
other hand, this approach was only able to generate rel-
atively short assemblies compared to the other pipelines
(Fig. 2). However, with increasing coverage the length
of the de novo assembled contigs increased confirm-
ing the suitability of de Bruijn graph based methods for

assembling short-reads when the depth of coverage is
high. Specifically, our simulations showed that at least a
20× coverage is required to reconstruct the full length
amplicon with this approach (Fig. 3).
When using distant references (Tasmanian devil and

the house mouse), the hybrid approaches (de novo +
mapping and de novo + learning) produced less errors
than the same algorithms used on the raw reads (Fig. 2).
However, when using more closely related sequences as
references, the de novo + mapping method produced
more errors than themapping pipeline. This is putatively
the consequence of the low coverage of the de novo assem-
bly of the reads, i.e. the de novo only generated very short
contigs. On the other hand, the de novo + learning and
learning generated similar amount of errors with closely
related reference sequences used as guides. With more
distant reference sequences, the de novo + learning pro-
duced less errors than the learning pipeline. While both
pipelines benefit from an increase in read coverage, the
de novo + learning returned the lowest amount of errors
with distant references.
When the reference sequence was chosen phylogenet-

ically close to the reads sequence, i.e. eastern-grey kan-
garoo and swamp wallaby, and the coverage was set to
5×, all pipelines, except de novo assembly, generated
assemblies of comparable length from the truth. With
decreasing coverage, the reconstructed sequence length
also decreased for all methods. This is particularly notice-
able for approaches that use mapping of the reads as the
mapping rate strongly decreases with increasing phylo-
genetic distance of the reference (Fig. 1). On the other
hand, the two methods that use dynamic programming
to align the reads were able to reconstruct sequences of
length comparable to the western-grey amplicon using
distant reference (Fig. 2). It is noticeable that in these
cases the variance of both the length and the error rate for
the mapping-based pipelines is comparatively very high.
This is highly likely to be the consequence of the higher
variance in the mapping rate for these pipelines and it
may indicate that the mapping-based methods are more
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Fig. 1 Realised coverage obtained by mapping (MAPPING) or aligning (LEARNING) sequencing reads to increasingly distant homologous reference
sequences. The short-reads originate from a western-grey kangaroo amplicon of length 5,130bp with 5× coverage, therefore the expected number
of bases covered is ∼25, 000 (dashed line)

sensitive to a non-uniform coverage of the re-sampled
reads. Moreover, the variation between the different mito-
chondrial genomes is not uniformly distributed and the
mapping of the reads would be more difficult when they
originate from highly divergent regions.

Comparison to iterative referencing Additionally, an
iterative mapping approach was implemented by repeat-
ing themapping pipeline five times using the updated ref-
erence obtained at the previous iteration. This approach

was tested with the Tasmanian devil reference sequence at
coverage 5× as it is expected that the best improvements
would be obtained with higher coverage. As expected
iterative mapping improved the sequence reconstruction
(Table 2). Each additional iteration of the mapping of
the reads allowed the error rate to decrease as more
reads could be mapped. However, the improvements
were limited. After five iterations, the error rate and the
length of the reconstructed sequence were still worse
than the ones obtained with the de novo + learning



Ranjard et al. BMC Bioinformatics          (2019) 20:654 Page 5 of 12

Fig. 2 Number of errors and length in nucleotide of the reconstructed amplicon for each bioinformatic pipeline and simulation settings. The 95%
intervals are shown as solid lines for each method along both dimensions (reconstructed amplicon length and error rate)

pipeline (Fig. 2). Similar limited improvements were
obtained using the other reference sequences and cov-
erage values. No improvements in the number of bases
covered was observed after three iterations for eastern-
grey kangaroo and swamp wallaby references, and after
eight iterations for the more distant relative references
(Fig. 4).

Assembly of Macropus fuliginosus mitochondrial
genome To demonstrate the applicability of the method,
a full mitochondrial genome was assembled from short-
reads using a sister species reference sequence. At the
time of this study, the western-grey kangaroo mitochon-
drial genome is only partial and lacks the hyper variable
region (Genbank accession KJ868120) [11]. We used our
method to reconstruct the full mitochondrial genome of
the individual identified as “KA” in [11]. First, the par-
tial mitochondrial genome of the western-grey kangaroo
was completed using the eastern-grey kangaroo reference
(Genbank accession NC_027424) generating an hybrid
full genome template. The sequencing reads generated

from three western-grey kangaroo mitochondrial ampli-
cons, of length 4641bp, 4152bp and 5140bp (83% of the
genome, [11]), were then aligned to this reference tem-
plate usingNucleoveq. One of the amplicon fully spans the
missing region in the western-grey kangaroo mitochon-
drial genome reference. Reads were sub-sampled so that
to obtain a coverage of 5×. Because the coverage was low,
ten iterations were conducted to insure that the reference
was fully covered by randomly sampled reads.
The ten replicates of the mitochondrial genome assem-

bly were aligned with an average of 99% identity. Visual
inspections of the alignment of the replicates showed
that these differences occurred in regions with no cov-
erage. The consensus sequence of the ten replicates was
compared to the high coverage assembly of the mito-
chondrial assembly from [11]. As expected, some errors
were observed at the beginning or end of the three mito-
chondrial amplicons. Because the short-read coverage was
extremely low in these regions, it was very unlikely that
the sub sampling of the reads retrieved these sequences. A
new mitochondrial genome was generated by correcting
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Fig. 3With more than 20× coverage, the de Bruijn graph assembly is able to reconstruct the expected amplicon length (5,130bp)

the consensus sequence with the high coverage informa-
tion. The newly assembled western-grey mitochondrial
genome was annotated in Geneious version 10.2.4 [13]
using the eastern-grey kangaroo mitochondrial genome
as a reference. The western-grey complete mitochon-
drial genome is on Genbank under accession number
MH717106.

Discussion
By iteratively aligning short sequencing reads and updat-
ing the reference sequence, we were able to improve the

Table 2 Iterative mapping lowers the error rate and the length
of the reconstructed sequences

Length (bp) Error rate Coverage
(number of
bases)

Mapping
iteration 0

3376
[3244-3442]

0.206
[0.201-0.207]

1558 [1157-1750]

Mapping
iteration 1

3376
[3269-3442]

0.198
[0.192-0.206]

3026 [2142-3422]

Mapping
iteration 2

3386
[3269-3442]

0.183
[0.180-0.192]

3618 [2858-4296]

Mapping
iteration 3

3423
[3279-3443]

0.173
[0.169-0.185]

4712 [3524-5127]

Mapping
iteration 4

3423
[3279-3443]

0.168
[0.159-0.185]

4903 [3561-6593]

Mapping
iteration 5

3442
[3279-3443]

0.162
[0.154-0.185]

5247 [3561-7129]

The median and the first and third quartiles are indicated for each statistic, the
coverage was 5× with the Tasmanian devil used as reference sequence

reconstruction of the read sequence, resulting in assem-
blies of comparable length to the truth while limiting
the number of errors. The improvement of this dynamic
alignment method over de Bruijn graph- or the mapping-
based approaches tested here can be explained by two

Fig. 4 Increasing the number of mapping iteration of the same reads
does improve the number of aligned reads, measured as number of
bases covered, but only to a limited extend. The short-reads originate
from an amplicon of length 5,130bp with 5× coverage, therefore the
expected number of bases covered is ∼25, 000 (dashed line)
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factors. First, the alignment rate is higher when using
dynamic programming over the Burrows-Wheeler trans-
form approach used for mapping the reads. Second, the
progressive modifications of the reference, as reads are
aligned onto it, facilitate the alignment of the following
reads because the reference is continuously pulled closer
to the reads sequence [9]. This is particularly useful when
only a phylogenetically distant reference sequence is avail-
able for a reference-guided assembly. Actually, our results
showed that the static mapping of the reads is not pos-
sible when the reference is too distant from the reads, as
demonstrated by a very low mapping rate.
The drawback of our dynamic programmingmethod for

read alignment is memory usage. Thememory required to
build the alignmentmatrixM (seeMethods) precludes the
direct usage of this method for large genome assemblies.
While our approach is relevant to small genome assem-
blies, e.g. mitochondrial, supplementary work would be
required to adapt this approach to large genome read
alignments. For example, while it is not possible to directly
align the reads to a large genome, a first search could help
identify short windows, i.e. few thousands bases, in the
reference sequence where the reads could then be aligned
more accurately by our algorithm. In the current imple-
mentation of the method, it is optionally possible to take
advantage of the known mapping positions of the reads
by passing a mapping file as argument. This technique
can massively reduce the memory requirements as only
a window of specified size around these positions will
be considered for performing the alignment. Our algo-
rithm could also be combined with other methods to find
the potential locations of each read in the genome prior
to performing the alignments. The seed-based algorithm
used by Blast [14] or some kmer-based seed searches [15,
16] are obvious candidates. However, when the reference
sequence is distant from the reads, it is not possible to ini-
tially map all the reads onto it. It is therefore inevitable to
re-align or re-map these reads once the reference has been
partially updated.
Our method improves previous dynamic reference

building approaches in that it allows the reference to be
updated with insertions and deletions. Previously, Liao
and co-authors [15] proposed a seed and vote approach to
locate indels. [9] proposed a dynamic mapping approach
where the reference is iteratively updated with the read
sequences but indels were not fully supported [17]. Our
method not only locates but also aligns and corrects the
reference sequence with indels, facilitating further the
subsequent read alignments. This approach comes at the
computational cost of realigning each read onto the recon-
structed reference. However, in our algorithm each read
is treated independently and the updates of the reference
are only performed according to the information from
one read at a time. This is different from graph-based

and iterative referencing methods that need all reads to
be aligned before calling the variants. As a consequence,
parallelization may be used to distribute batch of reads
to be analysed independently prior to merging the several
assemblies.
The threshold limit for performing insertions and dele-

tions was set to be equal to the learning rate (see Meth-
ods). Therefore, indels will not be performed when the
read alignment is poor. However, there is no particu-
lar reasons to use this value and other values could be
used based on other statistics. Preliminary tests (data not
shown) indicated that this value nevertheless returned
best assemblies. Similarly, the indels costs was set to
equal the maximum possible distance between a pair of
nucleotide vectors. Preliminary tests using grid search
showed that similar results were obtained while vary-
ing their values (data not shown). However, this hyper-
parameters could also be set to depend on some other
parameters measured on the data and further investiga-
tions could be conducted to explore these possibilities.
Finally, the learning rate hyper-parameter was set to

depend on the alignment distance. Classically in machine
learning algorithms, the learning rate is set to decay
through the learning process [18, 19]. Conversely, in our
algorithm, it is expected that the rate will increase as
the reference sequence gets closer to the reads. Alterna-
tive learning rate schedules could be tested, for example
cyclic methods as proposed by [20] for training deep neu-
ral networks. Moreover, we only considered one epoch
for learning, i.e. one iteration over the full set of reads. In
other words, the total read set is only seen once to learn
the amplicon sequence. Because the reads are chosen in
a random order, the assembled sequence will potentially
be different between distinct runs of the algorithm and
there is no guarantee to converge on the best assem-
bly. Performing the learning over multiple epochs could
potentially improve the convergence among runs at the
cost of processing time.
The presented method can therefore improve assem-

blies in experiments with low coverage of the input
DNA material by the sequencing reads. While it is not
common to design targeted sequencing strategies with
low coverage, they can nevertheless be encountered in
other situations. For example, when only a low amount
of DNA is available, e.g. ancient DNA studies or chal-
lenging DNA extraction conditions. Moreover, assem-
blies are sometime conducted from experiments that
were designed for different purposes. For instance, the
reads obtained for a transcript sequencing experiment
could be used to sequence the mitochondrial genome
of a species lacking a reference [21]. Permitting assem-
bly from lower amount of reads would therefore allow
researchers to extract more information from sequencing
experiments.
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Conclusions
We introduced an algorithm to perform dynamic align-
ment of reads on a distant reference. We showed that such
approach can improve the reconstruction of an ampli-
con compared to classically used bioinformatic pipelines.
Although not portable to genomic scale in the current
form, we suggested several improvements to be inves-
tigated to make this method more flexible and allow
dynamic alignment to be used for large genome assem-
blies.

Methods
Learning from dynamic programming alignment of the
reads to the reference
In essence, the algorithm consists in aligning the reads
to the reference using dynamic time warping. Then, an
“average” sequence of the aligned region is computed
from the best path of the local free-ends alignment
[22]. This approach was originally designed to perform
unsupervised clustering of bioacoustic sequences [23]. In
this work, a similar algorithm is implemented to anal-
yse nucleotide sequences: each nucleotide position in a
sequence is represented as a four elements vector, the
Voss representation [24], encoding the probability of each
base according to previously aligned reads. This numer-
ical representation of DNA sequence is appropriate for
the comparison of DNA sequences [25] and their classi-
fication[26]. In molecular biology, a similar algorithm has
been applied to the clustering of amino acid sequences
[27] where vector quantization is used to estimate the
probability density of amino acids. In the area of genomic
signal processing, dynamic time warping approaches have
been successful at classifying various representations of
genomic data [28–31].
We consider two sequences of nucleotide vectors, a ref-

erence F = f1...fl and a read R = r1...rn, respectively
representing the reference sequence of length l and a read
of length n aligned onto it. The vectors fx, where 1 ≤ x ≤ l,
and ry, where 1 ≤ y ≤ n, represent the probability vec-
tors of each nucleotide at position x in the reference and
position y in the read, respectively. Through a statistical
learning process and vector quantization, the reference
sequence vectors are updated according to the sequencing
read nucleotides. Ultimately, the goal is to reconstruct, i.e.
assemble, the original sequence S which the reads come
from.
A probability vector ry is calculated according to the

quality scores of each base at position y in the read, with
equal probability given to the alternative bases. More pre-
cisely, if the base bwas called with calling error probability
q at position y, ryb = 1 − q and ryb′ = q/3 for b′ in
{1..4} \ {b}. At initialisation, all fx are only made of binary
vectors defined by the reference sequence. Additionally, a
“persistence” vector P = p1...pl, where pi for 1 ≤ i ≤ l are

initialised all to 1, is updated when indels occur for each
nucleotide position in the reference. The distance between
a pair of nucleotide vectors is defined as

d(fx, ry) = d([ fx1, fx2, fx3, fx4] , [ ry1, ry2, ry3, ry4] )
= |fxi − ryi| for i=argmaxj([ ryj] ), j=1...4.

Therefore, only the nucleotide with the highest proba-
bility in the read is taken into account. A dynamic pro-
gramming approach is used to align the reads to the ref-
erence sequence. Let M(x, y) the minimum edit distance
over all possible suffixes of the reference from position 1
to x and the read from position 1 to y.

M(x, 0) = 0 for 0 ≤ x ≤ l

M(0, y) = c ∗ y for 1 ≤ y ≤ n

M(x, y) = min

⎧
⎪⎪⎨

⎪⎪⎩

M(x − 1, y − 1) + d(fx−1, ry−1)

M(x − 1, y) + c

M(x, y − 1) + c

for 1 ≤ x ≤ l and 1 ≤ y ≤ n,

with the insertion/deletion cost is c = 1. The three ele-
ments correspond to three edit operations: insertion, dele-
tion and substitution. The value in eFR = min1≤x≤lM(x, n)

therefore consists in an edit distance between the read and
the reference vector sequences of nucleotide vectors. It is
then normalised by the length of the read to obtain a read
“edit rate”, êFR.
The optimal path is traced back and, at each position,

the new reference vector is updated. In case of a substitu-
tion, fx = w ∗ fx + (1 − w)ry with a learning rate w (see
below). In cases of deletions or insertions, the fx remains
unchanged but the corresponding position in the persis-
tence vector decreases or increases by an amount equal
to (1 − w), respectively. Then, the persistence value is
assessed against a threshold: if px > 1 + w or px < 1 − w,
then an insertion or a deletion is performed at the position
x in the reference sequence. For insertions, the inserted
nucleotide vector is initialised to the same value ry which
is the nucleotide probability vector on the position y of
the read r aligned to the inserted position in the reference.
All the reads are chosen in random order and sequen-
tially aligned to the reference sequence according to this
procedure (Fig. 5).

Learning rate
The learning rate (1 − w) is set to depend on the edit rate
and governs how much the reference is updated. For low
values of (1−w) the referencemostly remains unmodified.
When the distance between the read and the reference is
low, there is high certainty in the positioning of the read
onto the reference. Therefore, the learning rate can be
increased to facilitate the update of the reference toward
the sequence of the read. On the other hand, when the
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Fig. 5 Overview of the algorithm. Reads are taken in random order and iteratively aligned to the reference. After each alignment, the reference
sequence is updated according to the learning rate w, which is proportional to the normalised edit distance between the read and the reference. In
this case, there is one substitution between the reference of the read; the read has a G with Phred quality score of 15 while the reference is T. One
deletion and one insertion are treated thanks to a persistence vector. The persistence value p• indicates the tendency of a base to be inserted or
deleted at each position in the reference. This value can trigger indels update in the reference when it goes beyond a threshold

alignment of the read is more difficult, i.e. high edit dis-
tance, the learning rate is set to a low value so that the
reference is only slightly updated and misalignments or
errors in the read sequence are not affecting the learning
process.
Computer simulations were conducted in order to

determine the distribution of the edit distances between
reads and increasingly divergent reference sequences.
First, a nucleotide sequence of length U(500, 5000) was
generated by randomly choosing nucleotides with 50%
GC content. A read sequence of length 150 was gen-
erated by randomly choosing a position in the original
sequence and using an error rate of 1% with the errors
uniformly distributed along the sequence. Then, muta-
tions were introduced in the original sequence, at a rate
of {1, 5, 10, 30, 50}%, and single nucleotide indels were
introduced at a rate of 10%. Additionally, random refer-
ence sequences of similar length were generated to build
a random distribution of the distance. The process was
repeated 1,000 times (Fig. 6).
From the empirical distributions of the distance (Fig. 6),

the learning rate was determined to be equal to 0.95 when
the distance is below 0.05, which corresponds to the range
of distances expected due to sequencing errors. It is set

Fig. 6 Distribution of the normalised edit distance between reads
and increasingly distant reference sequences. The mutation rate of
the reference sequence is indicated on the y-axis. The top row
(Random) shows the distribution of the edit distance when reads
were aligned to randomly generated nucleotide sequences. For the
lowest row, the reads were aligned to their original sequence and the
departure from 0 of the edit distance only results from the simulated
sequencing errors
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to 0.05 when the distance is above 0.35, i.e. the distance
expected when the read and the reference sequence have
less than 70% sequence similarity. Between normalised
edit distances of 0.05 and 0.95, the rate was set to linearly
increase, i.e. w = 3 × êFR

n − 0.1.

Five assembly pipelines
First, the whole set of reads, average coverage of ∼2000×,
was mapped to the eastern-grey kangaroo to determine
the western-grey kangaroo mitochondrial sequence for
the amplicon (see [11] for details). Then, five differ-
ent bioinformatic pipelines were tested at lower cover-
age. At first, the reads were preprocessed before run-
ning each pipeline: Illumina adapters and low quality
bases were removed (Trimmomatic version 0.36, [32])
using a sliding window of 15 nucleotides, with steps of
four bases and the resulting reads below length 36 were
discarded. Additionally, kmer error correction was per-
formed using Tadpole (BBMap version 37.95, Brian Bush-
nell). The five assembly pipelines (Fig. 7) are described
below:

1 Mapping was performed using Bowtie2 version 2.2.6
[33]. Both “local” alignment with “soft trimmed” and
“end-to-end” alignment of the reads were tested. In
general, local alignment resulted in higher alignment
rates and was therefore used in all simulations. Once

the reads were aligned to the reference, Samtools
version 1.5 [34] was used to order the reads. Freebayes
version 1.1.0 [35] then allowed us to identify variants.
Calls with high probability to be false positive, Phred
score <20, were removed with Vcffilter (Vcflib
version 1.0.0) [36]. The consensus sequence was
generated using Bcftools version 1.6 [34] by applying
the alternative variants to the reference sequence.
Finally, the uncovered parts at the beginning and at
the end of the reference were removed.

2 Learning consisted in iteratively aligning the reads
and dynamically updating the reference according to
the machine learning approach previously described,
the algorithm is implemented in Nucleoveq [10]. For
these simulations, all the reads were aligned to the
reference and no prior information about the
mapping position was utilised to perform read
alignments. At the end of the learning process, the
uncovered regions located at the beginning and end
of the reference were truncated to generate the final
assembly.

3 De novo assembly was done with Trinity version
2.4.0 [37], using a kmer size of 17 and setting the
minimum contig length to 100 so that assembly
could be performed when coverage was very low.
After assembly, the longest contig was selected for
evaluation.

Fig. 7 Five bioinformatic pipelines for assembly. Dashed-line: it is possible to pass a priori mapping position of the reads to Nucleoveq to decrease
memory requirements and speed up computation (option not used in the reported comparisons)
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4 De novo + Mapping consisted in mapping all the de
novo assembly contigs obtained from Trinity to the
reference in an effort to connect them into a longer
sequence. The same approach as formapping
pipeline was used to generate the consensus.

5 De novo + Learning consisted in feeding all the de
novo assembly contigs obtained from Trinity to our
machine learning algorithm. The same steps as for
the above learning pipeline were performed while
regarding the contigs instead of the reads as input.
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