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The environment promotes evolution. Evolutionary processes represent environmental adaptations over long time scales; evolution
of crop genomes is not inducible within the relatively short time span of a human generation. Extreme environmental conditions
can accelerate evolution, but such conditions are often stress inducing and disruptive. Artificial growth systems can be used to
induce and select genomic variation by changing external environmental conditions, thus, accelerating evolution. By using cloud
computing and big-data analysis, we analyzed environmental stress factors for Pleurotus ostreatus by assessing, evaluating, and
predicting information of the growth environment. Through the indexing of environmental stress, the growth environment can be
precisely controlled and developed into a technology for improving crop quality and production.

1. Introduction

Plant growth is a multifaceted process that integrates physio-
logical phenomena such as photosynthetic activity, water use,
nutrient uptake, storage of starch and lipids, and adaptation
to stress [1]. In contrast to animals, plants cannot relocate to
avoid stress, and thus a sophisticated internal control system
is needed to combat adverse conditions [2]. Research on
plant adaptations to stress should focus on understanding the
overall system and its complexity. All plants experience some
environmental stress, which, in the absence of adaptation, can
lead to reduced resistance to pests and to disease.

Representative examples of environmental stressors expe-
rienced by plants can include drought or excess moisture,
poor aeration, lack of sunlight, and high or low temperature.
The optimal plant growth environment should be provided
by identifying early stages of biological reactions to stressors
through frequent observation [3]. Symptoms of pest-related
damage should also be assessed at an early stage through
observation of leaves and branches. Early diagnosis and
treatment can reduce damage caused by disease.

Artificial growth systems (e.g., factory farms) are produc-
tion systems that can grow crops year-round by artificially
adjusting the natural environment (e.g., light, temperature,

humidity, carbon dioxide, airflow, and nutrients) within
confined facilities [4]. Optimization of plant fitness through
control of the growth environment enables quality and
yield to be improved. Manipulation of growth environmen-
tal conditions can also accelerate evolution by inducing and
selecting genomic variation.

Here, we report the use of a data-intensive cloud service to
store, process, and analyze environmental information gen-
erated from an artificial growth system [5]. The importance
of cloud computing in the field of bioinformatics is growing
rapidly as large-scale biological and environmental datasets
become available [6–8]. The purpose of data-intensive com-
puting is to find biological knowledge by analyzing big data;
the data parallelism technique is the primary processing
method and consists of calculations that are assisted by
cloud computing. Data-intensive computing uses advanced
technology that can handle high-capacity searches and data
extraction [9, 10]. The artificial growth system implemented
here is an integrated system that can analyze patterns in
biological big data and process growth environmental data
quickly and continuously.

To implement this system, this study is organized as fol-
lows. Section 2 examines the broad configuration of the arti-
ficial growth system developed in this study; Sections 3 and 4
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Figure 1: Schematic diagram of an artificial growth system.

provide a detailed discussion of cloud service and Internet-
of-Things (IoT) devices for cloud or artificial growth systems.
Section 5 analyzes environmental stress factors for Pleurotus
ostreatus through a pilot project. Finally, Section 6 presents
conclusions and directions for future research.

2. Artificial Growth System

The purpose of protected cultivation is to harvest plants at
the desired time by conversion from passive crop production,
which relies on natural conditions, to active (“artificial”)
production [11]. In this study, “plant” refers to the entire plant
body, including tissues and cells; the plant is referred to as an
artificial growth system, a clonal proliferation system, or a cell
mass-culture system, depending on the production system
used. In advanced facilities such as artificial growth systems,
genetic variation can be induced becausemost environmental
factors relating to crop growth are tightly controlled [12]. To
operate the artificial growth system, as shown in Figure 1,
an environmental control unit is constructed using ele-
ments such as light-emitting diodes (LEDs) and temperature,
humidity, and carbon dioxide (CO

2
) regulators.

(1) IoT Sensors. The artificial environment is controlled by
monitoring plant growth status using sensors for electrical
conductivity (EC), pH, temperature, humidity, CO

2
, and light

[13]. Basically, growth-related sensors require EC and pH
sensors, and temperature, humidity, CO

2
, and pyranometer

sensors are used as the environment-related sensors. These

sensors enable the real-time growth environment of plants
and roots to be monitored.

(2) Control Units.The artificial growth system includesmeans
to control various facilities within the system to maintain
optimal conditions for crop growth. The control units are
based on information collected using the sensors and are
designed to be used remotely via a communication interface
such as the Internet.

If sensor data are entered, which are outside of the
previously established acceptable range for the facility, the
facility can be controlled in real time through a control-status
lookup feature. This design enables more precise control,
through IoT technology, than is possible with traditional
wired systems.

(3) Control Gateway. Information collected from the system
by sensors in real time is stored in a cloud database (DB) that
can be accessed by the user at any time through a network.
The data analysis provides information (e.g., external weather
data, heat, and water status) needed for facility control and
management.

3. Data-Intensive Cloud Service

The types of platforms and computing resources required for
data analysis are very diverse. As shown in Figure 2, the data-
intensive cloud service platform consists of analysis services
based on virtual infrastructure and data management that
enables efficient access to high-capacity data. We created
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Figure 2: Data-intensive cloud service platform.

a virtual machine (VM) to logically control, integrate, and
manage various IoT sensors and applications for growth
environment control through analysis of environmental data
and implementation of an IoT-centric cloud using a virtual
appliance (VA) equipped with each sensor application.

(1) Data Management Services. Data management services
allow users to search and download remote environmental
data through web-portal interfaces. Searches can be per-
formed using actual data values or metadata as a property
and data that are necessary for the analysis can be selectively
extracted. Data are sent to the user in an efficient and
transparent manner. These services are provided via a user
portal developed separately to optimize user convenience and
accessibility.

The information collected from IoT sensors includes
structured and unstructured data that must be filtered to
enable effective utilization. Data filtering includes four steps:
parsing for discovery of formatting and other types of
errors; transformation to fit specific formats; elimination of
duplicates; and statistical correction of missing or erroneous
data.

(2) Analysis Services. Analysis services create virtual instances
that perform data analysis according to specifications
required by the user. The virtual instance is one independent
computing cluster composed of a virtual machine for data
analysis, with a system configured for data access and task
management. Virtual instances are created and managed
through virtual cluster services. Analysis services can select
and implement virtual cluster appliances or directly register
and use new virtual appliances.

(3) Virtual Appliance. The VA is a plug-in that allows the
user to quickly build an artificial growth system. The VA

can remotely control storage, deletion, and modification of
data in the cloud service in image form; it sends and receives
necessary data through the cloud-computing server interface
and enables the VM to be managed through synchronization
with the cloud.The advantage of the VA is excellent mobility;
it can be installed without limitation if a network connection
is available.

If the Linux-basedHypervisor is installed and embedded,
the VM can be operated in the environment [14]. Hyper-
visor can be configured with Xen or Kernel-based virtual
machines (KVM) [15]; a VM is produced which minimizes
the appliance load in the embedded form, with an optimal
environment that can run applications and an adapter that
enables communication among sensors. Each VM has a DB
that is used to analyze data and control its sensors. IoT sensor-
control applications installed on the VM are used for self-
analysis and control of collected data; some data are transmit-
ted to data management centers in the cloud service and used
for statistical analyses, control, and linkage to other systems.

(4) Cloud Control Services. Cloud control services are used to
monitor and control sensors by analyzing the data collected
by IoT sensors.These services configure VAs into clusters and
monitor the status (includingmemory and available capacity)
of each cluster node, VM, CPU, and memory information
and available capacity. Various applications for controlling
the sensor are included.

(5) Data Mining Techniques. The process by which analytical
results are obtained from environmental big data is illustrated
in Figure 3. Optimization of plant fitness involves six steps:
data collection, storage, analysis, prediction, evaluation of
results, and application.

The artificial growth system was set up to handle all
requests and to establish an integrated solution for the process
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Figure 3: Plant fitness optimization in cloud computing.

that tightly unites all stages of the application. An exploratory
data analysis (EDA) methodology was used to extract mean-
ingful data, and the structure of the environmental mutation
data was identified through mutagenesis cluster analysis,
which used the 𝐾-means algorithm to classify specimens
that had undergone ecological mutations into clusters [16].
Those specimens that underwent mutagenesis attributed
to environmental factors were classified into groups and
the properties of each group were determined to gain an
understanding of all of the target specimens.

4. Plant Fitness Optimization in
Cloud Computing

The artificial growth system is analyzed based on histori-
cal information regarding sowing, plant growth conditions,
and harvest; appropriate conditions are then defined based
on this analysis. Appropriate growth conditions should be
determined by intelligently predicting changes in growth
stage from these data and assessing the results of those
predictions on the controlled growth system.These processes
are illustrated in Figure 3.

Growth information is divided into external and internal
data. External data include the temperature of the culture
medium, CO

2
, humidity, and light conditions in the artificial

growth system; internal data include the historical DB in
which plant growth status is recorded. External growth infor-
mation collectors retrieve data in real time using IoT sensors,
and internal growth information collectors save growth status
data in real time in the historical DB and transmit these data
to a big-data integrator. Big-data integration processes and
saves the data for use in plant growth classification.

Plant growth classification categorizes and disassembles
datasets with 𝐾-means clustering. The plant fitness opti-
mization clustering technique clusters the related growth
information through similarity of the information, thus
helping to classify, search, and process the large amount of
information automatically.

Plant growth prediction determines the time at which
the growth stage changes by predicting changes in fresh
weight from one growth stage to the next, according to the
classified growth conditions. Service reasoning uses proposed

reasoning rules to provide conditions that are suitable for a
given growth stage at the time of the predicted change in
growth stage.

5. Analysis of Environmental Stress Factors

Plant biotechnology has advanced, with traditional plant-
breeding techniques used to design and produce crops that
suit human requirements. New convergence studies involving
cropmolecular systems and biological and human evolution-
ary studies have emerged as a new research paradigm [17].
Big-data analysis combined with IoT and establishment of
year-round crop-producing systems are being attempted for
the first time for Pleurotus ostreatus.

Through a pilot project in which P. ostreatus was culti-
vated in an artificial growth system, we performed a rapid
analysis of large amounts of environmental data and analyzed
environmental stress factors using distributed computing
technology. This work has generated a database of biological
information for fungi that can continue to be expanded.
Characteristics of P. ostreatus change according to growing
conditions [18]; these morphological changes can be mea-
sured in relation to symptoms of physiological disorder that
result from failure of the environmental control system.

(1) Fruiting Body under High Temperature andHighHumidity.
If the temperature and humidity in the artificial growth
system exceed 20∘C and 80%, respectively, the fruiting body
of P. ostreatus is relatively short compared to the stalk, and
the color ranges from light gray to grayish brown. Some
mushrooms project a pileus center that appears as a small
lump, whereas others have a central depression (dimple).

(2) Fruiting Body under High Temperature and LowHumidity.
If the temperature in the artificial growth system exceeds
20∘C and the humidity is 80% or lower, the pileus edge of
most P. ostreatus becomes thin, and the mushroom becomes
umbrella-shaped with light gray or white color. The mush-
room’s fresh weight decreases significantly and the fruiting
body can be easily broken during harvest. In addition,
the stalk becomes thin, and malformed mushrooms with
inconsistent pileus and indistinct stalks occur frequently.
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Figure 4: Comparison of physiological characteristics of Pleurotus ostreatus grown in different culture conditions.

(3) Fruiting Body under Low Temperature and Low Humidity.
The most-pronounced change in the P. ostreatus fruiting
body at temperatures <12∘C is that the flesh becomes dark
brown and acquires a very hard texture. Mushroom growth
is very slow and bacterial blotches can appear, and the pileus
widens or becomes rough and bent. The stalk becomes thick
and jar-shaped, and the central region can become enlarged.
The germination rate of the mushrooms is significantly
reduced, which affects yield.

(4) Fruiting Body under Low Temperature and High Humidity.
At low temperatures (13–16∘C) and high humidity (>80%),
the quality of P. ostreatus is good; the flesh is dark brown
and firm, and the pileus is thick. However, mushroom
growth and germination rates are poor compared to normal
temperatures.

(5) Fruiting Body under OptimumTemperature andHumidity.
Cultivation of P. ostreatus at 13–16∘C and humidity >80% can
improve physiological disorders in this species.

If only a subset of environmental factors is managed,
problems will arise in the artificial growth environment.
When a balance is maintained among the environmental
conditions, these factors can either complement or oppose
one another. If temperature increases, humidity decreases;
if ventilation is supplied when the air temperature is higher
than the temperature in the artificial growth system, the
temperature increases and humidity decreases. In spring
and autumn, proper ventilation maintains the temperature
and generates optimal growing conditions. In spring and
autumn cultivation, the temperature does not require manip-
ulation because the external temperature is ideal for mush-
room growth. However, growers should be careful regarding
humidity and ventilation at this time.

Additionally, we found that the CO
2
concentration in

the artificial growth system was closely related to mushroom
growth. Excessive CO

2
during growth and ripening was the

main cause of malformed mushrooms.
Morphological changes in P. ostreatus were examined in

relation to CO
2
concentration. As the CO

2
concentration

increased, the size of the pileus decreased and stalk length

Table 1: CO2 concentration for fruit-body formation and yield of
Pleurotus ostreatus in the artificial growth system.

Item CO2 concentration (%)
0.03 0.15 0.32 0.53

Pileus
(mm) 6.4 3.2 2.6 0.7

Stalk
(mm) 4.9 6.5 6.4 2.3

Fresh weight
(g/bottle) 342 245 197 95

increased. The mushroom fresh weight was highest in the
0.03% CO

2
treatment group (342 g per 1,100mL bottle) and

decreased with increasing concentration (Table 1).

6. Conclusions

Artificial growth systems enable planned production of
crops through strict environmental control. Plants survive
by adapting appropriately to changing environmental condi-
tions, but on exposure to external stressors, reactive oxygen
species levels increase and damage plant cells. As one defense
mechanism, plants produce functional materials with antiox-
idant properties. In the artificial growth system, functional
material-centered qualities can be improved by using short-
duration environmental stress.

As shown in Figure 4 and Table 1, several genetic events,
which can be influenced significantly by the surrounding
environment, need to occur to produce a high yield and
quality of P. ostreatus fruiting bodies. The three conditions
that must be controlled are temperature, humidity, and
ventilation; if these conditions are not adequately managed,
all variants will experience reduced quality and physiological
disorder.

In the present study, collection, storage, processing,
and analysis of big-data-based biological and environmental
information were implemented using cloud computing. In
addition, a cloud service that can be easily used by both biolo-
gists and bioinformatics experts was presented. To efficiently
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analyze patterns in biological and environmental data and
to implement an integrated system that can use a database
based on distributed cloud computing, we designed all
necessary modules in each component. Our artificial growth
system analyzed biological growth patterns and focused on
optimizing fitness. In conclusion, by indexing environmental
stressors, the growth environment can be precisely controlled
and developed into technology for improving crop quality
and yield.
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