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A B S T R A C T

Background: Prior work has suggested relationships between prenatal intake of certain nutrients and autism.
Objectives: We examined a broad set of prenatal nutrients and foods using a Bayesian modeling approach.
Methods: Participants were drawn from the Early Autism Risks Longitudinal Investigation (n ¼ 127), a cohort following women with a child
with autism through a subsequent pregnancy. Participants were also drawn from the Nurses’ Health Study II (NHSII, n ¼ 713), a cohort of
United States female nurses, for comparison analyses. In both studies, information on prospectively reported prenatal diet was drawn from
food frequency questionnaires, and child autism-related traits were measured by the Social Responsiveness Scale (SRS). Bayesian kernel
machine regression was used to examine the combined effects of several nutrients with neurodevelopmental relevance, including poly-
unsaturated fatty acids (PUFAs), iron, zinc, vitamin D, folate, and other methyl donors, and separately, key food sources of these, in as-
sociation with child SRS scores in crude and adjusted models.
Results: In adjusted analyses, the overall mixture effects of nutrients in Early Autism Risks Longitudinal Investigation and foods in both
cohorts on SRS scores were not observed, though there was some suggestion of decreasing SRS scores with increasing overall nutrient
mixture in NHSII. No associations were observed with folate within the context of this mixture, but holding other nutrients fixed, n–6 PUFAs
were associated with lower SRS scores in NHSII. In both cohorts, lower SRS scores were observed with higher intake of some groupings of
vegetables, though for differing types of vegetables across cohorts, and some vegetable groups were associated with higher SRS scores in
NHSII.
Conclusions: Our work extends prior research and suggests the need to further consider prenatal dietary factors from a combined effects
perspective. In addition, findings here point to potential differences in nutrient associations based on a family history of autism, which
suggests the need to consider gene interactions in future work.
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Introduction

Prenatal nutrition is known to play a critical role in fetal
neurodevelopment, as demonstrated most classically by re-
lationships between periconceptional folic acid and neural tube
defects and between extreme nutrient deprivation during preg-
nancy and schizophrenia [1,2]. Over roughly the past decade,
the examination of maternal dietary factors in relationship to
child outcomes has expanded to consider potential relationships
with autism spectrum disorder (ASD, hereafter referred to as
“autism”) and related traits that capture the autism phenotype.
This research has been motivated by evidence of autism’s pre-
natal origins and knowledge of the roles that many nutrients play
in key neurodevelopmentally relevant pathways, including im-
mune functioning, methylation, and direct roles in neuro-
developmental processes such as neurogenesis and
synaptogenesis [3–5]. Yet, work to date examining the role of
dietary factors during early neurodevelopment has primarily
taken a single-nutrient approach and has focused on a small set
of nutrients, with most work focused on folic acid/folate, vitamin
D, and PUFA.

Overall, the literature supports an inverse association of
autism or autism-related traits with higher folic acid intake
around the time of conception, but several null findings have also
been reported [6]. Vitamin D also has evidence for an inverse
association with autism, as supported in several studies relying
onmeasured 25(OH)D in prenatal samples; although the primary
source is sunlight, diet represents a key secondary source [7,8].
Other prenatal dietary factors, including PUFAs and fish (as a key
source of PUFAs), iron, and zinc, have been examined only in a
handful of studies, with conflicting and/or insufficient evidence
for strong links [9–13]. Yet, a wider set of dietary factors may
also be relevant, including not only other methyl donor nutrients
beyond folate that may influence DNA methylation but also
those involved in immune disruption/inflammation or oxidative
stress—each implicated pathway in autism etiology [14–16].
Furthermore, it is not known the extent to which observed as-
sociations reflect confounding from the numerous other dietary
factors not assessed, as many nutrients (and their food sources)
are correlated and act in antagonistic and synergistic ways in
overlapping biological processes [17,18]. Accounting for com-
bined exposures and such interactions may therefore reveal novel
effects, as supported by evidence from other fields [19].

One approach to address combined dietary effects is utilizing
advanced statisticalmodels capable of handling a large number of
potentially correlated exposures while allowing for interactions
and complex exposure-response relationships [20]. To our
knowledge, no prior study has implemented such methods in a
study of prenatal maternal diet and child autism-related traits.
Thus, the goal of this work was to take a more comprehensive
approach to examining the relationship betweenprenatal diet and
child autism-related outcomes by considering a broader set of
neurodevelopmentally relevant nutrients and their food sources.
We utilized Bayesian mixture models in order to estimate the
overall combined effects of nutrients and foods, adjust for po-
tential co-nutrient confounding, allow for interactions between
pairs of nutrients, and assess the strength of associations with
individual nutrients and foods within the context of a broader
diet. We also used data from 2 separate studies with differing
background likelihood of autism to allow for comparisons to be
2

made by family history of autism and to assess the replicability of
findings.

Methods

Study population
Participants were drawn from 2 United States cohort studies.

Our primary study population, owing to the timing of dietary
data to pregnancy, was the Early Autism Risks Longitudinal
Investigation (EARLI). Briefly, EARLI is a prospective cohort
following women who had already had a child with autism
through a subsequent pregnancy and that child’s early devel-
opment. Due to the increased recurrence risk of autism in fam-
ilies [21], there is a higher probability of autism and a shifted
distribution of autism-related traits in the children followed in
EARLI than in the general population, making it an efficient
design for studying factors that may contribute to the develop-
ment of autism and autism-related outcomes. EARLI families
were recruited at 4 network sites (Drexel/Children's Hospital of
Philadelphia; Johns Hopkins/Kennedy Krieger Institute; Uni-
versity of California Davis; and Northern California Kaiser Per-
manente) from 2009–2012. In addition to having a biological
child with an ASD confirmed by EARLI study clinicians, partic-
ipants must have met the following inclusion criteria: able to
communicate in English or Spanish; be 18 y or older; live within
2 h of a study site; and be <29 wk pregnant. Children born into
the cohort were followed until the age of 3 years. Two hundred
fifty-six children have been born into EARLI; this includes 8 pairs
of twins not included here due to potential differences in diet and
the likelihood of autism in multiple births. To be included in the
analyses here, women must have nutrient intake calculated from
a dietary questionnaire completed during pregnancy and have
autism-related outcome information available on their child (n¼
127) (Supplemental Figure 1).

Given the small sample size of EARLI, and the desire to
examine potentially differing associations related to the familial
history of autism, we compared results from primary analyses in
EARLI to a second, larger United States cohort, whose source
population was not based on family history of autism: the
Nurses’ Health Study II (NHSII). The NHSII is a large ongoing
longitudinal study of 116,429 female, registered nurses from the
United States aged 25–42 y beginning in 1989 [22]. Question-
naires (available online: https://nurseshealthstudy.org/
researchers) are mailed to participants every other year and
capture information about lifestyle practices, reproductive
events, and medical conditions. Participants were eligible for
this analysis if they had index births between 1991 and 2007 in
order to allow for prospective reporting of diet and to include
participants from the nested case-control study of autism that
collected the outcome measure used here. The details of this
nested case-control study have been previously described [23].
After excluding women without eligible dietary or child infor-
mation, 10,314 women completed a questionnaire during preg-
nancy or lactation. Of these, 727 women were part of the nested
case-control study and returned a Social Responsiveness Scale
(SRS) form for their child, and 713 were from singleton preg-
nancies and were used in these analyses. Further details on both
cohorts and their use in this comparative approach have been
published previously [24–26]. The EARLI study was reviewed
and approved by the Drexel University Institutional Review

https://nurseshealthstudy.org/researchers
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Board (project no. 71109; protocol no. 17862), and all EARLI
study sites obtained local institutional review board approvals.
The study protocol for NHSII was approved by the Institutional
Review Boards of the Brigham and Women’s Hospital and the
Harvard T.H. Chan School of Public Health, and the completion
and return of questionnaires sent by United States mail consti-
tute implied consent.

Dietary assessment
Dietary information in both cohorts was collected via com-

parable FFQs. EARLI used a modified version of the NCI Dietary
History Questionnaire II modified for the National Children’s
Study to cover the pregnancy period (first and second half) and
to include foods and preparation/packaging questions relevant
to toxicant exposures. The Dietary History Questionnaire con-
sists of 124 food and supplement items and has been validated
[27]; in EARLI, a separate supplement questionnaire was used to
capture prenatal supplements. Responses were converted into
servings per day of selected food groups based on the amount
and frequency of intake.

In the NHSII, dietary intake was collected in 1991 and every 4
y thereafter, using a previously validated semiquantitative 131-
item FFQ [28]. Participants were asked about the frequency of
food consumption of standard portion size of each food on
average over the preceding year. An open-ended question asking
about the regular consumption of foods not listed is also
included. Dietary information from FFQs 1 y prior to the birth
year of the index child, as well as that 1–2 y after the birth of the
index child from women reporting breastfeeding, were utilized
for dietary data in analyses here. Diet in NHSII thus covered a
broader time period than in EARLI, though prior work in the
NHSII has supported the stability of diet over time, including
before and during pregnancy [10,29].

Nutrient intake was derived from the questionnaires based on
standard data sources and adjusted for total EI using the nutrient
residual energy adjustment method [30]. Intake from supple-
ments, based on questions querying frequency and, in some
cases, dose, and brand, was included for all NHSII nutrients. In
EARLI, values from supplements were not calculated for all nu-
trients, but intake from supplements was included for the ma-
jority of nutrients assessed in primary analyses (including folate,
omega-3 PUFAs, iron, zinc, vitamin D, vitamin E, vitamin B12,
vitamin B6, as well as vitamins A and C). In both studies, total EI
was calculated by summing energy from all foods. We confirmed
that individuals in each study did not have implausible EI values.

Child autism-related trait assessment
Autism-related traits were captured by the SRS. The SRS is a

parent-report questionnaire generating a raw score ranging from
0 to 195, with higher values indicating greater expression of the
autism-related phenotype and greater deficits in social reci-
procity. The SRS is the most widely-used quantitative measure of
autism-related phenotype. The SRS has well-established psy-
chometric properties in both the general population and autistic
families, with high internal validity, reliability, reproducibility,
and score stability across ages. The SRS has been validated
against the “gold standard” for diagnosis, the Autism Diagnostic
Interview-Revised (ADI-R), with strong results (r ¼ 0.7 for SRS
scores and ADI-R algorithm scores for Diagnostic and Statistical
Manual of Mental Disorders-IV (DSM-IV) criteria) [31].
3

Established SRS score thresholds reliably distinguish children
with an autism diagnosis from both non-affected children and
those with other conditions, such as intellectual disability [31,
32]. In EARLI, SRS forms were completed by mother participants
about their child at 36 mo, whereas mothers completed SRS
forms on their child aged approximately 4–18 y in the NHSII.
Prior work has supported score stability across age and test-retest
reliability [33,34].
Statistical analyses
Basic characteristics of the study populations, including

descriptive statistics of food and nutrient intake, were examined.
All nutrients were adjusted for total EI via the nutrient residual
method [30]. All primary analyses were conducted in EARLI and
the NHSII separately.

Given the variability in the distribution across different nu-
trients (e.g., differing ranges across the nutrients included),
nutrient values were first standardized using a z-score prior to
including in combined effects analyses. As noted, we utilized a
Bayesian approach capable of accomplishing our goal of assess-
ing a range of dietary factors and their combined “mixture” effect
and addressing limitations that can occur under other ap-
proaches. Unlike frequentist approaches, Bayesian approaches
rely on inferences based on prior and posterior probabilities
rather than P values [35]. In addition, Bayesian approaches can
help address the potential for invalid conclusions when using
standard statistical approaches that consider exposures 1 at a
time and corresponding overly conservative traditional ap-
proaches (such as Bonferroni) for guarding against false positive
findings, as well as potential confounding by correlated expo-
sures and model convergence problems when attempting
adjustment under conventional approaches [36]. Bayesian
kernel machine regression (BKMR) [37] was therefore used to
examine the combined effects of nutrients and, separately, foods
in mixture analyses in association with total raw SRS scores as
the outcome. BKMR was used because this method can capture
high dimensional and complex exposure-response relationships
by flexibly modeling the relationship between a large number of
variables and an outcome.

Covariates in adjusted models were selected a priori on the
basis of known or potential associations with both diet and
autism (and/or our outcome measure, SRS) and included:
maternal pre-pregnancy BMI (in kg/m2), maternal age, house-
hold income, total EI, prenatal vitamin use (for EARLI, in the first
month of pregnancy; for NHSII, anytime during pregnancy), and
child sex. Sensitivity analyses tested adjustment for additional
covariates, including breastfeeding status, household smoking,
maternal race, maternal ethnicity, and maternal education.

In primary analyses, key nutrients of interest were selected a
priori based on associations with autism and/or established roles
in pathways relevant to neurodevelopment (including inflam-
mation, oxidative stress, methylation, and direct influences on
neurodevelopmental process). These included ω-3 PUFAS (n–3
PUFAs), ω-6 PUFAS (n–6 PUFAs), iron, zinc, vitamin D, folate,
vitamin B12, vitamin B6, choline, and betaine. In addition,
mixture analyses using an expanded set of nutrients were per-
formed for comparison to our primary model (including, in
addition to the 10 primary nutrients, vitamins A, C, and E; fla-
vonoids; methionine; and carotenoids). Due to moderate to high
correlations between several nutrients, we used hierarchical



TABLE 1
Basic characteristics of the study populations

EARLI (n ¼ 127) NHSII (n ¼ 713)

n (%)

Child’s sex
M 69 (54.3) 414 (58.1)
F 58 (45.7) 299 (41.9)

Maternal ethnicity
Hispanic/Latino 24 (18.9) 13 (1.8)
Not Hispanic/Latino 103 (81.1) 700 (98.2)

Maternal race
White 87 (68.5) 694 (97.3)
Black/African American 7 (5.5) 1 (0.1)
Native American or
Native Alaskan

2 (1.6) 0

Asian 13 (10.2) 9 (1.3)
Multiple/other race 13 (10.2) 7 (1.0)
Missing 5 (3.9) 2 (0.3)

Household income1

Low 25 (19.7) 26 (3.7)
Medium 51 (40.2) 308 (43.2)
High 51 (40.2) 244 (34.2)
Missing 0 (0) 135 (18.9)

Prenatal smoking
Active 4 (3.2) 51 (7.2)
Passive 2 (1.6) -
None 98 (77.2) 662 (92.9)
Missing 23 (18.1) 0 (0)

Birth weight
�2500 g 5 (3.9) 7 (1.0)
>2500 g 121 (95.3) 433 (60.7)
Missing 1 (0.8) 273 (38.3)

Ever breastfeed
Yes 80 (63.0) 678 (95.1)
No 33 (26.0) 34 (4.8)
Missing 14 (11.0) 1 (0.1)

Prenatal vitamin use2

Yes 73 (57.5) 524 (73.5)
No 53 (41.7) 189 (26.5)
Missing 1 (0.8) 0 (0)

ASD diagnosis
Yes 29 (22.8) 102 (14.3)3

No 96 (75.6) 611 (85.7)
Missing 2 (1.6) 0 (0)

Mean (SD)

Maternal age, y 33.9 (4.4) 34.2 (4.2)
Parity4 1.7 (0.9) 1.3 (1.2)
Pre-pregnancy BMI, kg/m2 28.2 (7.4) 23.4 (4.2)
Physical activity, METs/wk 5.6 (9.4) 20.3 (26.2)
Total calorie intake, kcal 1833.8 (793.4) 1945.6 (549.3)
Total SRS raw score 36.0 (26.4) 27.9 (33.6)

ASD, autism spectrum disorder; EARLI, Early Autism Risks Longitudi-
nal Investigation; MET, metabolic equivalent; NHSII, Nurses’ Health
Study II; SRS, Social Responsiveness Scale.
1 Low-income category defined as <$50,000 in EARLI and<$40,000

in NHSII; medium category as $50,000–$100,000 in EARLI and
$40,000–$100,000 in NHSII; high as >$100,000 in both studies.
2 For the EARLI sample, this is defined as use initiated in the first

month of pregnancy; for the NHSII sample, this was prenatal vitamin
use during pregnancy in general; the use of prenatal vitamins overall
was high in both cohorts.
3 Note that due to the case-control design from which NHSII data for

this analysis are drawn, the prevalence of ASD is skewed higher than
the general population. The overall prevalence of ASD in the NHSII is
approximately 2%.
4 Parity value does not include the study child in EARLI; by design, all

children in EARLI were 2nd or later birth order.
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variable selection, grouping nutrients based on the hypothesized
shared pathway (inflammation: iron, zinc, n–6 PUFAs, vitamin
D, n–3 PUFAs; 1 carbon metabolism: folate, vitamin B12, vitamin
B6, choline, betaine). Secondary analyses examining an
expanded set of nutrients added vitamin E to the inflammation
pathway, methionine to the 1 carbon metabolism pathway, and
included vitamin A, vitamin C, flavonoids, and carotenoids in a
third pathway, oxidative stress. Given the known overlap in
nutrient roles in these pathways, and to examine the effect of
such grouping, we also conducted secondary analyses using
component-wise variable selection, which does not group ex-
posures, for comparison. Several visual contrasts related to un-
derstanding both the combined effect and individual nutrient’s
contribution to this effect relative to the other nutrients were
generated based on BKMR estimates, including the overall
mixture effect, the individual nutrient effects within the context
of other nutrients, and joint effects.

Parallel strategies were used for key food sources of nutrients,
though foods were not grouped into pathways before input into
the model. Initially, 14 food groups that are key sources of these
nutrients were included in BKMR models; final models were
pared down to 10 food groups based on those with the highest
posterior inclusion probabilities (PIPs). In both cohorts, these
models included groupings for meat, fish, vegetables, fruits, nuts,
and sugar-sweetened beverages, though specific food groups
included varied slightly across cohorts, given slight differences
in groupings of certain foods within individual item questions
(see Appendix A). As for nutrient analyses, secondary models
tested the inclusion of a broader set of foods, and we also
explored a model that separated fish into component groups
(fried fish, shellfish, salmon, and other large fatty fish) based on
differences in associations with these outcomes by fish type
indicated in our prior work [38].

All analyses were performed using Copyright © SAS Institute
Inc version 9.4 and R Core Team version 4.2.1. BKMR was
modeled using the bkmr package [20], and BKMR fit was
assessed using the bkmrhat package. The number of iterations
was adjusted until convergence was achieved, defined as a
German Rubin (rhat) value of 1.0 (�1.05).

Finally, while the focus of this work was to employ mixture
methods to address potential combined effects and enable ex-
amination across a wider set of nutrients and foods than possible
using more traditional methods, we also secondarily tested select
nutrients and foods with prior associations with autism and/or
signals in our BKMRmodels in more standard regression models.
Specifically, quantile regression modeled at the 50th percentile
(to account for the non-normality of the SRS distribution) was
used to examine associations between select nutrients (folate,
n–3 PUFAs, n–6 PUFAs, and vitamin D) and foods (fish, meat,
and vegetables) and SRS scores.

Results

Basic characteristics of the study populations are shown in
Table 1. In EARLI, approximately 20% of the study group was of
Hispanic ethnicity and nearly 30% of multiple or non-White
races; diversity was low in NHSII, with the majority of partici-
pants of non-Hispanic ethnicity and White race. By design, all
mothers in EARLI had a previous child (proband) with autism,
and 23% of EARLI follow-up children received an ASD diagnosis
4
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(consistent with ASD recurrence rates for younger siblings of
children with ASD [39]). Similarly, consistent with evidence of
trait shifts in families with a history of autism [40,41], the mean
SRS score was higher in EARLI than in NHSII.

A summary of nutrient and food intake in the study pop-
ulations is shown in Supplemental Tables 1 and 2. Intake was
similar for most nutrients and foods across cohorts, though intake
of a few nutrients, including n–6 PUFAs, folate, and vitamin D,
was higher on average in EARLI. Many nutrients and some food
groups demonstratedhigh correlations, including folate andother
B vitamins, vitamin D with other B vitamins, folate, and iron, and
n–3 and n–6 PUFAs, among others; vegetable groups were also
highly correlated (>0.5; Supplemental Figure 2).
FIGURE 1. Adjusted associations between prenatal nutrient intake and c
Longitudinal Investigation (EARLI) (Panel 1) and Nurses’ Health Study I
(BKMR) analyses including energy-adjusted nutrient intake for n–3 PUFA
choline, and betaine and adjusted for the following covariates: pre-pregn
prenatal vitamin use (for EARLI, in the first month of pregnancy). Panel 1 s
Study II (n ¼ 713). Nutrients were grouped by shared biological pathways (
inflammation: iron, zinc, n–6 PUFAs, vitamin D, n–3 PUFAs). Plots show (
mixture and child SRS scores when covariates are held constant. (B) Individ
their 50th percentile and all other covariates constant. (C) Single-exposu
exposure increases from its 25th to 75th percentile (whereas other exposur
held constant. Additional contrasts of these associations (interaction effect
in Supplemental Figures 4 and 6. BKMR models testing adjustment for
smoking, maternal race, maternal ethnicity, and maternal education) in E
adjustment for alternate covariates that may be considered downstream o
EARLI yielded similar results (data not shown). A model including an exp
(additional nutrients: vitamin A, vitamin C, vitamin E, flavonoids, methion
text based on a priori interest for neurodevelopmental relevance. Result
supplemental folic acid (data not shown).

5

Nutrient analyses
Nooverallmixture effects on child SRS scoreswere observed in

crude or adjusted BKMR analyses in EARLI, and credible intervals
crossed the null (Figure 1A, Panel 1; crude results shown in Sup-
plemental Figure 3, with results similar to adjusted). Examining
the univariate exposure-response function (Figure 1B, Panel 1),
which displays individual nutrient associations with child SRS
scores, whereas all other nutrients arefixed at the 50th percentile,
zinc and n–6 PUFAs demonstrated weakly positive associations
with SRS scores, whereas B6 and iron showed inverse associa-
tions, while other nutrients displayed null associations. Exam-
ining the individual nutrient contribution to the overall effect of
the nutrient mixture on child SRS scores (Figure 1C, Panel 1),
hild Social Responsiveness Scale (SRS) scores in Early Autism Risks
I (Panel 2).1 Results of adjusted Bayesian kernel machine regression
s, n–6 PUFAs, iron, zinc, vitamin D, folate, vitamin B12, vitamin B6,
ancy BMI, maternal age, child sex, household income, total EI, and
hows results in EARLI (n ¼ 127), and Panel 2 results in Nurses’ Health
1 carbon metabolism: folate, vitamin B12, vitamin B6, betaine, choline;
A) the overall mixture effect or the relationship between the nutrient
ual nutrient associations with SRS scores holding all other nutrients at
re effects; plot shows the impact on a child’s SRS score when each
es are fixed at their 25th, 50th, or 75th percentiles) and covariates are
s, contour plots, and bivariate exposure-response functions) are shown
additional covariates (birthweight, breastfeeding status, household
ARLI yielded similar results (Data not shown). BKMR models testing
r a potential causal pathway (preterm birth and low birth weight) in
anded set of nutrients in EARLI is provided in Supplemental Figure 7
ine, and carotenoids); the primary set here was selected as described in
s were similar when included folate from food only compared with



K. Lyall et al. Current Developments in Nutrition 7 (2023) 101978
illustrated by the change in SRS scorewhen a nutrient is at its 25th
compared to its 75th percentile, whereas all other nutrients are
fixed at a specific percentile (either 25th, 50th, or 75th), single-
exposure effects were null with wide credible intervals for most
nutrients. There was some signal for zinc, with evidence for a
positive association (an increase from the 25th to 75th percentile,
holding all other nutrients at the median, associated with a ~4-
point increase in SRS score). These analyses suggested no inter-
action between mixture components, given the similarity in es-
timates across percentiles of other nutrients (Figure 1C, Panel 1).
Additional contrasts from adjusted analyses also suggested no
clear interaction effects among components of the mixture (Sup-
plemental Figure 4). Group PIPs from the adjusted analysis sug-
gested a stronger associationwith SRS scores for the inflammation
pathway than the 1 carbonmetabolism pathway (group PIPs 0.51
and 0.34, respectively). Within the inflammation pathway group,
zinc had the highest PIP (conditional PIP¼0.28),whereas,within
the 1 carbon metabolism group, vitamin B6 had the highest PIP
value (conditional PIP ¼ 0.36, followed by betaine with PIP ¼
0.18; Supplemental Table 3).

In our comparison analyses conducted in NHSII, there was
more of a downwardSRS trendwithin increasing nutrientmixture
in NHSII than in EARLI in both crude and adjusted analyses
(Figure 1A, Panel 2; crude results shown in Supplemental Figure 5
and as for EARLI, were similar to adjusted). Assessing the uni-
variate exposure-response function (Figure 1B, Panel 2), vitamin
B12, iron, and n–6 PUFAs showed inverse relationships, and n–3
PUFAs a positive relationshipwith SRS scores in the context of the
mixture, though credible intervals were wide; other nutrients
showed mostly null associations. In analyses assessing nutrient
interquartile range increases holding other nutrients at the 25th,
50th, or 75th percentiles, although credible intervals included the
null for several estimates, overall patterns suggested a positive
association with n–3 PUFAs regardless of the percentile at which
other nutrients were fixed, and an inverse association with n–6
PUFAs with little impact of percentile at whereas other nutrients
were held fixed (Figure 1C, Panel 2). Zinc and iron also showed
inverse trends, but with credible intervals more widely over-
lapping in the null. As in EARLI, we did not observe strong
interactive effects across nutrients (Supplemental Figure 6).
Group PIPs from the adjusted analysis suggested a stronger as-
sociation with SRS scores for the inflammation pathway than the
1 carbon metabolism pathway (group PIPs ¼ 0.63 and 0.34,
respectively). Within the inflammation pathway group, zinc had
the highest PIP (conditional PIP ¼ 0.34). Within the 1 carbon
metabolism group, folate had the highest PIP value (conditional
PIP ¼ 0.36; Supplemental Table 4).

Secondary nutrient analyses
Secondary analyses conducted in EARLI incorporating addi-

tional nutrients showed similar results and did not suggest signals
with other nutrients (Supplemental Figure 7), though nutrients
from the oxidative stress pathway (carotenoids, vitamin A,
vitamin C, and flavonoids) were most likely to be associated with
child SRS scores according to PIP values (group PIP ¼ 0.43;
highest conditional PIP for vitamin C at 0.38) (Supplemental
Table 5). In comparison, component-wise analyses, which did not
group nutrients, results were very similar to primary analyses
(Supplemental Figure 8). Sensitivity analysis excluding nutrient
6

outliers (n ¼ 56) yielded similar trends as in primary analyses
(data not shown).

Food groups
Food groups with the highest PIPs out of the 14 assessed

(Supplemental Table 6A) and used in primary food group
mixture analyses are shown in Figure 2; these included several
categories of meats, vegetables, and other foods. Overall mixture
effects of foods in adjusted BKMR analyses in EARLI yielded
estimates with credible intervals crossing the null in both crude
and adjusted analyses (Figure 2A, Panel 1; crude results in
Supplemental Figure 9, similar to adjusted). However, some
signals were indicated for individual foods within the mixture
when all other foods were fixed at the 50th percentile (Figure 2B,
Panel 1), including an inverse association with leafy green veg-
etables and suggested positive associations with nuts. Examining
the single-exposure effects (Figure 2C, Panel 1), nuts and red
meat had modest positive associations, and leafy green vegeta-
bles had an inverse association with SRS scores, though the
percentile at which the other food groups in the mixture were
fixed appeared to have little impact. Leafy green vegetables,
followed closely by red meat, had the highest PIP in adjusted
analyses (Supplemental Table 7). We did not observe strong
evidence of interaction across food groups according to inter-
action effects, contour plots, or bivariate exposure-response
functions (Supplemental Figure 10).

In NHSII comparison analyses, a slightly differing set of foods
was included, owing to PIP selection (see Figure 2, Panel 2 and
Supplemental Table 6B) as well as some minor differences in
how food items were grouped in questions (Appendix A). No
overall mixture effect was observed across the food groups
(Figure 2A, Panel 2; crude results in Supplemental Figure 11).
More of an increase in SRS scores with the food mixture was
suggested in crude analyses than in adjusted, though signals for
other comparisons were generally similar to analyses including
covariates. In adjusted analyses of individual food groups hold-
ing other groups at the 50th percentile (Figure 2B, Panel 2), leafy
green vegetables and nuts displayed effects in opposing di-
rections to those observed for EARLI. In analyses examining
interquartile range increases in food group intake, overall, large
differences in effects by quantile of other mixture components
were not observed. However, “other vegetables” (which
included a range of vegetables listed in Figure 2) were associated
with decreases in SRS scores, whereas cruciferous and leafy
green vegetables and, to a lesser extent, processed meat were
associated with increases in SRS scores (Figure 2C, Panel 2).
High-energy drinks and whole grains had the highest PIPs in
adjusted analyses (0.19 and 0.15, respectively; Supplemental
Table 8). Examining additional contrasts, overall, clear, inter-
active effects were not observed (Supplemental Figure 12).

Secondary food group analyses
Secondary analyses conducted in EARLI incorporating addi-

tional food groups demonstrated overall similar trends. In this
expanded model, additional food groups showed overall null
relationships with child SRS scores (Supplemental Figure 13).
PIPs from the adjusted model demonstrated that red meat was
most likely to be associated with child SRS scores (PIP ¼ 0.16;
Supplemental Table 9). Overall, we did not observe large



FIGURE 2. Adjusted associations between prenatal food intake and child Social Responsiveness Scale (SRS) scores in Early Autism Risks Lon-
gitudinal Investigation (EARLI) (Panel 1) and Nurses’ Health Study II (NHSII) (Panel 2). Results of adjusted Bayesian kernel machine regression
(BKMR) analyses, including food groups reported from prenatal FFQ, adjusted for the following covariates: pre-pregnancy BMI, maternal age, child
sex, household income, total EI, and prenatal vitamin use (for EARLI, in the first month of pregnancy). Panel 1 shows results in EARLI (n ¼ 127),
and Panel 2 results in NHSII (n ¼ 713). In EARLI, food groups included red meat, processed meat, fish, leafy green vegetables, tomatoes, whole
grains, legumes, nuts, fruit, and high-energy drinks. In NHSII, food groups included high-energy drinks, leafy green vegetables, fruit, whole grains,
processed meat, nuts, cruciferous vegetables, other vegetables (corn, mixed vegetables, onion, celery, beets, eggplant, zucchini, and peppers),
yellow vegetables, and fish. Plots show (A) the overall mixture effect, or the relationship between the food group mixture and child SRS scores
when covariates are held constant. (B) Individual food group associations with SRS scores, holding all other food groups at their 50th percentile
and all other covariates constant. (C) Single-exposure effects; plot shows the impact on a child’s SRS score when each exposure increases from its
25th–75th percentile (whereas other exposures are fixed at their 25th, 50th, or 75th percentiles) and covariates are held constant. Additional
contrasts of these associations (interaction effects, contour plots, and bivariate exposure-response functions) are shown in Supplemental Figures 9
and 11. BKMR models testing adjustment for additional covariates (birthweight, breastfeeding status, household smoking, maternal race, maternal
ethnicity, and maternal education) in EARLI yielded similar results (data not shown). BKMR models testing adjustment for alternate covariates
that may be considered downstream or a potential causal pathway (preterm birth and low birth weight) in EARLI yielded similar results (data not
shown). A model including an expanded set of food groups in EARLI is provided in Supplemental Figure 12 [additional food groups: dairy, dark
yellow vegetables, cruciferous vegetables, and other vegetables (celery, cucumbers, mushrooms, corn, onions, peppers, etc.)]; the primary set here
was selected as described in text based on a priori interest for neurodevelopmental relevance and variable selection parameters.

K. Lyall et al. Current Developments in Nutrition 7 (2023) 101978
differences by fish type in analyses including separate groupings
for types of fish, though there was more of an inverse signal with
fried fish than other categories (Supplemental Figure 14).

Secondary traditional regression results comparison
In comparative regression models of a subset of individual

nutrients and foods in EARLI, no significant associations were
observed, similar to mixture models (Supplemental Table 10).
In traditional regression models for NHSII, we observed evi-
dence for decreasing SRS scores with increasing folate and
vitamin D; however, these effects were attenuated and were not
statistically significant when adjusting for one another (Sup-
plemental Table 11).
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Discussion

This study examined the relationship between maternal pre-
natal diet and child autism-related traits by implementing a more
comprehensive approach to capture diet using Bayesian mixture
methods. We were able to compare findings for both nutrients
and foods across a cohort with increased likelihood of autism due
to family history and a cohort with a likelihood of autism
consistent with the general population rate. We focused on a
range of nutrients with neurodevelopmental relevance,
including folic acid, vitamin D, n–3 PUFAs, n–6 PUFAs, iron,
zinc, vitamin B12, vitamin B6, choline, and betaine, as well as
their primary food sources. Overall, we did not observe strong



K. Lyall et al. Current Developments in Nutrition 7 (2023) 101978
effect sizes across the nutrients or foods assessed here in rela-
tionship to child SRS scores. However, modest signals with
autism-related traits for individual nutrients or foods within the
context of the mixture were suggested, and some differences
across the 2 cohorts were also noted. Though credible intervals
included the null value, there was also a suggested association
with the mixture of nutrients selected for neurodevelopmental
relevance, given the observed trend of lower child autism-related
traits with an increasing nutrient mixture in the NHSII. Taken
together, these findings suggest potential benefits to considering
the mixture effects of dietary factors and present opportunities
for future work.

Prior work has not examined prenatal nutrients from a
mixture perspective in association with autism or SRS scores.
Instead, the majority of prior work focused on maternal diet and
autism has primarily investigated associations with single nu-
trients or foods. Here we examined a set of a-priori-defined nu-
trients with evidence for associations with autism and/or
established roles in neurodevelopment. We observed some evi-
dence suggestive of modest reductions in SRS scores with a
greater intake of this “neurodevelopmentally relevant” nutrient
mixture in the NHSII but not in EARLI. Given the high overlap in
autism and cognitive deficits, including intellectual disability,
this may be seen as broadly consistent with a study suggesting
increases in scores on neurodevelopmental scales (and therefore
lower likelihood of neurodevelopmental deficits) in relation to a
“good nutrition index” including many of the nutrients examined
here, and reductions in scores in relation to a “poor nutrition
index,” in weighted quantile sums analyses [42].

The majority of studies of prenatal nutrients and autism
(mainly focused on folate, vitamin D, and, to a lesser extent,
PUFAs) have either suggested reductions in the likelihood of
autism or autism-related traits with higher nutrient concentra-
tions or suggested null effects, with the strongest consistency for
folate (particularly when based on reported supplement use) and
vitamin D (according to measured concentrations in maternal
plasma or serum samples) [5]. In our work, we did not observe
signals with reported folate or vitamin D intake within the
context of the mixture, though PIPs did support folate as a key
player in this pathway for the NHSII sample. Several factors may
explain differences in our results compared with prior work,
including confounding in prior studies not considering the roles
of these other nutrients. Alternatively, our estimates could have
been impacted by sample size or, for vitamin D, the use of re-
ported intake rather than measured concentrations. Nonetheless,
given the key roles of vitamin D and folate in immune func-
tioning and methylation pathways, continued investigation of
their relationship with autism or autism-related traits within
combined effects frameworks is needed, respectively.

Our analyses suggested some associations with PUFAs.
Although n–3 PUFAs play a greater role in neurodevelopmental
processes hypothesized to underlie associations with autism and
neurodevelopmental outcomes, there is also some support for the
potential roles of n–6 PUFAs. Prior work in NHSII has suggested
an inverse association with n–6 PUFAs and autism [10],
including the essential FA LA. In addition, n–6 PUFAs are
involved in the regulation of inflammatory markers that could
mediate associations with autism [43,44]. Both classes of PUFAs,
as well as individual FAs within these groupings, are highly
correlated, and thus, although the approach used here is capable
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of handling correlated exposures, we cannot rule out the corre-
lation between n–3 and n–6 PUFAs influencing the results.
Teasing out the effects of individual players remains challenging
when the sources of these are overlapping. It should also be
noted that in supplemental analyses (data not shown) including
only n–3 and not n–6 in the model, n–3 showed an inverse as-
sociation. The results for individual nutrients should therefore be
interpreted cautiously and subject to replication, as findings are
also related to the contents of the mixture included. Our models
did not include all potential nutrients that could relate to these
outcomes but instead focused on an a priori subset.

Strong associations were not seen with other nutrients,
though there was a suggestion of a positive association with SRS
scores for zinc in EARLI only. This is in contrast to prior work
suggesting links between prenatal zinc deficiency, or inverse
associations with zinc, and autism or other neurodevelopmental
delays in human [45] and mouse studies [46,47]. In both co-
horts, there was some suggestion of an inverse association (of
small effect size and with wide credible intervals) for iron. Only a
few prior studies have examined iron in association with autism
and have suggested increases in autism risk with iron deficiency
that may be seen as consistent with our results [13,48]. Although
our sensitivity analyses that included an expanded set of nutri-
ents in EARLI did not reveal strong signals with additional nu-
trients, particularly given our small sample size, future work
should further examine these and other nutrients.

In analyses of foods, overall mixture effects were primarily
null across cohorts. In contrast to the nutrient mixture analysis,
food groups had a greater degree of differing anticipated direc-
tion of effects, with some healthful, anti-inflammatory, or
antioxidant-promoting foods and some unhealthful or proin-
flammatory foods. In this setting, the benefits of the model in
addressing potential confounding and joint effects may be more
useful than attempting to estimate a single “mixture effect” of
foods in this way. Nonetheless, future work might utilize and
compare other mixture methods, such as weighted quantile
sums, to further address sets of food groups whose hypothesized
directionality is aligned. Dietary patterns may be considered as
an alternate approach to examine combined effects of foods.
Only a handful of prior studies have examined dietary patterns in
association with autism or related traits, including work in these
cohorts that did not find strong associations but did suggest
modest increases in SRS scores with a Western or more proin-
flammatory diet [48].

When examining individual foods within the context of the
mixture, in EARLI, a higher intake of leafy green vegetables was
associated with reductions in SRS scores, a finding consistent
with our prior work examining fruit and vegetable intake in
more traditional analyses [49]. In contrast, increases in SRS
scores were seen for leafy green and cruciferous vegetable
groupings in NHSII, whereas decreases were seen with yellow
and other vegetables (which included corn, mixed vegetables,
onion, celery, beets, eggplant, zucchini, and peppers). It is
possible that pesticide residues across these different foods
contribute to these findings [50] and that the effects of prenatal
exposure to pesticides differ by background and familial risk of
autism. Prior work in EARLI did not suggest increases in SRS
scores with pesticide residues in vegetables and fruits [49], but
pesticide residues have been associated with other birth out-
comes in other studies [51]. It is also worth noting that across
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cohorts, there were decreases in SRS scores with some groupings
of vegetables and, to a lesser extent, increases with some types of
meat intake. Although the FFQs used in these cohorts addressed
the same major components of the diet, minor differences in the
grouping of some foods within questions could have contributed
to differing signals observed.

Although we were able to conduct novel analyses in 2 cohorts
that allowed for comparisons, several limitations and consider-
ations should be weighed when placing our findings in context.
Although we hypothesized that cohort differences may relate to
background genetic risk for autism, other differences may in-
fluence these comparisons. As noted, there were some differ-
ences across cohort FFQs, and the results of food group analyses
may have been more sensitive to this. In addition, there were
differences in the timing of exposure and outcome measurement
across studies, with dietary data collected at approximately 20
weeks of gestation in EARLI and FFQs capturing prior year diet
overlapping with pregnancy and/or lactation in NHSII, though
results did not materially change when excluding participants
with lactation-based diet in NHSII. Children from EARLI were
younger than children from NHSII on average; however, prior
work has supported the stability of SRS scores across these ages
[33,34]. We also had a relatively small sample size, and while the
approach employed has been successfully implemented in sam-
ples as small as n ¼ 100 [37], this may have influenced our
ability to detect signals. Our study populations also had limited
diversity and may have reduced generalizability. However,
despite the high use of prenatal vitamins in these cohorts, the
distribution of intake across key nutrients and foods is broadly
comparable to other samples of United States women of child-
bearing age, including the nationally representative cohort,
NHANES [52]. Across analyses, we relied on reported diet only,
and observed effect sizes were small, with most foods or nutri-
ents with suggested signals showing increases or decreases of
3–5 raw total points (or approximately a 1/6 SD change in SRS
score or less), and credible intervals for most comparisons
included the null value. We did not conduct analyses of autism
diagnosis here because of the limited sample size, but it is worth
noting that there is strong consistency between high SRS scores
and autism diagnosis [31,34]. Although score increases or de-
creases of effect sizes observed here may not be clinically
meaningful at the individual level, a population-level shift in the
distribution of these traits could translate into a meaningful in-
crease in case load or symptom severity [53]. Furthermore, the
potential for interactive effects between prenatal nutrients and
foods with other autism risk factors [54] suggests the need for
continued study in this area.

As noted,we focused onnutrients (and their food sources)with
“neurodevelopmental relevance” as determined by playing key
roles in immune functioning, oxidative stress, DNA methylation,
or neurodevelopmental processes. Multiple lines of evidence link
these broad pathways and autism [14–16]. For example, vitamin
D and PUFAs influence immune markers, and the developing
immune system is known to impact the developing nervous
system [55,56]. The role of maternal inflammation and immune
activation in autism is well-supported via human studies showing
associations between maternal infections, fevers, and
immune-mediated conditions and increased risk of autism, aswell
as animalmodels that usematernal immune activation by poly I:C
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to induce autism-like behaviors in rodents [57]. Meanwhile, a
large number of genes have been linked with autism, and epige-
netic modulation by folate and other nutrients is also supported
[58–60]. However, additional mechanistic-focused work is
needed to better understand pathways.

Overall, though we did not find strong evidence for mixture
and interactive effects among nutrients and foods here, there
were several suggestive signals, including a trend for less autism-
related traits with greater intake of a mixture of nutrients that are
important for neurodevelopment. Across cohorts, we also
observed associations with vegetable intake within the context of
the mixture, though both decreases and increases were seen for
different groups of vegetables, which could relate to pesticide
residues. Mixtures approaches are capable of addressing com-
bined and higher-order effects. Using models such as those used
here, but also perhaps others that incorporate biologically and
toxicologically-informed approaches (e.g., grouping factors that
may act in similar biological pathways or have similar toxico-
logic effects), may prove useful to better understanding the large
number of factors influencing autism. Expanding the approach
here to consider interactive effects with other categories of ex-
posures may serve fruitful not only to better understand com-
bined effects but also to potentially identify mitigating factors.
Furthermore, the cross-cohort comparative approach employed
here suggests the need to further consider not only the effects of
multiple nutrients or foods but also their interactions with ge-
netic background.
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