
Genome analysis

Founder reconstruction enables scalable and seamless

pangenomic analysis

Tuukka Norri *, Bastien Cazaux, Saska Dönges, Daniel Valenzuela and

Veli Mäkinen *

Department of Computer Science, University of Helsinki, Helsinki 00014, Finland

*To whom correspondence should be addressed.

Associate Editor: Can Alkan

Received on December 23, 2020; revised on May 29, 2021; editorial decision on July 2, 2021; accepted on July 8, 2021

Abstract

Motivation: Variant calling workflows that utilize a single reference sequence are the de facto standard elementary
genomic analysis routine for resequencing projects. Various ways to enhance the reference with pangenomic infor-
mation have been proposed, but scalability combined with seamless integration to existing workflows remains a
challenge.

Results: We present PanVC with founder sequences, a scalable and accurate variant calling workflow based on a
multiple alignment of reference sequences. Scalability is achieved by removing duplicate parts up to a limit into a
founder multiple alignment, that is then indexed using a hybrid scheme that exploits general purpose read aligners.
Our implemented workflow uses GATK or BCFtools for variant calling, but the various steps of our workflow (e.g.
vcf2multialign tool, founder reconstruction) can be of independent interest as a basis for creating novel pangenome
analysis workflows beyond variant calling.

Availability and implementation: Our open access tools and instructions how to reproduce our experiments are
available at the following address: https://github.com/algbio/panvc-founders.

Contact: tuukka.norri@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The established method for variant calling is to align short reads
to some reference genome and then determine the genomic loci
for which enough reads support variation with respect to the ref-
erence genome. This standard approach suffers from the bias to-
ward the variations chosen for the reference genome (Popejoy
and Fullerton, 2016), raising the question of the redesign of the
reference (Ballouz et al., 2019). However, as no single reference
genome sufficiently represents the genetic variation of individuals
of a given species, different alternatives to expand the reference
genome have been proposed.

The most straightforward method is to modify the reference
genome or to encode variants into it in order to improve read
alignment accuracy (Huang et al., 2013; Maciuca et al., 2016;
Schröder et al., 2015).

A natural means to express the variants is to represent them with
the reference genome using a graph (Computational Pan-Genomics
Consortium et al., 2016; Eggertsson et al., 2017; Garrison et al.,
2018; Kim et al., 2019; Paten et al., 2017; Pritt et al., 2018;
Schneeberger et al., 2009; Sirén et al., 2014, 2020). The nodes of the
graph correspond to a subset of the loci and may be numbered with

e.g. the reference co-ordinates. Each edge is labeled with the nucleo-
tide subsequence that occurs between the connected loci in e.g. a
number of individuals.

Another means is to use a cohort of reference sequences that
would represent the variation within a species sufficiently well in-
stead of using only one reference sequence (Danek et al., 2014;
Ferrada et al., 2014; Mäkinen et al., 2010; Paten et al., 2017;
Wandelt et al., 2013). An advantage of this method is the ability to
use existing tools as part of the variant calling workflow as each of
the reference sequences may be used as an input to such tools.

In this article, we offer an alternative based on using both mul-
tiple reference sequences, as well as generating a modified reference
sequence. Our approach is based on combining two novel techniques
that together provide scalability and seamless integration to pange-
nomic resequencing workflows. Namely, we enhance our previous
multiple alignment-based pangenomic analysis workflow that al-
ready has been shown to work well on difficult genome regions
(Valenzuela et al., 2018) with a scalable founder reconstruction al-
gorithm that replaces the huge multiple alignment with a much
smaller one made of founder sequences (Ukkonen, 2002). We dem-
onstrate that the multiple alignment of founder sequences retains
sufficient continuity of the original predicted haplotype sequences so

VC The Author(s) 2021. Published by Oxford University Press. 4611

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(24), 2021, 4611–4619

doi: 10.1093/bioinformatics/btab516

Advance Access Publication Date: 14 July 2021

Original Paper

https://orcid.org/0000-0002-8276-0585
https://orcid.org/0000-0003-4454-1493
https://github.com/algbio/panvc-founders
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab516#supplementary-data
https://academic.oup.com/

that the workflow is able to produce a very accurate prediction of
the individual genome under scrutiny. The accuracy is similar to the
graph-based approaches and the approach is also competitive with
respect to resource usage.

2 Algorithm

Our workflow on a high level consists of the four following steps.
Founder sequences are generated from the variants of a group of
donors (Founder Reconstruction). This saves time and space in com-
parison to using the predicted haplotype sequences of the donors as
is. The reads from a given sample are then aligned to them and,
based on those alignments, a single ad hoc reference sequence is gen-
erated (PanVC Preprocessor). A conventional variant calling work-
flow is then run with the ad hoc reference and the same reads as its
inputs (Variant Calling). Finally, a co-ordinate transform is applied
to the called variants to project them to the original reference co-
ordinates, and the variants that are part of the ad hoc reference are
reported as well (Projection). The workflow is illustrated in
Figure 1. The steps are described in the following sections.

2.1 A practical algorithm for generating reference

sequences from known variation
Reflecting previous work in pangenomics, there are many tools to
convert a set of variants stored in Variant Call Format (Danecek
et al., 2011), VCF, either into a set of sequences or into a graph, but
there are no satisfactory solutions to convert them into a multiple
alignment. Here we present a method to convert VCF files into a ref-
erence-guided multiple sequence alignment. That is, rather than
studying the NP-hard multiple alignment problem to model homolo-
gous regions, we focus on a simpler problem of creating a multiple
alignment that is consistent with the given pairwise alignments: Each
sample column of VCF file encodes pairwise alignments of its one or
more haplotypes against a common reference. While one could ob-
tain a reference-guided multiple sequence alignment using a suitable
guide tree in progressive multiple alignment (Durbin et al. 1998,
Section 6), even the quadratic computation required for pairwise
alignments would be prohibitively slow for our purposes. Our ap-
proach instead uses the identity regions shared by all pairwise align-
ments as anchors, and independently re-aligns variants inside
regions between consecutive anchors. The re-alignments are opti-
mized for speed, aiming just to obtain a consistent multiple align-
ment, rather than an optimal one.

We first describe the main ideas behind the algorithm deployed
in our implementation and then show how to extend it to generate
founder sequences in a practical way.

2.1.1 From variants to a multiple alignment through a directed

acyclic graph

Given a set of variant records such as those contained in a VCF file,
we observe that records that contain insertions, deletions and poly-
morphisms may be represented with a directed acyclic graph for
each chromosome similarly to previous research on the subject (e.g.
Church et al. 2015; Dilthey et al. 2015). Our idea is to determine the
gap positions in the multiple sequence alignment by finding the lon-
gest path that ends in a given node by inspecting its in-edges. The
output sequences that correspond to shorter paths are then extended
with gap characters to match the maximum length.

To create the graph, the first step is to determine every unique
starting and ending position of the variants that are located in the
chromosome in question. In case the ending position is not included
in a variant record, the reference subsequence length added to the
starting position is used. For each of these positions, a node labeled
with the corresponding genomic co-ordinate is created.

Suppose R is the length of the reference sequence of the chromo-
some that was chosen. Two additional nodes, 1 and Rþ 1, are then
created to represent the first and last positions if they do not already
exist. A path graph is then created by connecting each node except
for the last one to the node with the next smallest label by an edge as
may be seen in Figure 2a. We call these reference edges.

We then consider the alternative subsequences in the variant
records. For each such subsequence, an additional edge is drawn
from the starting position of the variant to its ending position and
labeled accordingly as may be seen in Figure 2b.

Next, an aligned position (with respect to the reference-guided
multiple alignment) is determined for each node. The aligned pos-
ition of the first node is 1. For all other nodes, the aligned position is
calculated by taking the maximum over the length of the label of
each in-edge added to the aligned position of the source node of that
edge. These can be computed in linear time in any topological order
of the graph.

Certain paths through the graph will now correspond to the sam-
ples in the original VCF file. By following such a path, the predicted
haplotype sequence of the sample in question may be read by concat-
enating the edge labels. The reference-guided multiple alignment
may also be created by following these paths. After following an
edge, the length of its label and the aligned position of the source
node are subtracted from that of the target node. The resulting num-
ber of gap characters is then appended to the sequence after the edge
label. Table 2 shows the result on our running example.

Creating the variant graph may be done in Oðv log oÞ time where
v is the number of variant records such that their properties required
by the algorithm may be accessed in constant time, and o is the max-
imum number of overlapping variants. Oðo log oÞ time is needed to
sort the variants that have the same starting position. Writing the

Fig. 1. PanVC workflow (Valenzuela et al., 2018) enhanced with founders

4612 T.Norri et al.

haplotype sequences to the disk can be done in linear time with re-
spect to the sum of the sequence lengths.

2.1.2 A practical algorithm for generating founder sequences from

the directed acyclic graph for read alignment

For our variant graph, all the reference sequences can be read by fol-
lowing a path that goes from the first node to the last node. To align
a set of reads on the reference sequences, we must embed the reads
into the variant graph. As the number of unique paths of the variant
graph, i.e. paths with different sequences of edges, is bounded below
by the number of distinct samples in the original variant file, the
alignment process may be computationally too expensive.

Instead of creating as many reference sequences as there are sam-
ples, one can combine some shared parts of them, a.k.a. founder seg-
ments (Ukkonen, 2002), as long as the created reference sequences
are still useful for read alignment. Norri et al. (2019) presented a
linear-time algorithm for generating a set of founder sequences from
a set of sequences limiting the minimum size of shared founder seg-
ments. While the algorithm runs in linear time with respect to the
total length of input sequences, the amount of time spent doing I/O
operations can be significant. Therefore, in what follows, we de-
velop a practical alternative based on graph bridges. A similar idea
based on determining the identity sequences in a multiple sequence
alignment was used in the journaled string tree (Rahn et al., 2014).

Optimizing a segmentation in a graph. A bridge in our variant
graph is an edge shared by all the paths from the first node to the
last. By definition of the graph, this edge is a reference edge. A bridge

node is a node that has a bridge as an in-edge or out-edge. By split-
ting the graph by some bridge nodes, we obtain a segmentation of
the sequences generated from the graph. Then we can consider
unique paths only within each segment and create a small number of
representative paths by joining the segments. To facilitate the align-
ment of the reads and reduce the number of reads that map in several
segments, only segments with a size (difference between the starting
and ending reference positions) of at least L are considered where L
is a user-defined parameter.

Continuing the example in Figure 2b, suppose L¼ 4. Now suit-
able cut positions are nodes 7 and 12 as they are connected by a
bridge. The lengths of the resulting segments in terms of reference
positions are 6, 5 and 7. In general, the label of the connecting edge
is not required to be in a separate segment. Since the length of the
label in this case is greater than L, creating such a segment is
possible.

We determine the best choice of cut positions to minimize the
number of founder sequences by utilizing a dynamic programming
algorithm. To determine the minimum number of paths between the
first node and a node r, we cut by a bridge node between the first
node and r and check the minimum number of paths between the
first node and the bridge node (dynamic programming condition), as
well as between the bridge node and r. Formally, we have the follow-
ing equation:

DðrÞ ¼ min
r�q�L
q�1�L

fmaxfDðqÞ;dðq; rÞggwhere q; r 2 Q (1)

where Q is the set of bridge nodes and d is a function that gives the
number of unique paths between two nodes.

To make the algorithm more practical, we utilize branch prun-
ing. If at a given point there are multiple candidate segmentations in
which the length of the last segment is at least L, the segmentation
with the most recently cut final segment is chosen. This does not
worsen the segmentation since moving the starting position of the
last segment left would not decrease the number of unique paths in
it. For listing the cut positions, we maintain a tree of possible cut
positions and backtrack from the final leaf node that represents the
chosen segmentation. The preprocessing step may be done in
O(vwz) time where v is the number of variant records, w is the max-
imum number of active candidate segmentations and z is the number
of samples.

Generating founder sequences from a segmentation. The paths in
the segments of the variant graph are joined using a greedy algo-
rithm similar to the one used by Norri et al. (2019). Suppose f �
maxfdðq; rÞg founder sequences are to be generated. Each pair of
consecutive segments s and t is processed from left to right as fol-
lows. A bipartite graph G ¼ ðS [T;EÞ is created with f nodes in
both S and T, and set of edges E is determined as follows. First each
distinct path in s and t is assigned a node from S and T, respectively,
while the remaining nodes are considered available. Then distinct
paths in the concatenation of s and t (that is, the segment that is
bounded by the start position of s and the end position of t) are
sorted in descending order by number of occurrences. Each path is
then processed by connecting the corresponding nodes in S and T by
an edge. If the corresponding node has already been connected in ei-
ther S or T but there is an available node, it will be assigned the path
in question and the edge will be drawn. Otherwise, the next path
will be considered. When all distinct paths have been processed, the
remaining nodes are connected arbitrarily.

Fig. 2. Directed acyclic graph generated from the sample data in Table 1

Table 2. Multiple alignment created from the directed acyclic graph

Note: Each unique subsequence within a segment has been marked with a

different color.

Table 1. Sample (artificial) variant data

POS ID REF ALT s1 s2 s3 s4 s5

1 a T TAA 0 0 1 1 0

4 b TGG AAAAAA 1 1 0 0 1

5 c G CC 0 0 1 1 0

12 d AGTTA T 0 0 0 1 1

16 e AC T, A 0 1 2 0 0

Note: The reference sequence is ‘TTCTGGGAGGCAGTTACC’. The last

four columns encode the single chromosome copies for each sample.

Scalable and seamless pangenomic analysis 4613

To generate the founder sequences, a reference-guided multiple
alignment is created like before. To this end, each segment may be
processed separately as each pair of consecutive segments is con-
nected by a single edge. The multiple alignment is created for each
path represented by the nodes of S and T, and the sequences are
joined as indicated by E. If some of the nodes are still available, the
corresponding sequences may be filled with N characters. Similarly
to the haplotype sequences, writing the founder sequences to the
disk can be done in linear time with respect to the sum of the se-
quence lengths.

Table 3 shows the resulting multiple alignment of the founders in
our running example.

2.2 Generating an ad hoc reference from alignments to

multiple reference sequences
To further compress the generated reference sequences, not all parts
of every generated sequence are indexed. Instead, our worklow uses
CHIC aligner (Valenzuela and Mäkinen, 2017) to generate a kernel
sequence (Gagie and Puglisi, 2015) as follows. An LZ77-compatible
parsing (Valenzuela, 2016) is first generated from the indexed
sequences by tokenizing the sequences to two types of subsequences
or phrases. A literal phrase is one that occurs in the set of the refer-
ence sequences for the first time and, as such, needs to be represented
explicitly. A copying phrase corresponds to a subsequence that has
occurred earlier and thus may be replaced with a pointer to the pre-
vious instance. Consequently, repeating parts of the sequences are
replaced with pointers to earlier parts.

Suppose P is the length of the aligned reads. The kernel sequence
is generated from the LZ77-compatible parsing by processing it
from left to right. The literal phrases are copied as they are. When
the length of a copying phrase is greater than 2 P, only the first and
the last P characters are copied to the kernel sequence, since any
read that would overlap with the middle part of such a phrase may
be aligned to the corresponding literal phrase. Our workflow then
generates an index from the kernel sequence and aligns the reads to
it. We chose to use Bowtie 2 (Langmead and Salzberg, 2012) for this
purpose due to its ability to index long reference sequences. Since
the kernel sequence only consists of detached phrases with parts of
DNA removed from between them, the reads are treated as single-
ended at this point.

2.2.1 The ad hoc reference corresponds to the heaviest path

through the first-stage alignments

From alignments produced by CHIC, the best alignment is chosen
for each read. Suppose there are m indexed founder sequences and
when these are multiple-aligned, the length of each is n. An m 3 n
matrix M is then created with each cell set initially to zero. If a read
aligns best to the ith founder sequence at MSA co-ordinates j to k,
then values M½i�½j::k� are incremented.

We then process the columns of M from left to right and deter-
mine the maximum value in each column breaking ties arbitrarily.
The character in the same column of the founder sequence that

corresponds to that row of M is then appended to the ad hoc reference.
If the character corresponds to a gap, nothing is added. The process
attempts to mimic structural recombinations of the indexed sequences.

2.3 Different workflows may be used with the ad hoc

reference
After generating the ad hoc reference, different workflows that use a
single reference genome could be applied in order to find e.g. struc-
tural variants. For our workflow, we chose GATK (Auwera et al.,
2013) and followed its best practices, while adding an option to use
BCFtools (Danecek et al., 2021). The reads are first aligned to the ad
hoc reference using BWA-MEM (Li and Durbin, 2009), treating
paired-end reads as such. GATK is then used to remove duplicate
reads and finally call variants with HaplotypeCaller.

2.4 Called variants are projected to the original

reference
Since the founder sequences with which the ad hoc reference was
generated may contain other variants than just single nucleotide
polymorphisms, the co-ordinates of the ad hoc reference may differ
from those of the original reference sequence. A linear-time algo-
rithm is applied to generate a VCF file that contains variants relative
to the original reference sequence from the output of the variant
caller.

Using matrix M the ad hoc reference may be aligned with the
multiple sequence alignment of the founder sequences. Suppose that
the original reference sequence is also aligned to the other sequences.
Then each variant record may be rewritten such that its reference
subsequence is set to the corresponding characters in the original
reference.

In case the changes made as part of generating the ad hoc refer-
ence are supported by the alignments produced by BWA-MEM, the
modifications will not be reported in the output of GATK. If this is
the case, we determine that the corresponding variant is supported
by the aligned reads in every chromosome copy of the sample in
question and report it. If a different variant is called by GATK, we
inspect the non-zero genotype field values in the variant record, that
is, values that indicate that a variant is present in a chromosome
copy. The count of such values in the variant record for the sample
in question is determined and then subtracted from the ploidy of the
organism. Finally, as many genotype field values will be set to non-
zero in a new record that corresponds to the difference between the
original reference and the ad hoc reference. In addition to that, the
variant called by GATK will be reported.

3 Methods and discussion

Our overall strategy with the experiments is as follows: The first two
experiments with simulated and natural E.coli reads aim to show
that using founder sequences in place of all haplotypes does not yield
decreased accuracy. In addition, the experiments in question aim to
reaffirm the benefit of PanVC approach over the use of a single refer-
ence on calling variants in difficult to predict regions (Valenzuela
et al., 2018). After these experiments, we focus on PanVC with foun-
der sequences only. The second experiment replaces the simulated
data used in the first experiment with similar real data, and aims to
show that the good behavior of PanVC with founders carries over to
a realistic setting. With the lack of truth set, the comparison is more
indirect, but we compensate this by using two different quality meas-
ures, and compare also to more alternative strategies than the single
reference approach. The third experiment continues on real data,
but now with a validated truth set (Genome in a Bottle). With this
standard dataset, we are able to compare PanVC with founders to
the graph-based pangenomic workflows. Despite our best efforts, we
were not able to do so for the first two experiments as the tools we
tested would not finish either genotyping or building an index with
our inputs. Finally, the last experiment is about the scalability,
which has been the bottleneck of the original PanVC, and the main
motivation for this research.

Table 3. Founder multiple alignment created from the directed

acyclic graph

Note: There were at most four distinct subsequences within a segment.

Since the first segment had only three, one of them was duplicated. As the

value of the parameter L was 4, each of the subsequences in the second seg-

ment begins with the characters GAGG.

4614 T.Norri et al.

3.1 Experiments with artificial mutations
We tested the accuracy of our variant calling workflow with simu-
lated artificial mutations applied generation by generation to a nat-
ural DNA sequence. We believe this method generates variants that
would be difficult to predict. Using simulated mutations allows us to
generate a sequence to which the called variants could be compared
easily; calculating the edit distance of the predicted sequence from
the truth would yield a straightforward measure of variant calling
accuracy.

To this end, we used the genome of E.coli str. K-12 substr.
MG1655 as a basis. We started with one simulated bacterium that
would have the reference genome. For every generation, each simu-
lated bacterium produced in the previous generation would divide
twice and the new bacteria would have some new mutations.
Consequently, there would be e.g. 32 bacteria in the fifth generation
and 128 bacteria in the seventh generation.

We generated different sets of mutated bacterial genomes by
varying the mutation rate. Our mutation model was quite simple:
we generated single-nucleotide polymorphisms in random loci. Each
locus and each polymorphism was weighed equally.

For the indexing input for our variant calling worklow, we used
the generated variants from the fifth, the seventh and the tenth gen-
eration of simulated bacteria as well as the reference genome, and
for the baseline only the reference genome. In this experiment, we
used the haplotype sequences of the generated bacteria as input in
addition to founder sequences.

When generating the founder sequences, we tested three values
for the parameter L: 25, 50 and 100. The number of founder sequen-
ces to be generated was determined by taking the maximum number
of distinct paths in one segment. The counts are shown in
Supplementary Figure S1.

We then ran all six workflows (GATK and BCFtools with the ini-
tial reference genome and with the two ad hoc references generated
with PanVC using haplotype sequences and with PanVC using foun-
der sequences) with reads generated from the variants of one bacter-
ium from the same generation. We used paired-end reads of 100
bases with 1% error rate and varied coverage. From the called var-
iants, we generated the predicted sequence of the bacterium and cal-
culated the edit distance to the original with Edlib (�So�si�c and �Siki�c,
2017). The results for L¼50 compared to the other workflows are
shown in Figure 3. Other results are shown in Supplementary
Figures S2 and S3.

3.1.1 Variants become easier to predict with multiple reference

sequences when mutation rate is moderately increased

In all cases, our predicted sequence was significantly closer to the
original than the baseline. E.g. with 20� coverage the predicted se-
quence generated from variants called by GATK had edit distance of
1116 from the original while our prediction with the same variant
caller had edit distance of 1 when using the variants from the tenth
generation of simulation with mutation rate of 0.002.

We got consistently better results by using a variant calling work-
flow based on BCFtools instead of GATK in terms of edit distance to
the original sequence. We believe this to have happened due to the
random nature of the generated variants.

Using founder sequences instead of all haplotype sequences of
the related samples did not affect the results negatively.

3.1.2 Choosing a suitable value for L
While increasing the value of L reduces the number of segment
boundaries in the founder sequences, it also causes the number of
generated founder sequences to approach that of the original sam-
ples. On the other hand, decreasing the value leads to short seg-
ments, which affects the variant calling results negatively. As the
segment boundaries occur more frequently, the number of generated
founder sequences would have to be increased in order to increase
the likelihood of a subsequence matching to a given read occurring
in the index.

Based on our results, we determined that choosing L¼ 50 would
produce results similar to generating an index from all of the

haplotype sequences of the related samples. Different values of L did
not affect the results of the second and the third experiment notably.

3.2 Experiments with natural E.coli samples
In our second experiment, we used 20 samples of real E.coli bacteria
in order to show that our workflow produces good results with nat-
ural data. Since comparing the variant calling results to truth would
be difficult, as the DNA sequences of the bacteria in the samples
were not known, we decided to inspect the read alignment results.
The sequencing data were downloaded from Sequence Read Archive
(SRA) maintained by National Center for Biotechnology
Information, Bethesda, MD, US. The identifiers of the data are listed
in Supplementary Table S2.

To produce an index, we chose 99 reference sequences of differ-
ent strains of E.coli bacteria and generated generate pairwise align-
ments with each and E.coli K-12 substr. MG1655 using Edlib
aligner (�So�si�c and �Siki�c, 2017). We treated the output as variants
with respect to E.coli K-12 and generated founder sequences from it,
and finally indexed the resulting 20 sequences with PanVC. The
strains are listed in Supplementary Table S1.

We compared PanVC with founders to three other workflows. In
the first workflow (Baseline), we used only a single E.coli K-12
substr. MG1655 reference sequence for indexing. Similarly to
PanVC’s second stage, BWA-MEM was used to align the reads. For

Fig. 3. Edit distances for artificial simulated E.coli variants in the artificial mutation

experiment (smaller is better). Reads have been aligned to an index generated from

the same generation samples. The generation number is shown on the right of each

row and the read coverage is shown on the top of each column. With PanVC, both

founder sequences (solid line) and haplotype sequences (dashed line) were tested

Scalable and seamless pangenomic analysis 4615

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab516#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab516#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab516#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab516#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab516#supplementary-data

the second alternative workflow (Consensus), we chose 19 random
E.coli reference sequences from the set of 99 references and added
that of E.coli K-12 to the set. We then generated a consensus se-
quence with BCFtools (Danecek et al., 2021) from the pairwise
alignments from which the founder sequences were generated for
indexing. We used a simple dynamic programming algorithm to
maximize the allele counts of the alternative subsequences while
removing any overlaps. Similarly to the baseline workflow, the reads
were aligned with BWA-MEM. For the third alternative workflow
(PanVC (haplotypes)), we used the same 20 reference sequences as
indexing inputs but generated the index with PanVC. The reads
were aligned by running the PanVC workflow.

We evaluated the alignment results with Samtools’s stats com-
mand (Danecek et al., 2021). A summary of the statistics is shown in
Figure 4.

For PanVC with founders and baseline workflows, we also
inspected the mapped segments that passed the filters and were not
duplicates. In case of PanVC, we converted the alignment co-
ordinates back to those of E.coli K-12. Finally, we visualized the
mapping coverage by plotting frequency polygons of the average
number of segments per position. We considered only the leftmost
position of each segment instead of all positions covered. Only pri-
mary alignments were included in one plot, and all alignments in an-
other. The results are shown in Figure 5a and b.

To supplement our analysis, we chose five more samples from
SRA for the strains of which de novo sequenced contigs were avail-
able. We used QUAST (Mikheenko et al., 2018) to evaluate these by
using the predicted sequences from PanVC with founders and base-
line workflows as references. Our hypothesis is that the de novo
sequencing quality would be better if the predicted sequence were
closer to the truth. We considered three metrics: the length for which
the collection of all aligned blocks of that length or longer covers at
least a given proportion of the reference genome (‘NGAx’), the min-
imal number of aligned blocks that cover at a given proportion of
the reference genome (‘LGAx’) and the number of mismatches per
100 kbp. The results are shown in Figure 6. The samples used are
listed in Supplementary Table S3.

3.2.1 Better mapping results are achieved with PanVC

The statistics collected with Samtools indicate that the alignment
results were favorable for PanVC compared to baseline: The number
of mapped reads and bases were higher. The number of unmapped

Fig. 4. Alignment statistics as reported by Samtools in the first part of the E.coli experi-

ment with natural reads. Each line shows the range of values with the median value

marked. ‘Reads MQ0’ denotes reads with zero mapping quality. The results for the con-

sensus workflow have been omitted due to the small number of mapped reads

Fig. 5. Average number of mapped reads per position (all 20 samples combined) in

the first part of the E.coli experiment with natural reads considering the starting

positions only. Primary alignments (a) and all alignments (b) for PanVC and baseline

workflows are shown. The bucket width is 2500

Fig. 6. Quality assesment results in the second part of the E.coli experiment with

natural reads as reported by QUAST

4616 T.Norri et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab516#supplementary-data

reads and reads with zero mapping quality, as well as the number of
mismatches were lower.

Differences between PanVC with random haplotypes and PanVC
with founder sequences were quite small. Indeed, using a random
subset is another way of making PanVC scalable. However, we pro-
pose using founder sequences for this purpose as they are a determin-
istic and systematic means to take into account all haplotypes in the
input. We also note that the number of reads with zero mapping
quality was smaller when PanVC was used with founder sequences
compared to either baseline or PanVC with haplotypes.

While in the alignment results of both PanVC and baseline there
are regions to which a smaller number of reads have been mapped,
PanVC’s results show smaller differences among regions. When
determining the heaviest path, PanVC takes deletions supported by
the alignments into account while insertions are ignored. However,
based on our results, this has not caused an increase in unmapped
regions.

In case of the consensus workflow, very few reads were mapped
(some 3000 to 22 000 out of 1 million to 5.7 million depending on
the sample). We believe this may have had to do with the large num-
ber of variants in the indexing input; there were some 300 000 loci
out of 4.6 million that were not a starting position of a variant even
after removing the overlapping variants.

Comparison done with QUAST also indicates that the de novo
sequenced contigs had fewer mismatches with the predicted se-
quence of PanVC compared to that of baseline when BCFtools was
used for variant calling. When GATK was used the differences in the
number of mismatches were small. The other metrics showed that
the number of aligned blocks needed to cover a proportion of the
predicted sequence generated with PanVC was smaller than that gen-
erated with baseline. Similarly, the minimum length of the aligned
blocks in the set that is needed to cover at least a proportion of the
predicted sequence generated with PanVC was greater than that gen-
erated with baseline.

3.3 Take-one-out experiment with a human

chromosome
A natural step was to test our workflow with human data. We simu-
lated a situation where the whole genome of an individual is
sequenced but variant analysis is done on one chromosome only. We
used the sequencing data for NA12878 from Illumina Platinum
Genomes project (Eberle et al., 2017) as input and the variant calls
for the individual from the Genome in a Bottle project (Zook et al.,
2016) as a benchmark, considering confident regions only. To save
computing resources, we took a sample of approximately half of the
reads to lower the read coverage to approximately half of the
original.

We used the phase 3 variant data relative to the hs37d5 reference
from the 1000 Genomes Project (The 1000 Genomes Project
Consortium et al., 2015) to create an index for PanVC. We removed
NA12878 and their close relatives and generated founder sequences
for chromosome 1.

The value for L for generating the founder sequences was deter-
mined by repeating the experiment while varying the value of the
variable. After generating the founder sequences, we built an index
with PanVC, executed the workflow and evaluated the results with
hap.py (https://github.com/Illumina/hap.py). Based on the results we
determined that the known variation is represented sufficiently well
with a very small number of founders. We set L¼ 2 and generated
two founder sequences for chromosome 1 in addition to the refer-
ence sequence.

For comparison we chose three other workflows: A baseline
workflow used hs37d5 as the reference sequence. Second alternative
workflow used GraphTyper 2 (Eggertsson et al., 2017) for process-
ing the alignments produced by BWA to call variants. We post-
processed the variants as suggested by the authors by marking only
the variants with an AAScore value of 0.5 or higher as passing.
Third alternative workflow used vg (Garrison et al., 2018) for read
alignment and GATK for variant calling. All variant calls were eval-
uated with hap.py.

The results are shown in Table 4 and Figure 7.

3.3.1 Higher precision and recall for genotyping SNPs are retained

with PanVC

Our results show small differences in SNP genotyping results among
PanVC and baseline workflows (Table 4). Applying PanVC slightly
decreased precision with respect to baseline and slightly improved
recall. GraphTyper 2 and vg had a somewhat lower recall compared
to both PanVC and baseline.

For indels (Fig. 7), our results indicate that PanVC improved
both precision and recall with respect to the baseline workflow
when BCFtools was used for variant calling. Considering the other
workflows, Graphtyper 2’s precision was the highest. When GATK
was used for variant calling, PanVC had a better recall than
GraphTyper 2 but both its precision and recall were lower than
those of vg. Overall best results were attained with the baseline
workflow; note that the success of GATK on this dataset is inevit-
able as it has been an integral part in the generation of the ground-
truth used in this experiment (Zook et al., 2016).

3.4 Scalability experiment with the whole human

genome
To test the scalability of our workflow, we used reads from
ERR1025645 sequencing run from Simons Genome Diversity
Project (Mallick et al., 2016). We took a random sample of approxi-
mately half of the reads to reduce the coverage to approximately 20,
ran the PanVC workflow and compared the read mappings to those
produced with BWA-MEM. With PanVC, we used the founder
sequences generated for each chromosome from 1000 Genomes
Project data. We set L¼ 30 and generated 65 founder sequences for
each chromosome. The reference sequence used for this purpose, as
well as aligning the reads with BWA-MEM, was hs37d5 excluding
the decoy sequences.

Table 4. SNP genotyping precision and recall for confident regions

as reported by hap.py in the human chromosome 1 experiment

Workflow Precision Recall

Baseline/GATK 99.73% 99.71%

Baseline/BCFtools 99.76% 99.30%

PanVC/GATK 99.62% 99.73%

PanVC/BCFtools 99.58% 99.48%

GraphTyper 2 99.86% 95.56%

vg/GATK 99.30% 96.74%

vg/BCFtools 99.58% 95.90%

Note: Only variants passing all filters were considered.

Fig. 7. Indel genotyping precision and recall for confident regions as reported by

hap.py in the human chromosome 1 experiment. Only variants passing all filters

were considered

Scalable and seamless pangenomic analysis 4617

The machine used for this experiment was a server equipped
with 96 Intel(R) Xeon(R) CPU E7-4830 v3 processors running at
2.10 GHz. We measured the time and memory required and for the
latter separated the steps that are specific to our workflow. As the
time and memory usage were measured per-process, we used the
maximum time when the number of steps done in parallel was
smaller than the number of processors, and otherwise calculated an
average time spent by one processor.

At the same time, the proportions of mapped reads as well as the
edit distances of the reads were determined by inspecting the align-
ment flags in the resulting BAM files. The results are shown in
Table 5 and Figure 9.

3.4.1 Using PanVC adds moderately to the wall clock time

required for variant calling

The timing results are shown in Figure 8a and the peak memory
usage is shown in Figure 8b. Using PanVC as part of read alignment
increased the total duration by some 20 h. The smaller amount of
time required by PanVC for indexing is explained by the fact that
the LZ-compatible parsing generated from the reference sequences is
quite space-efficient, and indexing the ad hoc reference is done as
part of read alignment. The read alignment done by Bowtie 2 took
in this case around 13 h. A post-processing step that took 4 h was,
on the other hand, implemented in Python and is therefore a candi-
date for optimization.

3.4.2 Ad hoc reference is closer to the ground truth

As seen in Table 5 our workflow maps more reads in total, but with
a slight cost in the accuracy of paired alignments. Figure 9 shows
that our workflow maps more reads with no errors, indicating that
making use of the ad hoc reference results in better alignment loca-
tions for the reads.

4 Conclusion

In our experiments, we tested our approach of using both multiple
reference sequences as well as generating a modified reference se-
quence. We have shown that the approach yields good results in dif-
ferent types of scenarios. The precision and recall of our predicted
variants is good compared to those received from both conventional
and graph-based workflows. When tested with a set of reads gener-
ated from a sample that contained a high number of mutations, our
prediction of the DNA sequence of the sample was very close to the
truth. However, our attempts to show similar improvements with
real sequencing data of human genome ended up with somewhat
equivocal results: On a ground-truth data based on variant calls
from a standard reference, best results were attained using no pange-
nomic information at all. On another real dataset, better read align-
ments were achieved using PanVC when compared to a standard
workflow.

We believe that the workflow achieves the good results by utiliz-
ing existing tools that are tried-and-tested for variant calling. Since
the tools that we developed can be integrated to other conventional
workflows, it is possible to improve their accuracy especially in han-
dling difficult genomic regions.

When generating the founder sequences, we considered allele
phasing in that alleles from the same chromosome copy would occur
in the same path. A natural direction to which improve our approach
would be considering whether some variants occur in the same
chromosome copy and placing the variants in question to the same
founder sequence. The idea could be extended by generating one ad
hoc reference sequence for each homologous chromosome. This
would require support from other tools that are part of the work-
flow, though.

Scalability of the workflow can be further improved by adding
support to distributing the workload to a cluster. This has already
been accomplished for the original PanVC workflow using Spark
(Maarala et al., 2020), and we are working with our collaborators
to extend the cluster support to include the new founder
reconstruction-related parts.

While scaling the approach with founder sequences, we noticed
that in some cases we can also improve the accuracy by using fewer
founders. We believe that our algorithm for determining the heaviest
path may need to be improved for handling identical regions in mul-
tiple reference sequences to solve this issue. Such improvement
would make the approach more robust to different parameter
choices (e.g. minimum length of founder segment). We briefly tested
some alternatives: One option was to choose the highest-scoring nu-
cleotide for each position of the ad hoc reference instead of taking
the nucleotide from the founder sequence with the highest score.
Another was to use a dynamic programming algorithm to limit
switching from one founder sequence to another. However, the cur-
rent algorithm yielded the best variant calling results so far.

Table 5. Proportion of mapped reads by workflow in the scalability

experiment

Workflow Mapped reads Properly paired

Baseline 99.44% 97.42%

PanVC 99.45% 97.36%

Fig. 8. Time in hours and memory in gigabytes required to generate an index and

align a sample of reads with 20� coverage in the scalability experiment. The steps as

categorized in the figures are indexing and read alignment for baseline, and founder

preparation, indexing and read alignment for PanVC. The lower part of the right-

most column labeled PanVC-specific in the timing plot indicates the steps that are

specific to PanVC while the remaining part shows the steps that are common to

PanVC and a single-reference workflow

Fig. 9. Mapped read count by maximum edit distance and workflow in the scalabil-

ity experiment. Edit distances from zero to ten are shown. The difference in counts

between PanVC and baseline at position 0 is approximately 28.7 million

4618 T.Norri et al.

Another important future extension to our workflow is adding sup-
port to structural variants. While graph-based pangenome representa-
tions may extend more naturally to encode such variants (Eggertsson
et al., 2019; Hickey et al., 2020), we believe our multiple alignment-
based framework also works by just encoding all structural variants as
insertions; this will yield long gap regions in the (founder) multiple align-
ment, but in the end affects only the internal data structures that are
used for projecting the aligned loci, as well as the routines to report the
results (from insertions back to the structural variant). Thus, some en-
gineering may be required to adjust and optimize the component of the
workflow to a given set of structural variants.

Acknowledgements

The authors thank the keynote talk of Paola Bonizzoni in RECOMB-seq 2020

for pointing out many new references, the anonymous reviewers for suggesting

improvements to the design of the experiments, and Jarno Alanko for helping

us test the experiments. For processing the data in the experiments, they used a

variety of tools including GNU Parallel (Tange, 2011) and Snakemake (Mölder

et al., 2021). For running some of the experiments, the servers provided by the

Finnish Grid and Cloud Infrastructure (FGCI) were used.

Funding

This work was supported by the Academy of Finland [309048] and Helsinki

Institute for Information Technology.

Conflict of Interest: none declared.

References

Auwera,G.A. et al. (2013) From fastq data to high-confidence variant calls: the

genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinf., 43,

11.10.1–11.10.33.

Ballouz,S. et al. (2019) Is it time to change the reference genome? Genome

Biol., 20, 159.

Church,D.M. et al. (2015) Extending reference assembly models. Genome

Biol., 16, 13.

Computational Pan-Genomics Consortium. et al. (2016) Computational

pan-genomics: status, promises and challenges. Brief. Bioinf., 19, bbw089.

Danecek,P. et al.; 1000 Genomes Project Analysis Group. (2011) The variant

call format and vcftools. Bioinformatics, 27, 2156–2158.

Danecek,P. et al. (2021) Twelve years of samtools and bcftools. GigaScience,

10, giab008.

Danek,A. et al. (2014) Indexes of large genome collections on a PC. PLoS

One, 9, e109384.

Dilthey,A. et al. (2015) Improved genome inference in the mhc using a popula-

tion reference graph. Nat. Genet., 47, 682–688.

Durbin,R. et al. (1998) Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids. Cambridge University Press, Cambridge.

Eberle,M.A. et al. (2017) A reference data set of 5.4 million phased human var-

iants validated by genetic inheritance from sequencing a three-generation

17-member pedigree. Genome Res., 27, 157–164.

Eggertsson,H.P. et al. (2017) Graphtyper enables population-scale genotyping

using pangenome graphs. Nat. Genet., 49, 1654–1660.

Eggertsson,H.P. et al. (2019) Graphtyper2 enables population-scale genotyping of

structural variation using pangenome graphs. Nat. Commun., 10, 5402.

Ferrada,H. et al. (2014) Hybrid indexes for repetitive datasets. Phil. Trans. R.

Soc. A, 372, 20130137.

Gagie,T. and Puglisi,S.J. (2015) Searching and indexing genomic databases via

kernelization. Front. Bioeng. Biotechnol., 3, 12.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by represent-

ing genetic variation in the reference. Nat. Biotechnol., 36, 875–879.

Hickey,G. et al. (2020) Genotyping structural variants in pangenome graphs

using the vg toolkit. Genome Biol., 21, 35.

Huang,L. et al. (2013) Short read alignment with populations of genomes.

Bioinformatics, 29, i361–370.

Kim,D. et al. (2019) Graph-based genome alignment and genotyping with

hisat2 and hisat-genotype. Nat. Biotechnol., 37, 907–915.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with bow-

tie 2. Nat. Methods, 9, 357–359.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with bur-

rows–wheeler transform. Bioinformatics, 25, 1754–1760.

Maarala,A.I. et al. (2020) Scalable reference genome assembly from compressed

pan-genome index with spark. In Proc. BigData 2020, LNCS. Springer, Berlin.

Maciuca,S. et al. (2016) A natural encoding of genetic variation in a

burrows-wheeler transform to enable mapping and genome inference. In:

Algorithms in Bioinformatics - 16th International Workshop, WABI 2016,

Aarhus, Denmark, August 22–24, 2016. Proceedings, Volume 9838 of

Lecture Notes in Computer Science. Springer, Brelin, pp. 222–233.

Mäkinen,V. et al. (2010) Storage and retrieval of highly repetitive sequence

collections. J. Comput. Biol., 17, 281–308.

Mallick,S. et al. (2016) The simons genome diversity project: 300 genomes

from 142 diverse populations. Nature, 538, 201–206.

Mikheenko,A. et al. (2018) Versatile genome assembly evaluation with

QUAST-LG. Bioinformatics, 34, i142–i150.

Mölder,F. et al. (2021) Sustainable data analysis with snakemake.

F1000Research, 10, 33.

Norri,T. et al. (2019) Linear time minimum segmentation enables scalable

founder reconstruction. Algorithms Mol. Biol., 14, 12.

Paten,B. et al. (2017) Genome graphs and the evolution of genome inference.

Genome Res., 27, 665–676.

Popejoy,A. and Fullerton,S. (2016) Genomics is failing on diversity. Nature,

538, 161–164.

Pritt,J. et al. (2018) Forge: prioritizing variants for graph genomes. Genome

Biol., 19, 220.

Rahn,R. et al. (2014) Journaled string tree-a scalable data structure for analyzing

thousands of similar genomes on your laptop. Bioinformatics, 30, 3499–3505.

Schneeberger,K. et al. (2009) Simultaneous alignment of short reads against

multiple genomes. Genome Biol., 10, R98.

Schröder,J. et al. (2015) Improving the power of structural variation detection

by augmenting the reference. PLoS One, 10, e0136771.

Sirén,J. et al. (2014) Indexing graphs for path queries with applications

in genome research. IEEE/ACM Trans. Comput. Biol. Bioinf., 11, 375–388.

Sirén,J. et al. (2020) Haplotype-aware graph indexes. Bioinformatics, 36,

400–407.
�So�si�c,M. and �Siki�c,M. (2017) Edlib: a c/cþþ library for fast, exact sequence

alignment using edit distance. Bioinformatics, 33, 1394–1395.

Tange,O. (2011) GNU parallel – the command-line power tool. USENIX

Mag., 36, 42–47.

The 1000 Genomes Project Consortium. et al. (2015) A global reference for

human genetic variation. Nature, 526, 68–74.

Ukkonen,E. (2002) Finding founder sequences from a set of recombinants. In:

Guigó,R. and Gusfield,D. (eds.) Algorithms in Bioinformatics, Second

International Workshop, WABI 2002, Rome, Italy, September 17-21, 2002,

Proceedings, Volume 2452 of Lecture Notes in Computer Science. Springer,

Berlin, pages 277–286.

Valenzuela,D. (2016) CHICO: a compressed hybrid index for repetitive collec-

tions. In Proc. 15th International Symposium on Experimental Algorithms

(SEA), Volume 9685 of Lecture Notes in Computer Science. Springer,

Berlin, pp. 326–338.

Valenzuela,D. and Mäkinen,V. (2017) CHIC: a short read aligner for

pan-genomic references. bioRxiv, 178129.

Valenzuela,D. et al. (2018) Towards pan-genome read alignment to improve

variation calling. BMC Genomics, 19, 123–130.

Wandelt,S. et al. (2013) RCSI: scalable similarity search in thousand (s) of

genomes. Proc. VLDB Endowment, 6, 1534–1545.

Zook,J.M. et al. (2016) Extensive sequencing of seven human genomes to char-

acterize benchmark reference materials. Sci. Data, 3, 1–26.

Scalable and seamless pangenomic analysis 4619

	l
	l
	tblfn1
	tblfn4
	l
	tblfn2
	l
	l
	l
	tblfn3
	l

