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Abstract: Quantifying the number of occupants in an indoor space is useful for a wide variety of
applications. Attempts have been made at solving the task using passive infrared (PIR) motion sensor
data together with supervised learning methods. Collecting a large labeled dataset containing both
PIR motion sensor data and ground truth people count is however time-consuming, often requiring
one hour of observation for each hour of data gathered. In this paper, a method is proposed for
generating such data synthetically. A simulator is developed in the Unity game engine capable of
producing synthetic PIR motion sensor data by detecting simulated occupants. The accuracy of the
simulator is tested by replicating a real-world meeting room inside the simulator and conducting an
experiment where a set of choreographed movements are performed in the simulated environment
as well as the real room. In 34 out of 50 tested situations, the output from the simulated PIR sensors
is comparable to the output from the real-world PIR sensors. The developed simulator is also used
to study how a PIR sensor’s output changes depending on where in a room a motion is carried out.
Through this, the relationship between sensor output and spatial position of a motion is discovered
to be highly non-linear, which highlights some of the difficulties associated with mapping PIR data
to occupancy count.

Keywords: synthetic data generation; simulation; passive infrared; PIR; motion sensor; occupancy
count; people count

1. Introduction

Being able to automatically determine the number of occupants in an indoor space
at any given moment has potential benefits. For instance, user comfort in a building
can be increased by implementing occupancy-controlled ventilation [1], and the energy
consumption of the building can be decreased by automatically switching off lights in
unoccupied parts of the building [2,3]. In systems related to security, occupancy estimation
is often used to detect intrusions [4,5], while occupancy detection in industrial workplaces
can be used to prevent injuries by raising an alarm when people are detected in unsafe
areas [6]. In the event of a fire, especially in high-rise buildings, firefighters can benefit from
real-time room occupancy estimates when planning evacuation and rescue missions [7].
Facility managers can use data of historical room usage to gain insight as to whether rooms
and buildings are being utilized as intended or not, thus aiding them in their choice of
which room types to prioritize in changes or new developments. Due to the SARS-CoV-2
pandemic, the demand for occupancy monitoring has spread to new areas; businesses
across the world that previously had no incentive to quantify occupancy must now in some
cases comply with regulations regarding occupancy limits to be allowed to operate.

The task of automating people count estimations has been approached in several stud-
ies using different methods. Lempitsky and Zisserman developed a supervised learning
method able to count the number of people in surveillance video frames [8]. Oosterhout,
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Bakkes, and Kröse developed a head detection method capable of counting people from
stereo camera data [9]. Wang and Jin proposed ways of estimating indoor occupancy
by analyzing the carbon dioxide concentration of the return air of a room’s ventilation
system [10]. Depatla and Mostofi showed that it is possible to estimate the number of
people in an indoor space by transmitting WiFi signals into a room and measure what
signal is received at the opposite side of the room after the signal has propagated through
the room [11]. Tsou et al., Leech et al., and Raykov et al. used passive infrared, PIR, sensor
data together with supervised learning to estimate occupancy [7,12,13].

Each technical approach when attempting to solve the problem of occupancy estima-
tion has its advantages and disadvantages. Computer vision-based approaches can offer a
high degree of accuracy in their estimation [6], but vision-based approaches are sensitive
to non-uniformity in lighting conditions as well as perspective and scale issues related to
varying distances between people and the camera [14]. Camera monitoring can also be per-
ceived as intrusive and poses privacy concerns [15]. Approaches based on analyzing the air
of an indoor space are less intrusive but are also slow to react to changes in people count, as
there is an inevitable delay between people entering a room and their exhalation impacting
the overall carbon dioxide level of the room’s return air. Infrared sensor approaches rely
on thermal radiation emitted from humans. In contrast to conventional vision-based ap-
proaches, they, therefore, do not require the space to be uniformly lit, and can even operate
in darkness. Nor are they as privacy intrusive as conventional video cameras. In a recent
study Groß et al. evaluated and compared 18 different sensor technologies for occupancy
detection using a Pugh matrix [6]. Each assessed technology was given a rating across ten
differently weighted criteria including cost, ease of installation, privacy, social acceptability,
etc. The highest scoring solution in their comparison was a passive infrared matrix sensor
with a spatial resolution of 32 × 24 pixels. The simpler, non-spatially resolved, PIR sensor
ranked fifth highest. The primary reason PIR sensor-based solutions scored comparatively
better than conventional techniques such as video camera-based systems—which ranked
at 11th place in the Groß et al. study—is that PIR sensors offer a high degree of privacy
and social acceptance combined with a low cost and ease of installation. The predominant
drawbacks of the simple PIR sensor are its lack of spatial resolution and its limited count
range. As the output of PIR sensors in some cases can be binary, it can be challenging to
discriminate between movements from one occupant or multiple occupants.

Many of the articles concerned with automated people count estimation rely on some
form of supervised machine learning algorithm [7,8,12,13]. In other words, using a labeled
dataset with known people counts for every sensor observation, the authors develop a
model that learns from the dataset what the correct mapping is between sensor data (PIR
data, images from a camera, etc.) and people count. One of the most widely recognized
limitations of supervised machine learning models—especially deep learning models—is
that they tend to require large amounts of labeled training data before a robust mapping
between input and output is converged upon. Using a large dataset as opposed to a
small one is often the most effective way to increase the generalization performance of a
deep learning model [16]. In the context of occupancy counting, collecting such a large
labeled dataset for training a machine learning model can be problematic. Yordan et al.’s
occupancy estimation study [13] collected a labeled people count dataset by stationing a
person outside the office meeting room where the data collection took place. The person
stationed outside the room would then manually count the number of people occupying
the room over time. One clear disadvantage of this approach is that roughly one hour of
observational work is required for every collected hour of occupancy count. Collecting
a large dataset comprised of thousands of hours of occupancy ground truth data could
thus require thousands of hours of effort, making the data collection process both costly
and time-consuming, as well as arguably tedious for the person tasked with performing
the observations. Furthermore, during the pandemic, many workplaces around the world
are either empty or operating at an intentionally decreased capacity. Collecting occupancy
data for some sites may therefore not currently be feasible. Hence there is a need for better
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data collection methods that can reduce the time and cost required to obtain a labeled
dataset, ideally without the risk of contributing to the spread of infectious diseases. One
approach that could potentially solve the mentioned issues is to perform the data collection
synthetically in a computer simulation as opposed to collecting the data in the real world.

Synthetic data generation is the process of artificially generating a dataset without
necessarily interacting with the real world, usually by means of collecting data from a
computer simulation or an algorithm. The generated dataset may then be used to train a
supervised machine learning model. Provided that the synthetically generated data has
characteristics sufficiently similar to that of data originating from the real-world rendition
of the same process as is being simulated, a supervised learning model can be trained
using synthetic data and then later be successfully deployed in an environment where it is
given non-synthetic data. Utilizing synthetic data generation to solve machine learning
problems has become increasingly popular in recent years [17] and has been used in a
multitude of applications such as for autonomous driving [18], semantic segmentation [19],
text recognition [20] and obstacle detection for unmanned aerial vehicles [21]. On certain
tasks, such as estimating the three-dimensional pose of objects for robotic applications,
state-of-the-art real-world results have been obtained by training a deep learning model
exclusively on synthetically generated data [22].

One of the major benefits of synthetic data generation is that extreme events which
rarely occur in reality can be readily generated in large quantities inside a simulator.
Another benefit is that unlike labels derived from manual observations that may be prone
to human errors, computer-generated labels have a high probability of not containing any
mislabeled samples. The main disadvantage of synthetic data generation is that for some
problems it is difficult to recreate an accurate simulation of the events being studied. If
the synthetic data obtained from a simulation is not realistic enough, then a supervised
model trained on the data will not generalize well to data originating from the real-world
version of the same process—a problem often referred to as the reality gap [17,22]. The
need for a synthetic dataset is often motivated by high costs or safety concerns associated
with generating a real-world dataset. For certain events, it may not even be feasible
to collect non-synthetic data, such as when developing collision detection systems for
drones, where there are stringent regulatory constraints imposed on the type of flights
allowed in urban environments [21]. These concerns apply well within the domain of
occupancy estimation, and the possibility of collecting motion sensor data for various
indoor occupancies synthetically using a simulator should therefore be investigated.

In this paper, we explore the feasibility of using a game engine to simulate the key com-
ponents involved in the collection of a labeled dataset for occupancy estimation, namely:
rooms, occupants, and motion sensors. We use specifications from the technical data sheet
of a real-world passive infrared motion sensor to recreate a simulated representation of the
sensor capable of detecting motion inside the simulator. Using a collection of primitive
three-dimensional objects we constructed a simple humanoid model to represent an occu-
pant, and created a layout of a real-world meeting room inside the simulator which was
equipped with artificial PIR motion sensors.

Using the developed simulator we conduct two studies: Study A and Study B. Study
A consists of an experiment designed to verify the level of realism in the synthetic motion
sensor data produced by the simulator. To achieve this, motion sensor data was first
collected from the real-world meeting room where an occupant of the meeting room
carried out a predetermined set of motions that were easily reproducible in the simulator.
The motion sensor data collection was then performed synthetically using the simulator by
letting the humanoid perform the same predetermined set of motions in the same part of
the room as were carried out in real life. One of the findings of Study A is that a relatively
minor positional change in a room can cause a large change in the motion sensor’s ability to
detect the motion. Study B was therefore designed to investigate the relationship between
spatial position in the meeting room and the PIR sensor’s ability to detect motion. To
accomplish this, the simulated meeting room was partitioned into a grid. Two objects were
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then rotated for one minute in each of the separate squares of the grid which enabled the
PIR sensors’ sensitivity to be measured as a function of spatial position in the room.

The rest of the paper is structured as follows. In Section 2 we describe how we
implemented the PIR motion sensors and the human occupant in the simulator, as well as
describe the geometry of the room that is used in the simulations. In Section 3 we define
the two experiments that were carried out in the simulator. In Section 4 we present the
results of the experiments, which are discussed in Section 5. Lastly, some conclusions are
given in Section 6.

2. Description of Developed Simulator

The Unity® game engine v.2021.1.12.f1 was used to develop the simulator used to
conduct the experiments of this paper. To produce synthetic data the simulator needs to
be equipped with three main features: motion sensors, a human whose movements the
sensor can detect, and an indoor space that can be occupied. How these three features
were implemented in the Unity simulator is described in Sections 2.1–2.3 respectively.
If the described simulator was to be used to collect a labeled dataset containing people
count as well as motion sensor data, an occupancy counting feature would also have
to be added to the simulator. In Unity, such a feature can easily be implemented for
instance by continuously querying how many objects are touching the floor of a room at
any given moment. Because the experiments of this paper only include one occupant, the
implementation of such a feature will not be described here.

2.1. PIR Motion Sensors

All bodies with a temperature above absolute zero emit radiation. The greater the
temperature of the body is, the greater the energy content of the emitted radiation is; and
the shorter the wavelength is at which the emitted radiation peaks. Human bodies are
typically around 37 °C internally and 33.5–36.9 °C on the skin surface [23]. Most surfaces
in a climate-controlled building, however, are approximately 20 °C. By measuring the
radiation intensity in a room it is therefore in most cases possible to differentiate between
human-caused emission of thermal radiation and emissions from walls, floors, furniture,
and other inanimate objects. The emitted radiation of objects in the 20–37 °C range peaks in
the infrared region of the electromagnetic spectrum. It is therefore common to use infrared
sensors when monitoring indoor spaces for activity.

Passive infrared, PIR, sensors are commonly used to detect human movement indoors
for a variety of purposes such as for occupancy-controlled lighting [2,3] and intruder
detection in alarm systems [4,5]. As a person walks into a PIR sensor’s field of view, it
can detect an increase in the influx of infrared radiation, and thus the sensor can classify
the event as motion. Similarly, as a person exits a PIR sensor’s field of view, the sensor
can detect a return to background levels of radiation and can classify the event as motion.
When a person is standing or sitting still in a PIR sensor’s field of view, however, it is often
difficult for a PIR sensor to detect the person.

To better focus the radiation onto the sensor, PIR sensors are often equipped with
Fresnel lenses. Fresnel lenses are used to partition a sensor’s field of view into a pattern of
different detection zones or beams. The maximum detection distance can vary between
beams. The PIR sensors used in the experiments described in this paper are of type
Panasonic EKMC16 and are equipped with Panasonic 04111 wall lenses. The product
number of the combined use of this sensor and lens is Panasonic EKMC1604111. The
field of view and beam pattern of the EKMC1604111 sensor is shown in Figure 1 subplots
a–c. The Panasonic 04111 wall lens partitions the field of view into 68 beams formed
into 17 clusters containing four detection zones each as shown in Figure 1 subplot c. The
detection distance of the beams varies in three steps: the lowermost 4 clusters have a
detection distance limit of 3 m, the 6 middlemost clusters have a detection distance limit of
6 m, the 7 uppermost clusters have a detection distance limit of 12 m.
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To recreate the functionally of the Panasonic EKMC1604111 sensor in the simulator,
angles and measurements from the sensor’s accompanying technical data-sheet [24] were
used to construct a mathematical representation of the sensor’s field of view. Since the
drawings of the technical data-sheet can be downloaded in a vectorized format, any needed
measurements that were not directly annotated in the drawings could accurately be deter-
mined by importing the technical data-sheet into AutoCAD and annotating them there.

Instead of assigning temperatures to objects, our developed Unity simulator uses ray
casting to detect motion. Ray casting is a computational method where a point source is
defined in three-dimensional space along with a direction. The ray defined by the source
point and direction is then traced in an attempt to find intersections with other objects in
the modeled 3D world. Since ray casting operates along a one-dimensional line, and the
beams of the Panasonic PIR sensor are two-dimensional zones projected into 3D space, an
infinite number of rays would be required to perfectly cover the zones of the PIR sensor.
Since this is not practically possible to simulate, each detection zone of the PIR sensor was
instead simplified and represented as five points: one in each corner of the detection zone
and one in the center. In total 340 (5 × 4 × 17) ray casts were used in our simulations to
model the beam pattern of the PIR sensor. In accordance with Panasonic’s datasheet, the
rays were given different maximum projection distances based on the detection distances of
the various beams: 3 m for the lower clusters, 6 m for the middle clusters, and 12 m for the
upper clusters. The beam pattern of the simulated PIR sensor is shown in Figure 1 subplots
d and e. When ray casting in Unity, our simulated sensors were configured to ignore
intersections with all objects that were not tagged with the name “Human”. The “Human”
tag was only given to the body parts of the humanoid that is described in Section 2.2. Ray
cast intersections with the humanoid could thus trigger the PIR sensors, whereas objects
such as walls, floor, and furniture could block the sensor’s field of view, but not trigger a
motion event in the sensor.

In the PIR sensors in question, motion is defined as any change in activity in any of
the detection zones. For instance, if one of the rays in one of the 17 detection zones detects
a person intersecting with the ray, the sensor counts the event as detected motion. If the
person then remains continuously detected in the same detection zone after the initial
detected motion, no further motion event is registered until the person either exits the
current detection zone or is detected in any of the other detection zones.

The software used to control both the real and simulated version of the Panasonic
PIR sensor in our study was developed by Sony. Due to the software being proprietary,
details regarding the software logic of the sensors cannot be disclosed in this paper. A
simplified description of the sensor logic, however, is that it measures movement roughly
once per second and the output of each measured second is binary: either there was no
motion detected, 0, or there was motion detected, 1. The sensor logic implemented in the
Unity simulation is, for all intents and purposes identical, to the logic being used by the
real-world sensors.

To determine whether or not it would be beneficial to add more points per detection
zone than five, a simple experiment was conducted. An empty rectangular 20 × 30 m space
was created in Unity. 34 nodes were then positioned along the perimeter of the rectangular
area as can be seen illustrated in the left part of Figure 2. A simulated humanoid, which is
described in Section 2.2, was then instructed to walk in straight paths between each node
from start to end in consecutive order. A synthetic motion sensor was placed inside the
rectangle at a height of 3 m and a downward-facing tilt of 20° at the location indicated
in Figure 2. As the humanoid walked in a zigzag pattern between each pair of nodes it
crossed the sensor’s field of view in a multitude of incidence angles. The experiment was
repeated four times, each time with a different number of ray-casted points per beam in
the motion sensor. The number of points per beam tested was 1, 5, 9, and 16, resulting in
68, 340, 612, and 1088 total number of rays cast per sensor respectively. The arrangement of
the points within the detection zones of the sensor is shown in the right part of Figure 2.
During the first iteration of the experiment, when one point per beam was used, a total of
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170 motion events were detected by the sensor. In all three other experiments, a total of
216 motion events were detected. This indicates that increasing the number of points per
detection zone above five is likely unnecessary for detecting the crude body parts of our
humanoid model. Decreasing the number of points per detection zone to one, however,
could cause a substantial part of the humanoid movements to go undetected.

Figure 1. (a) side view of the Panasonic EKMC1604111 sensor’s field of view; (b) top view of the
sensor’s field of view; (c) x–y cross-section of the sensor’s beam pattern; (d) beam pattern of the
synthetic version of the EKMC1604111 sensor; (e) perspective view of the synthetic sensor’s beam
pattern in 3D space. Subplots (a–c) are adapted from Panasonic’s technical data-sheet [24].

Figure 2. (a) rectangular area surrounded by nodes used to test the impact of altering the number of
points per beam in the synthetic motion sensor; (b) arrangement of rays in the four different point
densities evaluated.

2.2. Humanoid Model

A human-like body structure was generated in Unity by joining together 13 solid
objects of primitive geometrical shapes: one sphere, three cubes, and nine capsules. Which
body part each of the 13 primitive shapes corresponds to in the humanoid model can
be seen illustrated in the left part of Figure 3. The dimensions of each body part were
determined by using the anatomy of a 186 cm male as a reference. Since the humanoid
model is composed of primitive geometrical objects whereas a real person is not, it is not
straightforward to accurately map the measurements of a real person onto the body parts
of the humanoid model. The body part dimensions used in the model are therefore crude
approximations of the human anatomy.



Sensors 2021, 21, 8078 7 of 18

Head
Sphere

Arms
Capsule

Spine
Capsule

Elbows
Capsule

Pelvis
CubeHips

Capsule

Knees
Capsule

Feet
Cube

Figure 3. Front view of humanoid model (left) and illustration of concept used to perform locomotion
by pushing the feet of the humanoid around in elliptical orbits (right).

Each of the 13 body parts was assigned a mass computed as a fraction of the total
body mass which was set to 80 kg. What percentage of the total body mass each body part
would be assigned was determined using the percentages from table 4 of Plagenhoef et
al.’s study on anatomical data [25]. The primary purpose of assigning mass to the body
parts of the humanoid is to enable the physics engine of the simulator to realistically apply
gravitational forces to the model.

Relevant body parts such as head and spine, hips and knees, etc., were joined together
using Unity’s character joints. Each joint was configured with three-dimensional angular
restrictions approximated from the male reference person, thus restricting the way in which
the humanoid’s body parts were allowed to move in relation to each other. As a result, any
movement or force applied to one individual body part of the humanoid model causes all
of its connected body parts to respond to the position change/force, leading to a cascade
of motion in the body parts of the model. For instance, applying an upward force to one
of the feet of the humanoid model would cause the knee connected to the foot to raise
along with the foot. In turn, the hip that is connected to the knee would respond to the
movement in the knee by changing its rotation and position, and so on. The cascade of
motion caused by the manipulation of one body part is solved in real-time by the physics
engine in Unity. One benefit of this is that rather complicated motion can be achieved with
little programming effort.

To achieve human-like strides when moving the humanoid model in and out of
rooms, only two regions of the body were manipulated, namely the feet and the elbows.
Around each foot of the humanoid, an ellipse was constructed. The length of the ellipse
corresponds to the stride length when walking and was set to 0.5 m. The height of the
ellipse corresponds to the stride height of the humanoid’s walk and was set to 0.3 m. To
emulate human-like strides a force was applied to each foot of the humanoid that would
push the foot around the ellipse in a loop. The other parts of the legs—the knees and
the hips—were not programmatically controlled, their movements during a stride were
determined by the physics engine as a consequence of the forces applied to the feet. To
ensure that the left leg moved forward as the right leg moved backward during locomotion,
an offset was added between the starting points of the left and right ellipse. The stride
frequency of the walk could then be adjusted by changing how fast the feet are pushed
around the ellipses. In our experiments, the walking speed of the humanoid was set to
1 m/s. During a human walking cycle, the left arm commonly swings back and forth along
with the right leg and vice versa. To incorporate this into the walk of our humanoid, a
force was applied to the left elbow that pushed it towards the position of the right foot.
Conversely, a force was applied to the right elbow that pushed it towards the left foot. The
combined effect of adding forces to the feet and elbows of the model resulted in a relatively
human-like walking style that can be seen illustrated in the right part of Figure 3.



Sensors 2021, 21, 8078 8 of 18

All body parts of the humanoid are affected by gravity once Unity’s physics engine
is started, i.e., if left to its own devices the humanoid model falls to the ground once
the simulation is started. Balancing the humanoid to remain standing by continuously
adjusting the body parts to counteract gravity is no trivial task. To circumvent the need
for solving challenging balance problems, the spine position of the humanoid was frozen
in the vertical direction during the simulations, i.e., the humanoid was simply prevented
from ever falling due to gravity.

To allow the humanoid model to move from one point to another in the simulated
world, the simulated space was discretized into a 0.1 × 0.1 m grid. Appropriate paths
between two given tiles in the grid—paths that avoid obstacles and are not redundantly
lengthy—were identified using an implementation of the A* pathfinding algorithm [26].
Given a starting position and a target position the humanoid was thus capable of finding
an obstacle-free path to its target and could follow the identified path whilst taking human-
like strides.

In addition to walking, the humanoid was also bestowed with the ability to sit down.
Sitting down was achieved by temporarily freezing the rotation and position of the hu-
manoid’s knees whilst releasing any motion restrictions in the spine—since the spine is
prevented from changing position in the vertical direction when the humanoid is walking
and standing. Once the vertical movement restrictions are released, the upper body will
immediately start to lower due to gravitational forces, which in turn causes the hips to
bend backward. Once the hips reach an angle greater than 80° the rotation of the hips was
frozen to prevent the humanoid from falling further towards the ground. At the same
time, the vertical position of the spine was again locked. In essence, when the humanoid
transitions from standing to sitting, the humanoid falls in a controlled way and is restricted
from collapsing further once a posture resembling a person sitting down is reached. The
result of the sitting down procedure is that the humanoid appears to sit mid-air in an
invisible chair which can be seen in the left part of Figure 4. To raise the humanoid to a
standing position again after sitting down, the movement restrictions on the spine and
knees are removed and an upward force is applied to the pelvis and spine of the model.
Once the spine has reached its original vertical position the upward forces are turned off
and the spine position is locked again to prevent the humanoid from falling.

Figure 4. Snapshot taken from the simulated version of the experiment in Study A (left) and the
real-world version of the same experiment (right). In both instances seat S1 is being occupied.

2.3. Meeting Room

A 30.7 m² meeting room located in Sony’s office building in Lund, Sweden, was
measured and then replicated in the Unity simulator. The meeting room was equipped
with five PIR motion sensors of model Panasonic EKMC1604111 which were installed along
the same wall in the room as the entrance door. Height-wise the sensors were positioned
directly adjacent to the ceiling at a height of 2.65 m. All sensors were installed at a 20°
downward tilting angle. The furniture of the meeting room consisted of a television and a
rectangular table with room for ten seats. The geometry of the room and the position of the
sensors and furniture can be seen illustrated in the left part of Figure 5. Aspects such as
door position, sensor positions, and table placement were identical between the real-world
version of the room and the Unity version of the room. The only difference between the
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real and simulated room was that the chairs were omitted in the simulated version of the
room due to the humanoid model’s ability to sit in mid-air.

Figure 5. Illustration of the meeting room used during the experiments. The left part of the figure
shows the naming convention used when referring to various sensors and seat positions in the room.
The right part of the figure illustrates how the beams of one of the PIR sensors spread out into the
room. PIR 1–5 indicates the respective position of each of the five passive infrared motion sensors in
the room. S1–S10 represents the ten different seat positions in the room.

3. Experimental
3.1. Study A—Simulated vs. Real PIR Data

To enable direct comparison between our synthetically generated motion sensor
data and motion sensor data collected in real life, two identical experiments were per-
formed—one experiment taking place in the real room and one in the simulated version of
the same room. The design of the experiment was as follows:

1. a person is initially positioned outside of the room of interest;
2. the person enters the room, walks to the first seat, and sits down;
3. the person then moves the arms and upper body in a predetermined way for three minutes;
4. after three minutes the person stands up and exits the room;
5. the experiment starts over from point 1) but this time the next seat in the room is

chosen.

To ensure that the body movements performed during phase 3 of the experiment
could easily be replicated in the simulator, the body movements were rather robotic in
nature. The arms were placed on the table in front of the person and oscillated continuously
±10 cm back and forth with a frequency of approximately 1/3 Hz. I.e., one arm oscillation
every third second. In the Unity implementation of the experiment the arm motion was
realized by programmatically forcing the arms of the humanoid to follow two sine waves:
0.1× sin(2π/3× t) for the left arm and −0.1× sin(2π/3× t) for the right arm. The second
type of movement performed during phase 3 of the experiment was a periodic tilt change
of the upper body. The spine was either upright (0° tilt), forward-tilting at an angle of
15°, or backward tilting at an angle of −15°. Every 30 s during phase 3, a random number
generator was used to determine which of the three tilt alternatives should be used. In the
real-life version of the experiment, the random number generator dictating the upper body
tilt was shown on the TV in the room, thus allowing the person conducting the experiment
to receive real-time directions in his peripheral vision. Figure 4 shows a comparison
between the simulated version of the experiment and the real-life version of the experiment.
Figure 6 summarizes the developed simulator used in Study A in flowchart form.

Since the spine tilts were chosen randomly every 30 s in both the real-life version
of the experiment and the simulated version, the spine adjustments are unlikely to be
identical between the two versions of the experiment. In other words, the logic by which
the spine motion was determined is identical between the experiments, but the outcome of
the randomness can differ. To obtain motion sensor data from a range of different spine
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motion sequences the simulated version of the experiment was therefore repeated 200 times.
Producing a distribution of different motion data outcomes for each simulated PIR sensor.

Figure 6. Flowcharts of the simulator developed for Study A. The upper flowchart, (a), describes
the software logic of the humanoid. The lower flowchart, (b), describes the software logic of each
individual motion sensor in the room. During the simulation both parts of the software are running
simultaneously.

3.2. Study B—Sensor Sensitivity in Various Regions of the Room

Study B was designed to quantify how a PIR sensor’s ability to detect motion is influ-
enced by the spatial position of the object/human being detected. Due to the nature of the
experiment, the experiment in Study B was performed exclusively in the Unity simulator.

Four capsule objects with a length of 40 cm and a width of 7 cm were pairwise grouped
together to form two x-shaped objects which can be seen illustrated in Figure 7. The two
x-shaped objects were positioned such that they levitated in mid-air, unaffected by gravity,
at a height of 1 m from the ground and 0.25 m, respectively. The purpose of these objects
was to cause as much easily reproducible movement as possible. To that end, the objects
were programmed to continuously rotate along two directions as indicated in Figure 7
with one blue and one red rotation plane. The rotational speed was set to 100 degrees per
second in both directions. The x-shaped objects were configured to be detectable by the
PIR sensors in the simulation in the same way as the humanoid from Study A was.

The floor of the modeled room was then partitioned into a grid of 3 × 3 cm squares.
The two x-shaped objects were then programmatically instructed to spin for exactly one
minute in each of the approximately 34,000 squares. Thus giving each of the five PIR
sensors in the simulated room the ability to detect the motion of the two spinning objects
as a function of spatial location in the room. During the experiment in Study B, the table in
the room was removed to ensure that all squares of the grid were free from obstructions.
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Figure 7. Illustration of spinning objects used to trigger the motion sensors in Study B.

4. Results
4.1. Study A

The simulated version of the experiment in Study A was repeated 200 times. Thus
200 different motion sensor time series were produced for each combination of sensor
and seat. Since the experiment included five sensors and ten seats, a total of 10,000
(200 × 5 × 10) time series with motion sensor data was produced by the simulations of
Study A. By calculating the sum of each time series, a single value is obtained for each of
the 10,000 series. Each sum describes how many seconds during each of the 180 s long
experiments a sensor detected motion. For each sensor and seat combination, there is a
distribution of 200 sums that describe the total amount of motion registered during the
experiment. Figure 8 shows the distribution of summed motion sensor data for every PIR
sensor as the simulated experiment was conducted in seat S1. Provided that the simulator
succeeds in accurately representing the real-world experiment, the motion sensor data
collected in the real-life version of the experiment is expected to lie somewhere within the
distribution of simulated motion data. The red lines in each subplot of Figure 8 indicate
the sum of motion sensor data collected in the real-world version of the experiment. As
can be seen in Figure 8, the simulated data for PIR sensors 1, 2, and 5 correspond well
with the real-world sensor data collected as the experiment was performed in seat S1. The
real-world sensor data from PIR sensor 3 is also within the range of the simulated data,
but only by a narrow margin. PIR sensor 4 however, is outside the range of the simulated
sensor data by a small margin.

Table 1 contains a summary of the real-world collected motion sensor data for each
seat and sensor combination along with lowest, highest, and average summed motion
sensor data for the 200 repetitions of the simulated experiment. In 34 of the 50 seat and
sensor combinations, the sum of the real-world collected motion sensor data was within
the lower and upper bounds of the simulated motion sensor data. The largest difference
between simulation and the real world was observed in seat S7 sensor PIR 4 where the
difference in collected motion sensor data was 52.
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Figure 8. Relative frequency histograms of summed motion data for seat S1. Subplot (a) contains
data from PIR sensor 1; (b) PIR sensor 2; (c) PIR sensor 3; (d) PIR sensor 4; (e) PIR sensor 5. Histogram
data (gray bars) is from the simulated versions of the experiment. The red line in each subplot marks
the result from the real-world version of the experiment for the same seat and sensor combination.

Table 1. Summary of motion sensor data collected during the experiments of study A for every
combination of seat and motion sensor. ‘real’ indicates the sum of motion sensor data collected
during the real-world version of the experiment. minsim, maxsim and meansim denotes the minimum,
maximum and mean amount of motion sensor data collected across all repetitions of the simulated
experiment. The ‘X’ symbol indicates that the motion sensor data collected in the real-world
experiment is within the lower/upper range of the simulated motion sensor data. Conversely, the ‘7’
symbol indicates that the real motion sensor data is outside the bounds of the simulated data.

Seat

Sensor
PIR1 PIR2 PIR3 PIR4 PIR5

S1

real 39 24 21 11 6
minsim 10 7 17 3 3
maxsim 98 83 114 10 9
meansim 41 20 67 6 5

X X X 7 X

S2

real 27 22 28 8 7
minsim 7 6 7 3 2
maxsim 116 48 33 9 7
meansim 46 17 13 6 3

X X X X X

S3

real 21 28 35 27 12
minsim 3 3 4 9 3
maxsim 5 7 12 63 9
meansim 4 5 7 17 5

7 7 7 X 7

S4

real 5 17 20 25 25
minsim 0 2 3 3 7
maxsim 30 5 38 8 69
meansim 4 4 5 5 18

S5

real 0 0 15 20 49
minsim 0 0 3 8 3
maxsim 0 0 23 59 37
meansim 0 0 7 17 7

X X X X 7
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Table 1. Cont.

Seat

Sensor
PIR1 PIR2 PIR3 PIR4 PIR5

S6

real 0 0 14 81 38
minsim 0 0 3 3 6
maxsim 0 1 66 59 42
meansim 0 0 14 15 13

X X X 7 X

S7

real 17 22 86 128 89
minsim 2 39 7 6 11
maxsim 30 118 75 76 93
meansim 4 93 13 11 28

X 7 7 7 X

S8

real 22 27 19 24 77
minsim 5 3 9 4 7
maxsim 123 10 95 24 56
meansim 66 6 49 9 16

X 7 X X 7

S9

real 23 37 20 51 24
minsim 3 28 4 9 19
maxsim 10 94 48 60 100
meansim 7 58 10 16 49

7 X X X X

S10

real 37 80 80 31 35
minsim 12 12 13 21 11
maxsim 100 95 91 112 32
meansim 31 30 36 57 21

X X X X 7

It is interesting to note that the real-world collected data contains large variations in
detected amounts of motion between seats that are in close proximity to each other. For instance,
PIR sensor 4 detected 128 motion events in seat S7, but the same sensor detected only 24 cases
of motion in seat S8 which is a neighboring seat. Despite the fact that similar body movements
were performed in both seats, 4.3x more motion was detected in seat S7 compared to S8.
Interestingly, large variations in sensor output between neighboring seats were also found in the
simulated data. The simulated version of PIR sensor 2 for instance, detected an average of 93
motion events in seat S7, but only an average of 6 motion events in seat S8. This phenomenon is
examined further in Study B.

For 36 sensor and seat combinations, the average amount of simulated motion sensor
data was lower than the real-world collected data. For 11 combinations the average amount
of simulated motion sensor data was higher than the real-world sensor data. Provided that
discrepancies between the humanoid model and the real person performing the experiment
are not the cause of this, it could suggest that the simulated PIR sensors tend to under-report
motion compared to the real-world sensors.

Figure 9 shows a time series of raw sensor output from both the real and the simulated
version of sensor PIR 1 whilst the experiment is performed in seat S1. The figure shows the
sensor data as it exists before it has been summed into the integer values displayed in Table 1.
As can be seen in Figure 9, the simulated sensor data is strikingly similar to the data collected in
the real-world experiment for some seat and sensor combinations.

4.2. Study B

The motion sensor data detected in each square of the grid in the Study B experiment was
summed into an integer value. The integer values of every square can be seen in Figure 10
arranged as a heatmap for each of the five PIR sensors. Since the PIR sensors detect movement
no more than once per second and since the rotational movement of the objects in Study B was
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performed for 60 s in each square, the sum of the detected motion ranges from 0—meaning no
motion was detected at all in the square—to 60.

0 40 80 120 160 200
Time since start of experiment /s

0

1
Motion sensor output (simulated)

0

1

0 40 80 120 160 200
Time since start of experiment /s

Motion sensor output (real)

Figure 9. PIR sensor output as a function of time. The upper subplot shows simulated motion sensor
data from one of the repetitions of the experiment in Study A. The lower subplot shows the motion
sensor data collected during the real-world experiment. Both time series originate from sensor PIR 1
and seat S1. The sum of the simulated series is 45, whereas the sum of the series from the real-world
sensor is 39.

Figure 10. Heatmaps showing the sum of simulated motion sensor data caused by the spinning
objects at various locations in the room. Each of the five subplots shows data registered by one of the
five simulated PIR sensors. The white dashed rectangle indicates the position of the table in the room
during Study A.
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As can be seen in Figure 10, how prone a PIR sensor is to detect the spinning objects’
motion varies greatly depending on where in the room the objects are spinning. Within
a sensor’s field of view, multiple island-like formations of high detection ability appear.
Between the areas of high sensor, sensitivity is areas of low to non-existent detection ability.
Excluding squares where no motion at all was detected, the average difference in motion
sensor sum between two neighboring squares was 8.8 across all PIR sensors. The most
extreme difference observed between any two neighboring squares in the grid was 59. A
difference of 59 between two neighboring squares implies that there are regions in the room
where a spatial distance of just 3 cm determines if the sensor is unable to detect motion, or
is highly susceptible to detecting motion.

5. Discussion

The simulated experiment of Study A was repeated 200 times. Since the random spine
tilt of the humanoid could vary between the simulation repetitions some variability in
sensor output is to be expected. However, for several seat and sensor combinations, we
obtained a very large variability in the amount of motion data generated by the different
repetitions. For instance, as can be seen in Table 1, the combination seat S8 and sensor
PIR1 detected 5 motion events in one of the simulation iterations and 123 motion events in
another. Furthermore, we also observed variations of a similar magnitude in the real-world
motion sensor output when comparing the data from one PIR sensor for two neighboring
seats, such as seats 7 and 8 for PIR sensor 4. If such large variations had been observed
exclusively in the simulated data we would probably have assumed that the simulator is in-
accurate. However, since surprisingly large variations in sensor output were also observed
in the real-world sensors, we hypothesize that much of the variation is a consequence of
the regions of high and low sensor sensitivity discovered in Study B. As can be seen in
Figure 10, the sensitivity of a PIR sensor varies greatly depending on where in the room
a motion is performed. Changing position by a few decimeters, such as when switching
between neighboring seats, could thus be the difference between being located in one of
the sensor’s blind spots and being located in an area of high detection sensitivity. Similarly,
in the simulated experiment, the spine tilts of certain repetitions of the experiment could
have caused the humanoid to lean predominantly in one direction, which could then have
caused the humanoid to enter a region of high sensor sensitivity. Due to the stochastic
nature of the simulation, other repetitions could instead predominantly lean in the opposite
direction, causing the humanoid to enter a region of low sensor sensitivity.

It should be noted that the pattern of low and high PIR sensor sensitivity shown in
Figure 10 is a result of simulating spinning objects of a certain shape with a certain rotation
and a certain vertical height from the floor. Making changes to the spinning objects would
likely also cause changes to the emerging pattern. In our sensors motion is defined as
a change in beam activity. If the spinning objects would have been drastically smaller,
such that they were small enough to remain within the field of view of a single beam of
the sensor as they rotate, less motion would likely have been detected, particularly in the
center of the beams. Most of the movement would then likely be detected at the edges of
the beams, where the spinning objects can cross in and out from the beam as they rotate.
This would thus likely change the island formations into atoll formations with a perimeter
of high sensitivity and a center of low sensitivity. On the other hand, changing the vertical
height at which the objects spin would change where in the room the objects intersect with
the sensor beams. Which would then likely preserve the island-like formations but would
offset where in the room the islands are formed. The island formations are seen in Figure 10
may therefore not be perfectly representative of the sensor sensitivity pattern one could
expect when detecting objects of other shapes at other heights, such as when detecting
real people sitting at a table. Furthermore, since the simulated PIR sensors detect motion
using ray casting they have very sharply defined detection zones. The real-world PIR
sensors operate differently; they rely on a lens to focus the influx of infrared radiation from
a detection zone onto the sensor. It is therefore possible that the detection zone boundaries
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in the real-world sensor are fuzzier than the boundaries of the simulated sensors. If this is
the case the sensor sensitivity pattern that is shown in Figure 10 for the simulated sensors
will likely be blurrier and less well-defined for a real-world sensor.

When attempting to perform the experiment of Study A as similarly as possible both
in the real room and the simulator, a few sources of potential inaccuracies should be
mentioned. Among the most difficult things to accurately replicate was the position of
the seats. Room dimensions and sensor positions were static throughout the experiment
and could therefore reliably be measured. As a person sits down on a chair, however, the
chair is first pulled backward from under the table and is then pushed forward again as
the person sits. This means that even if the position of the seats were to be accurately
measured before the real-world experiment, the chairs will slightly change position during
the experiment as the person interacts with the chairs. Because of this, there may have been
unintentional deviations in seat position between the simulated and real-world version of
the Study A experiment. And as is evident from the results of Study B, small differences
in position could cause a large difference in sensor output. Another source of inaccuracy
comes from spine tilts. It is easy for the simulated humanoid to accurately rotate the spine
to −15°, 0°, or 15° tilt, but when a real person attempts to do so the tilt is just estimated and
will naturally deviate slightly from the intended target tilt. Furthermore, the humanoid we
created navigates by partitioning the world into a grid of 10 × 10 cm squares and applying
the A* pathfinding algorithm to the grid. This means that given a target position, such as a
seat, the humanoid rounds the position to the nearest available 10 × 10 cm square, which
often leads to a spatial deviation of a few centimeters.

6. Conclusions

This paper demonstrates the viability of using a simulator to generate synthetic PIR
motion data. The motivation for why such a simulator is needed is that it can be used
to produce both synthetic PIR motion sensor data and the accompanying occupancy
ground truth data needed for solving occupancy estimation using supervised learning.
The degree of authenticity in our produced synthetic sensor data was tested by performing
a choreographed set of motions in ten locations of a real-world room equipped with five
PIR sensors and then simulating the same set of conditions using the game engine. It
was found that in 34 out of the 50 compared circumstances, the synthetically generated
PIR data matched the real-world PIR data rather well. In 16 compared circumstances, the
simulated data did not match reality. We hypothesize that the observed discrepancies
between simulated and real-world PIR data are primarily due to two sources of error:
(i) there is a fundamental difference in how the real-world sensors operate and how the
simulated sensors detect motion. The lens of a real-world PIR sensor optically focuses
infrared radiation towards the sensor. The sensors in our simulation, however, detect
motion using ray casting. Ray casting causes the detection zones to be incredibly sharply
defined, leading to situations where the sensor can transition from being highly capable of
detecting motion performed in one location to being unable to detect motion performed in
a location just a few centimeters away. It is reasonable to assume that the detection zones
of the real-world sensors are less sharply defined, and that motion performed right at the
edge of a detection zone has a probabilistic chance of triggering a motion event in the
sensor or not. (ii) Some differences between the position of the human and the simulated
humanoid during our experiment were unavoidable. Since the seats in the real-world
room were not fixed to the floor, they moved slightly during the experiment which made it
difficult to accurately determine what position the seats should have when replicating the
room in the simulator.

The results of the performed simulations also suggest that the likelihood that a PIR
sensor detects a motion depends greatly on the angle and distance to the person carrying
out the motion. A relatively minor change in the position of a person can cause an observing
PIR sensor’s output to increase or decrease by hundreds of percent. This finding illustrates
why mapping PIR motion sensor data to occupancy count is a challenging problem. Due
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to the spatially complex and non-linear variability in PIR sensor output throughout a
room, a large number of observations are likely needed for a supervised learning model to
robustly learn the mapping between PIR sensor data and occupancy. This in turn further
motivates why being able to synthetically generate large datasets of realistic PIR data
is useful. The complex pattern also highlights why it could be beneficial for occupancy
estimation purposes to equip rooms with other sensors in addition to a wall-mounted PIR
sensors, such as motion sensors mounted in doorways.

As the experiments in this paper were limited to simulating simplistic body motions,
future studies should investigate how to incorporate more natural body movements in a
simulated humanoid that accurately mimics motions performed in real life during various
activities. Additionally, future studies should examine if the level of realism offered by the
simulated motion sensor data is enough to bridge the reality gap, such that supervised
machine learning models can be trained on the synthetic data and generalize to motion
sensor data originating from real-world PIR sensors.
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