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Abstract. The TTN gene with 363 coding exons encodes titin, a giant muscle protein spanning from the Z-disk to the M-band
within the sarcomere. Mutations in the TTN gene have been associated with different genetic disorders, including hypertrophic
and dilated cardiomyopathy and several skeletal muscle diseases.

Before the introduction of next generation sequencing (NGS) methods, the molecular analysis of TTN has been laborious,
expensive and not widely used, resulting in a limited number of mutations identified. Recent studies however, based on the
use of NGS strategies, give evidence of an increasing number of rare and unique TTN variants. The interpretation of these
rare variants of uncertain significance (VOUS) represents a challenge for clinicians and researchers.

The main aim of this review is to describe the wide spectrum of muscle diseases caused by TTN mutations so far determined,
summarizing the molecular findings as well as the clinical data, and to highlight the importance of joint efforts to respond to
the challenges arising from the use of NGS. An international collaboration through a clinical and research consortium and
the development of a single accessible database listing variants in the TTN gene, identified by high throughput approaches,
may be the key to a better assessment of titinopathies and to systematic genotype–phenotype correlation studies.

Keywords: TTN, titin, neuromuscular disorders, Limb-girdle muscular dystrophy (LGMD), Hereditary myopathy with early
respiratory failure (HMERF), Late-onset autosomal dominant tibial muscular dystrophy (TMD), Congenital centronuclear
myopathy (CNM), Early-onset myopathy with fatal cardiomyopathy (EOMFC), Multi-minicore disease with heart disease
(MmDHD), Childhood-juvenile onset Emery-Dreifuss-like phenotype without cardiomyopathy

INTRODUCTION

With its 363 coding exons and a full-length
transcript of more than 100 kb [1] TTN gene encodes
titin, the by far longest known polypeptide in nature.
The longest human theoretical isoform of TTN would
produce a protein of 3,960 kDa containing 35,991
amino acids, although this isoform has not been
observed [1].

∗Correspondence to: Dr Peter Hackman, Folkhalsan Institute
of Genetics and Department of Medical Genetics, Haartman
Institute, University of Helsinki, Helsinki, Finland. E-mail:
peter.hackman@helsinki.fi.

Titin acts as a scaffold protein aiding in myofibril-
lar assembly during myogenesis [2], as a molecular
spring determining the passive elasticity of the mus-
cle [3, 4], and as a mechanosensor serving various
signaling functions [5, 6].

TTN mutations have to date been reported to cause
various cardiomyopathies [7, 8] and a range of skele-
tal muscle diseases and phenotypes listed below:

– Late-onset autosomal dominant tibial muscular
dystrophy (TMD) (MIM #600334);
– Young or early adult onset recessive distal
titinopathy;
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– Limb-girdle muscular dystrophy type 2J
(LGMD2J; MIM #608807);
– Congenital centronuclear myopathy (CNM;
MIM #255200);
– Early-onset myopathy with fatal cardiomyopa-
thy, EOMFC (MIM #611705);
– Multi-minicore disease with heart disease
(MmDHD) including clinical variations;
– Childhood-juvenile onset Emery-Dreifuss-like
phenotype without cardiomyopathy;
– Hereditary myopathy with early respiratory fail-
ure (HMERF; MIM #603689);
– Adult onset recessive proximal muscular dys-
trophy.

Mutations in titin will probably prove to be the
cause of many additional phenotypes of muscular
disorders in the coming years.

Due to its huge size, it has not been possi-
ble to sequence the entire TTN gene routinely in
research and diagnostic laboratories until recently.
Thus, before implementation of the next generation
sequencing (NGS) methods, only a limited amount
of TTN mutations were identified. NGS sequencing
has enabled the rapid and thorough investigation of
genetic material [9] and has resulted in an explosion
in the identification of new TTN variants. However,
their clinical interpretation is a challenge.

Here, we focus on the current understanding of
the titin gene and protein from a human disease
perspective. In particular, we provide an overview
of the different neuromuscular disorders caused by
mutations in the TTN gene, reviewing the molecu-
lar findings as well as the clinical data. Finally, we
highlight the difficulties related to the interpretation
of the clinical significance of TTN variations and the
need for further functional studies and bioinformatics
tools.

THE TITIN GENE, ISOFORMS
AND PROTEIN

The titin gene (MIM #188840), is located on the
short arm of chromosome 2 (chromosomal band
q31.2). It contains 363 coding exons and an additional
first non-coding exon [1]. The longest theoretical
transcript (variant IC, NM 001267550.2), virtually
obtained by the transcription of all the coding exons
(excluding the alternative C-terminal Novex-3 exon)
and called “meta isoform”, has been adopted as the
gold standard for describing TTN variants, and will be
used as reference for cDNA and protein numbering

in this review. Exon numbering will be according to
the HGVS recommendations [10] and to the current
Leiden database (LOVD) numbering (modified on
11th October 2013, changing exon 47b to exon 48
and adding +1 to all subsequent exon numbers) [11].

The titin protein spans from the Z-disk to the M-
band [12]. Its modular structure is composed of four
main parts (Fig. 1): the amino-terminal Z-disc region,
the I-band and A-band regions, and the carboxyl-
terminal part spanning the M-band. Titin is composed
of repeated immunoglobulin-like (Ig) and fibronectin
type 3-like (FN3) domains, interspersed by unique
sequence regions [1]. It also contains the repetitive
PEVK region, rich in proline (P), glutamate (E),
valine (V), and lysine (K) residues, in the I band, and a
serine/threonine kinase (TK) domain in the M-band.

More than 1 million splice variants could be gen-
erated theoretically by the TTN gene [13]. Indeed,
extensive alternative splicing results in a remarkable
diversity of titin isoforms that can be divided into
three main classes based on the presence of the N2A
and N2B elements in the I-band region [1, 14, 15]
(Fig. 1). Skeletal muscles express so-called N2A iso-
forms, characterized by the inclusion of the N2A
element and exclusion of the cardiac-specific N2B
element. In the heart, N2BA isoforms include both
the N2B and N2A elements, while N2B isoforms use
the N2B element only. The aforementioned isoforms
also differ in the lengths of the proximal tandem-Ig
and PEVK regions, which are longest in the N2A iso-
forms and shortest in the N2B isoforms. Within each
isoform class, the tandem-Ig and PEVK regions also
show variable expression in different muscles, and
across developmental and physiological states. More-
over, the second last TTN exon 363 (Mex5), coding
for the is7 domain located in the M-band, is dif-
ferentially spliced, producing is7– and is7+ isoforms
[16]

The major isoform classes are represented in the
NCBI RefSeq database by the entries NM 133378
(N2A; NP 596869:3,680 kDa and 33,423 aa),
NM 001256850.1 (N2BA; NP 001243779:3,780
kDa and 34,350 aa), and NM 003319 (N2B;
NP 003310:2,960 kDa and 26,926 aa) [1, 14, 15].

The Novex-1 (NM 133432; NP 597676) and
Novex-2 (NM 133437; NP 597681) isoforms are
similar to N2B, but they also include further 125 and
192 amino acids encoded by the Novex-1 and Novex-
2 exons in the I-band. Finally, the much smaller
Novex-3 isoform (NM 133379; NP 596870:616 kDa
and 5604 aa) only contains the N-terminal part of the
protein. This isoform, expressed on a low level in all
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Fig. 1. Top: A schematic view of the sarcomere, with titin filaments shown in red. One titin molecule, extending from the Z-disc to M-
band, is highlighted. Middle: The modular structure of the titin protein (theoretical meta isoform). Titin is mostly comprised of repeated
immunoglobulin-like (Ig; red) and fibronectin type 3-like (FN3; white) domains. Selected domains are labeled above the diagram with
the classical titin nomenclature (sarcomere region Z/I/A/M+domain number; Bang et al. 2001), followed in parentheses by the alternative
numbering scheme (domain type Ig/FN3 + domain number), and with the corresponding exon number. Also indicated are other structural
features: the Z-repeats, the Novex-1 and Novex-2 exons, the N2B and N2A elements, the PEVK (proline/glutamate/valine/lysine-rich)
region, and the alternatively spliced M-band is7 (M-is7) region. Protein interactions of the different parts of titin are summarized below
the diagram. Bottom: Exon inclusion in NCBI RefSeq database sequences representing the main titin isoform classes. The bars align to the
protein diagram of the meta isoform above, except for the alternative C-terminal exon of the Novex-3 isoform (grey). Note that within each
class there is further developmental, anatomical, and physiological variation in exon inclusion, mostly in the proximal tandem-Ig and PEVK
regions.

striated muscles, results from inclusion of the Novex-
3 exon encoding an alternative C-terminus [1].

The best characterized titin function is that of a
scaffold protein aiding myofibrillar assembly during
myogenesis [17]. However, it is also the backbone for
the positioning of myosin filaments in the center of
the sarcomere, and a molecular spring responsible for
the passive elasticity of the muscle [3, 4]. The passive
force of the muscle cells is, in fact, largely due to the
elastic properties of I-band titin, allowing shortening
of the sarcomere in contraction and extension when
stretched. A crucial role in the myofibrillar signal
transduction pathways has also been demonstrated

[18]: titin seems to integrate or coordinate multiple
signaling pathways related to gene activation and/or
to protein folding, quality control and degradation [6,
19].

INTERACTIONS OF TTN WITH OTHER
PROTEINS

The versatile roles played by titin in cardiac and
skeletal muscles are enabled and facilitated by a high
(or presumably very high) number of different protein
ligands.
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The search for TTN interactors in large public
databases (PSICQUIC (20), IntAct [21], BioGRID
[22]) results in a list of more than 170 putative ligands,
as a product of large-scale studies of protein-protein
interactions.

Even if a detailed discussion of titin interactions is
not the main aim of this review, a summary of the best
characterized ones is provided below and in Fig. 1.

Several reports have confirmed that telethonin
(also named Titin-cap or T-cap) and �-actinin bind
to the N-terminal portion of titin [23–27]. Moreover,
Kontrogianni-Konstantopoulos et al. [28] demon-
strated that the small ankyrin-1 (sAnk1) and the two
most N-terminal Ig domains of titin form a three-way
complex with telethonin.

Similarly, the actin binding proteins, filamin C and
nebulin, have been shown to interact with titin in the
Z-region [15, 29].

The central I-band region of titin has been widely
studied, and several interactors identified, includ-
ing tropomyosin [30], �B-crystallin [31], FHL1 [32]
and FHL2 [33], two members of the four-and-a-half-
LIM-only protein family, calpains 1 and 3 [34–36],
and muscle ankyrin repeat proteins (MARPs) [37].
Protein kinases A and G (PKA and PKG) phospho-
rylate the N2B region, reducing the passive tension
[38, 39]. Furthermore, PEVK region interacts with
Ca2+, actin and S100A1, which is able to control the
PEVK/actin interaction in a Ca2+-dependent manner
[40].

The A-band region of titin, tightly associated
with thick filaments, binds myosin heavy chain and
MyBP-C [41].

The M-band region of titin has several interactors.
The domains at the A-band/M-band boundary bind

the ubiquitin ligases MURF1 and MURF2 (muscle
RING finger 1 and 2) [42, 43]. The titin kinase (TK)
domain, located at the M-band periphery, interacts
with calmodulin [44], as well as with the signalo-
some composed of nbr1 p62, and MURF2 [33].
FHL2, expressed predominantly in the heart, binds
to the is2 region [45]. The alternatively spliced is7
region binds calpain 3 (CAPN3) [35], the calcium-
dependent protease involved in the pathogenesis
of LGMD2A. The M10 domain interacts with the
giant structural and signaling protein obscurin and
its smaller homologue obscurin-like 1 (OBSL1)
[46], and the A-kinase anchoring intermediate fil-
ament protein alpha-synemin [47]. Finally, several
of the C-terminal titin domains can bind the mul-
tifunctional docking protein myospryn (CMYA5)
[48].

TITIN VARIANTS AND DISEASES

Mutations in the TTN gene have been associated
with several different muscle diseases, cardiomy-
opathies and combinations of these. The latter include
dilated cardiomyopathy (DCM, MIM#604145),
familial hypertrophic cardiomyopathy (HCM; MIM
#613765), arrhythmogenic right ventricular car-
diomyopathy (ARVC; MIM #602087) and mono-
genic restrictive cardiomyopathy (RCM). In this
review, however, we focus on the large spectrum of
skeletal muscle diseases caused by TTN mutations
(Fig. 2), since other reviews provide a more detailed
description of cardiac phenotypes linked to TTN vari-
ants [7, 8].
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truncating mutations
in-frame insertions/deletions
splice mutations

centronuclear myopathy (CNM)
limb-girdle muscular dystrophy (LGMD)
young or early adult onset recessive distal titinopathy
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Fig. 2. Skeletal muscle disease mutations in titin. Symbols below the diagram depict mutations associated with neuromuscular diseases,
with the symbol shape indicating mutation type and symbol color indicating the predominant clinical phenotype.
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Late-onset autosomal dominant tibial muscular
dystrophy (TMD)

Tibial muscular dystrophy (TMD; MIM #600334])
is a mild autosomal dominant distal myopathy involv-
ing the anterior compartment muscles of the lower
legs but sparing of the short toe extensor digitorum
brevis muscles [49].

It is characterized by a late onset (>35 years), a
slow progression, normal or slightly increased val-
ues of serum creatine kinase (CK) and a myopathic
EMG pattern [49, 50]. Biopsy findings in the target
muscles include fiber size variability, central nuclei,
necrosis, presence of fibroadipose tissue and rimmed
vacuoles. Electron microscopy showed autophagic
vacuoles without membrane and very rare inclusions
of 15–18-nm filaments [51]. Muscle imaging (CT or
MRI) is very informative with selective fatty replace-
ment in the muscles of the anterior compartments of
the lower legs starting in the anterior tibial muscle
and representing a useful clinical tool to address the
diagnosis.

In 2002, the first TTN mutation associated with
human skeletal-muscle disease and causing TMD
was reported [52] (Table 1). This dominant founder
mutation, termed FINmaj, is responsible for the high
prevalence (2/10.000) of TMD observed in Finland
[49]. FINmaj is an 11-bp insertion-deletion in the last
exon (exon 364 or Mex6) of the gene, changing four
amino acids in the C-terminal Ig domain M10 of M-
band titin. Three affected members of a French TMD
family showed a different missense mutation in the
same exon (c.107867T>C p.Leu35956Pro) [52].

One year later, a dominant missense variant in the
exon 364 (c.107840T>A p.Ile35947Asn) was also
identified in a Belgian family with a similar pheno-
type [51]. In 2008, three novel truncating variants
(two deletions – c.107647delT p.Ser35883Glnfs*10
and c.107889delA p.Lys35963Asnfs*9 – and a non-
sense mutation – c.107890C>T p.Gln35964*) were
identified in two French families and a Spanish kin-
dred [50] and a further missense mutation in exon 364
was then described in a large Italian family [53].

Young or early adult onset recessive distal
titinopathy

More recently, Evilä et al. [54] described four
patients with a more severe distal phenotype,
resulting in a young or early adult-onset recessive
distal titinopathy: all these patients were compound
heterozygotes for described TMD mutations and

novel frameshift variants (Table 1). Two French
patients, previously reported with a more severe
distal phenotype compared to TMD, had a second
causative mutation that explains the peculiar phe-
notype. Similarly, a 36-year-old Spanish female
with a similar distal phenotype and an early onset
had the previously described Iberian TTN mutation
(c.107889delA) combined with a second frameshift
mutation. Homozygosity for the Iberian mutation
was the cause of the early distal progressive disease
observed in a female Portuguese patient.

In the reported patients, biopsy findings are highly
variable, from mild myopathy to severe dystrophic
changes usually with rimmed vacuoles, depending
on the site of biopsy and the disease duration.

Muscle imaging shows an early (already at age
20) fatty degeneration of the anterior compartment,
frequently combined with a similar degree of involve-
ment of soleus, which is unusual in TMD.

Limb-girdle muscular dystrophy type 2J
(LGMD2J)

Limb-girdle muscular dystrophies (LGMD) are
Mendelian disorders affecting the voluntary muscles
in proximal limbs of the hip and shoulder areas [55].
LGMDs includes more than 30 different diseases
with different but often overlapping clinical pictures
[56]. LGMD2J represents a recessive disease with
an early age of onset (<12 y.o.) [50, 57]. The first
Finnish patients described were homozygous for the
FINmaj mutation, presenting with a very different
and much more severe phenotype than TMD [50,
57]. In addition, in a French family with a dominant
TMD phenotype due to a nonsense mutation in the
last exon (c.107890C>T p.Gln35964*), one deceased
patient with a more severe generalized muscle weak-
ness proved in retrospect to be homozygous for the
mutation [58].

More recently, Evilä et al. described three fur-
ther LGMD2J patients [54]. Three Finnish patients,
heterozygous for the FINmaj variant and presenting
with an early onset LGMD or generalized muscle
weakness phenotype, were clinically and molecularly
re-evaluated. In two out of three patients, a second
frameshift variant was detected in the other TTN allele
(Table 1), and in the third patient the changes on
the protein level were identical to FINmaj homozy-
gous LGMD2L, suggesting an undetected truncating
mutation on the other allele. Moreover, Zheng et
al. identified, by exome sequencing, a homozygous
missense mutation in the last exon (c.107788T>C
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Table 1
Mutations causing TMD, young or early adult onset recessive distal titinopathy, LGMD or adult proximal phenotype

Allele 1

Mutation§ Exon† Domain

TMD Finnish TMD FINmaj mutation 364 (363#) M10 (Ig 152)
de Seze 1998/Hackman 2002

(French family A)
c.107867T>C (p.Leu35956Pro) 364 (363#) M10 (Ig 152)

Hackman 2008 (French
family B)

c.107890C>T (p.Gln35964∗) 364 (363#) M10 (Ig 152)

Hackman 2008 (Albacete
family)

c.107889delA (p.Lys35963Asnfs∗9) 364 (363#) M10 (Ig 152)

Hackman 2008 (Barcelona
family)

c.107889delA (p.Lys35963Asnfs∗9) 364 (363#) M10 (Ig 152)

Van den Bergh 2003 (Belgian
family)

c.107840T>A (p.Ile35947Asn) 364 (363#) M10 (Ig 152)

Pollazzon 2010 (Italian
family)

c.107837A>C (p.His35946Pro) 364 (363#) M10 (Ig 152)

Allele 1 Allele 2

Mutation§ Exon† Domain Mutation§ Exon† Domain

Young or early adult
onset recessive
distal titinopathy

Hackman 2008 (French
family C - Proband) and
Evila2015 (pt.5b)

c.100558-100561dup (p.Gly33521Aspfs∗25) 358 (357#) A169 (Ig 141) c.107647delT (p.Ser35883Glnfs∗10) 363 (362#) M-is7

Hackman 2008 (French
family C - Mother) and
Evila2014 (pt.5a)

c.98105delC (p.Pro32702Leufs∗15) 353 (352#) A160 (Ig 139) c.107647delT (p.Ser35883Glnfs∗10) 363 (362#) M-is7

Evila2014 (pt.6) c.67089delT (p.Lys22364Argfs∗24) 319 (318#) A55 (FN3 50) c.107889delA (p.Lys35963Asnfs∗9) 364 (363#) M10 (Ig 152)
Evila2014 (pt.7) c.107889delA (p.Lys35963Asnfs∗9) 364 (363#) M10 (Ig 152) c.107889delA (p.Lys35963Asnfs∗9) 364 (363#) M10 (Ig 152)

LGMD Finnish original cases FINmaj 364 (363#) M10 (Ig 152) FINmaj 364 (363#) M10 (Ig 152)
Penisson-Besnier 2010

(French family B - pt.IV-5)
c.107890C>T (p.Gln35964∗) 364 (363#) M10 (Ig 152) c.107890C>T (p.Gln35964∗) 364 (363#) M10 (Ig 152)

Evila 2014 (pt.1) c.101113delT (p.Ser33705Leufs∗4) 359 (358#) A170 (FN3 132) FINmaj 364 (363#) M10 (Ig 152)
Evila 2014 (pt.2) c.39492dupT (p.Glu13165∗) 208 (207#) PEVK FINmaj 364 (363#) M10 (Ig 152)
Evila 2014 (pt.3) ? FINmaj 364 (363#) M10 (Ig 152)
Zheng 2015 c.107788T>C (p.Trp35930Arg) 364 (363#) M10 (Ig 152) c.107788T>C (p.Trp35930Arg) 364 (363#) M10 (Ig 152)

Proximal adult TMD
compound
heterozygotes

Evila 2014 (pt4) c.92167C>T (p.Pro30723Ser) 340 (339#) A140 (FN3 112) FINmaj 364 (363#) M10 (Ig 152)

Evila 2015 (pt t13) c.60494A>G (p.His20165Arg) 305 (304#) A32 (Ig 106) c.107837A>C (p.His35946Pro) 364 (363#) M10 (Ig 152)

§Reported according to the longest theoretical transcript (NM 001267550). †Numbered according to the HGVS recommendations (ref.10) and to the current Leiden database (LOVD) numbering
(modified on 11th October 2013) (ref.11). #Numbered according to the old numbering (before 11th October 2013).
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p. Trp35930Arg) in a Chinese Han consanguineous
family with a LGMD phenotype [59].

On the protein level LGMD2J shows a secondary
CAPN3 defect [60] and loss of titin C-terminus on
Western blots and immunofluorescence microscopy
with antibodies against several C-terminal domains
[50, 61]. Most biopsied muscles of patients homozy-
gous for the FINmaj variant show dystrophic findings
with end stage pathology without rimmed vacuoles
[48]. However, rimmed vacuolar pathology was
reported in a recently described case compound het-
erozygous for the FINmaj mutation and a truncating
mutation [52].

Muscle imaging shows a progressive fatty degener-
ation of skeletal muscles. Muscles are relatively well
preserved in young patients. A small degree of fatty
degeneration can be observed 10 years after onset of
muscle weakness, and fatty replacement is usually
total after 40 years [48, 52].

Congenital centronuclear myopathy

Centronuclear myopathies (CNMs) are congenital
myopathies characterized by the presence of cen-
tralized nuclei in the muscle fibers [62]. The term
has also been used for myopathies with less spe-
cific increase of internalized nuclei. Mutations in four
different genes have been reported to cause CNM:
DNM2 causes an autosomal dominant form [63];
BIN1 and RYR1 mutations may cause autosomal dom-
inant or recessive forms [64, 65]; and the X-linked
myotubular myopathy (XLMTM) is due to mutations
in the MTM1 gene [66]. Recently, Ceyhan-Birsoy
et al. described five patients with generalized infan-
tile muscle weakness and muscle biopsy findings
compatible with CNM [67]. Using next generation
sequencing of whole exomes and genomes, recessive
truncating TTN mutations were identified in all the
five patients (Table 2).

Fattori at al. described a further CNM patient
with two TTN nonsense mutations (Table 2) in the
TTN gene, resulting in a severe reduction of titin C-
terminus at protein level [68]. The latter Italian case
provided a further proof of the correlation between
specific titin variants and the CNM.

Early-onset myopathy with fatal cardiomyopathy
(EOMFC) and multi-minicore disease with heart
disease (MmDHD)

In 2007, Carmignac et al. reported a novel recessive
titinopathy involving both heart and skeletal muscle,

in two consanguineous families of Moroccan and
Sudanese origin [69]. The disease was characterized
by early onset, slowly progressive, muscle weakness
(1 y.o.); conversely, a severe dilated cardiomyopa-
thy with rhythm disturbances developed later and
resulted in a premature sudden death before adult-
hood. Skeletal muscle biopsies showed minicore-like
lesions, centralized nuclei and type 1 fiber predomi-
nance.

In 2014, Chauveau and collagues described four
other families with congenital core myopathy and
primary heart disease associated with TTN mutations
(Table 2) and suggested the inclusive name of multi-
minicore disease with heart disease (MmDHD) for
all these clinically heterogeneous congenital diseases
[70].

Chauveau described a wide range of phenotypes,
spanning from an Emery-Dreifuss-like form to an
unusual, severe condition with distal arthrogrypo-
sis multiplex congenita (AMC), congenital muscle
weakness, kyphosis, and neonatal cardiac failure. All
of them are congenital or infantile muscle conditions,
characterized by weakness with rigid spine, distal or
elbow joint contractures, impaired respiratory func-
tion and mild hyperCKemia (<5x).

Childhood-juvenile onset Emery-Dreifuss-like
phenotype without cardiomyopathy

Emery-Dreifuss muscular dystrophy has been
associated with several genes: EMD and FHL1 for
X-linked forms [71, 72], LMNA [73, 74] with both
an autosomal dominant and recessive inheritance,
and SYNE1 and SYNE2 [75] both causing a domi-
nant phenotype. Recently, De Cid et al. reported on
three patients with a peculiar phenotype, including
limb-girdle weakness, high CK levels, early-onset
contractures and a progressive course with per-
manent loss of ambulation during adolescence or
early adulthood [76]. The clinical phenotype of
the patients resembled EDMD, albeit with no car-
diac abnormality. Novel truncating mutations in the
C-terminus of titin segregating with the disease
in all the three unrelated families were identified
(Table 2), and they all had a secondary CAPN3
defect indicating a novel recessive titinopathy
phenotype.

Congenital centronuclear myopathy [67, 68],
early-onset myopathy with fatal cardiomyopathy
(EOMFC) [69], multi-minicore disease with heart
disease (MmDHD) [70], and childhood-juvenile
onset Emery-Dreifuss-like phenotype without
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Table 2
Mutations causing congenital centronuclear myopathy, multiminicore disease and an Emery-Dreifuss-like phenotype

Allele 1 Allele 2

Mutation§ Exon† Domain Mutation§ Exon† Domain

Congenital
centronuclear
myopathy

Ceyhan-Birsoy 2013 (pt.314-1) c.40558G>C (p.Val13520Leu?) 220 (219#) PEVK c.44816-1G>A (p.[?]) 243i (242i#) –

Ceyhan-Birsoy 2013 (pt.966-1) c.24863 24877del 87 (86#) I65 (Ig 62) c.103846 103849dup 359 (358#) M-is2
(p.Asp8288 Ile8293delinsVal) (p.Pro34617Glnfs∗3)

c.39201 39203dup (p.Pro13068dup) 204 (203#) PEVK
Ceyhan-Birsoy 2013 (pt.979-1) c.15496 + 1 G>A (p.[?]) 53i (52i#) – c.76393 76396del (p.Asn25465∗) 327 (326#) A86 (FN3 73)

c.106019delG (p.Gly35340Valfs∗65) 359 (358#) M-is4
Ceyhan-Birsoy 2013 (pt.1044-1) c.77764C>T (p.Gln25922∗) 327 (326#) A91 (FN3 76) c.107889delA (p.Lys35963Asnfs∗9) 364 (363#) M10 (Ig 152)
Ceyhan-Birsoy 2013 (pt.1093-1) c.21961G>A (p.Glu7321Lys) 76 (75#) I54–I55 (Ig 51–52) c.58620delA (p.Val19541Phefs∗22) 299 (298#) A26 (FN3 29)
Fattori 2015 (pt.38) c.9577C>T (p. Arg3193∗) 41 I13 c.105832C>T (p.Gln35278∗) 359 (358#) M-is4

Multiminicore
disease

Carmignac 2007 (family 1) c.106571delA (p.Lys35524Argfs∗22) 361 (360#) M8 (Ig 150) c.106571delA (p.Lys35524Argfs∗22) 361 (360#) M8 (Ig 150)

Carmignac 2007 (family 2) c.105528 105535del 359 (358#) M5 (Ig 147) c.105528 105535del 359 (358#) M5 (Ig 147)
(p.Gln35175Hisfs∗9) (p.Gln35175Hisfs∗9)

Chauveau 2014 (family 1) c.106407 106408del 360 (359#) M7 (Ig 149) c.106407 106408del 360 (359#) M7 (Ig 149)
(p.Glu35470Argfs∗11) (p.Glu35470Argfs∗11)

Chauveau 2014 (family 2) c.102523C>T (p.Arg34175∗) 359 (358#) M1 (Ig 143) c.105832C>T (p.Gln35278∗) 359 (358#) M-is4
Chauveau 2014 (family 3) c.66695T>A (p.Val22232Glu) 317 (316#) A53 (FN3 49) c.102057delT (p.Asn34020Thrfs∗9) 359 (358#) TK
Chauveau 2014 (family 4) c.9163 + 1 G>C (p.?) 38i – c.102214T>C (p.Trp34072Arg) 359 (358#) TK

Emery-Dreifuss-like
phenotype

De Cid 2015 (pt.1) c.106959T>A (p.Tyr35653∗) 361 (360#) M8 (Ig 150) c.106959T>A (p.Tyr35653∗) 361 (360#) M8 (Ig 150)

De Cid 2015 (pt.2) c.106051delT (p.Glu35351Asnfs∗54) 359 (358#) M6 (Ig 148) c.106978C>T (p.Gln35660∗) 361 (360#) M8 (Ig 150)
De Cid 2015 (pt.3) c.105910 105914del 359 (358#) M-is4 c.106422delG (p.Phe35475Serfs∗4) 360 (359#) M7 (Ig 149)

(p.Thr35304Cysfs∗3)

§Reported according to the longest theoretical transcript (NM 001267550). †Numbered according to the HGVS recommendations (ref.10) and to the current Leiden database (LOVD) numbering
(modified on 11th October 2013) (ref.11). #Numbered according to the old numbering (before 11th October 2013).
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Table 3
Mutations causing hereditary myopathy with early respiratory failure (HMERF)

Mutations§
Palmio 2014 (fam A) c.95126C>G (p.Pro31709Arg)
Pfeffer 2012 (fam A/B/C) c.95134T>C (p.Cys31712Arg)
Ohlsson 2012 (fam A/B/C) c.95134T>C (p.Cys31712Arg)
Pfeffer 2013 (fam 1/2/3/4/5) c.95134T>C (p.Cys31712Arg)
Toro 2013 (fam B/C) c.95134T>C (p.Cys31712Arg)
Palmio 2014 (fam B/C/D/E/F/G) c.95134T>C (p.Cys31712Arg)
Yue 2015 (pt 2) c.95134T>C (p.Cys31712Arg)
Izumi 2013 c.95186G>T (p.Trp31729Leu)
Palmio 2014 (fam H) c.95185T>C (p.Trp31729Arg)
Palmio 2014 (fam I) c.95187G>C (p.Trp31729Cys)
Pfeffer 2013 (fam 6) c.95195C>T (p.Pro31732Leu)
Palmio 2014 (fam L) c.95195C>T (p.Pro31732Leu)
Yue 2015 (pt 1) c.95195C>T (p.Pro31732Leu)
Palmio 2014 (fam J/K) c.95195C>T (p.Pro31732Leu) c.95195C>T (p.Pro31732Leu)
Pfeffer 2013 (fam 7) c.95358C>G (p.Asn31786Lys)
Toro 2013 (fam A) c.95372G>A (p.Gly31791Asp)

§Reported according to the longest theoretical transcript (NM 001267550).

cardiomyopathy [76] (Table 2) represent a group
of TTN-related recessive disorders characterized
by an early onset. Most of the patients described
are homozygous or compound heterozygous for
truncating variants. The causative mutations in CNM
patients are mainly localized in I- or A-bands but
frameshift variants in M-band titin have been found
in 3/6 patients [67, 68]. On the contrary, almost all
the patients with an EDMD-like phenotype or an
EOMFC/MmDHD described so far have truncating
mutations in the M-band, but these variants do
not involve the last exon, previously associated to
TMD/LGMD phenotypes [69, 70, 76]. Interestingly,
despite the location of all these M-band truncating
variants in proximity to each other, the clinical pic-
tures and the histological findings are heterogeneous
and, above all, a cardiac phenotype is only reported
in a subset of patients.

Hereditary myopathy with early respiratory
failure (HMERF)

Hereditary myopathy with early respiratory fail-
ure (HMERF) is an adult-onset autosomal dominant
myopathy with respiratory muscle involvement that
may lead to a fatal respiratory crisis if not treated
[77].

In 2005, Lange et al. identified a TTN muta-
tion (c.102271C>T p.Arg34091Trp, also known as
R279W according to residue numbering of the iso-
lated TK structure) in the TK domain of two Swedish
families and a third unrelated Swedish patient sharing
the same haplotype [33]. The variant affects the inter-

action between nrb1 and the TK domain, disrupting
the signaling pathway that involves p62/SQSTM1,
MURF2 and SRF.

With the exception of the TK-R279W mutation,
all other mutations reported as being causative of
HMERF are localized in the TTN exon 344 (Table 3)
and most of them seem to hamper the correct
folding of the A150 domain (119th Fn3 domain)
[78–84]. The most common mutation (c.95134T>C
p.Cys31712Arg, first reported as p.Cys30071Arg)
has been found in more than 20 families [78, 79,
82], most of which share some markers in the haplo-
type, except one Indian [83] and one Chinese family
[85]. The high number of mutations identified in exon
344 confirms the presence of a mutational hotspot
region. Until recently, all the variants associated with
HMERF seemed to be dominant and fully penetrant.
In 2014, Palmio et al. reported a missense muta-
tion (c.95195C>T p.Pro31732Leu, first published as
p.Pro30091Leu) in three different families [82]. The
variant has been defined “semidominant” or “semire-
cessive” since it is fully penetrant in homozygosity
causing a more severe phenotype. The heterozygous
carriers may have a subclinical disease or may man-
ifest a less severe disease.

In the affected members of the original Swedish
family described by Lange et al. [33], Hedberg
et al. reported the presence of a second variant, the
“recessive” p.Pro31732Leu change [86]. A sugges-
tive hypothesis is that the co-inheritance of both
p.Pro31732Leu and p.Arg34091Trp may cause the
disease by a fully penetrant bi-mutational dominant
allele [87].
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Other titinopathies

In two families, one Finnish and one Italian, with
well-known dominant TMD disease one individual
in each family developed a different phenotype: adult
onset proximal lower limb weakness without the
normal ankle dorsiflexion weakness [54, 88]. Muscle
MRI consistently showed significant dystrophic
changes in the thigh muscles, and in the Finnish
patient marked soleus muscle involvement. Both
patients proved to have a second recessive mutation
inherited from the healthy non-TMD parent. In
particular, the Finnish patient showed a missense
mutation (c.92167C>T p.Pro30723Ser) in the exon
340 [54] and in the Italian patient a missense muta-
tion (c.60494A>G p.His20165Arg) was identified in
the exon 305 [88].

Exome sequencing detected two variants in com-
pound heterozygosity (c.45599C>G p.Ala15200Gly
and c.106154 A > C p.Lys35385Thr) in a male with
Romanian and Hungarian origin with adult onset
proximal weakness and an initial clinical suspicion
of inflammatory disease [89]. Western blots with C-
terminal titin antibodies showed significant reduction
of identified protein, suggesting truncating mutations
rather than the identified missense variants.

ANIMAL MODELS OF TITINOPATHIES

Several spontaneous and induced animal models
with titinopathy have been described so far.

“Runzel” (“ruz”) is a dystrophic zebrafish mutant
with a reduced expression of certain TTN isoforms
[90]. Poor swimming ability and decreased birefrin-
gence at 5 dpf are the first signs of a progressive
myofibrillar disorganization, resulting in a premature
death (10–12 dpf) for homozygous animals.

A spontaneous mouse model with a complex
rearrangement causing the loss of 83 amino acids
from the N2A region exhibits a recessive muscular
dystrophy with myositis (mdm) [91]. The homozy-
gous mice show a progressive muscle degeneration
involving prominently distal skeletal muscles such
as the tibialis and a reduced expression (50–60%) of
CAPN3.

Mice carrying the FINmaj mutation [92] in
homozygosity develop a progressive muscular dys-
trophy as well as a dilated cardiomyopathy, whereas
heterozygotes only show a mild, later onset restricted
phenotype. Interestingly, crossing the FINmaj model
with CAPN3-deficient mice attenuates the muscular
disorder in double heterozygotes, although not in the

FINmaj homozygotes, suggesting a role for CAPN3
in the pathogenesis.

Similarly, other models were characterized and stu-
died to focus on the TTN-related cardiomyopathies.

“Pickwick” (“pik”) is a zebrafish mutant, carrying
a TTN variant causing an alternative N2B exon splic-
ing [93]. Pik heart is thin-walled, dilated and poorly
contractile, resembling the human DCM phenotype.

A mouse lacking the cardiac N2B element was
generated to study the role of this element in sys-
tole and diastole [94]. The shorter protein is correctly
integrated into the sarcomere, but causes a restrictive
diastolic dysfunction.

A murine conditional knock-out for the first two
M-line exons (exons 359-360 or Mex1 and Mex2)
has been produced to study the role of these domains
during heart development [95, 96].

Finally, Drosophila melanogaster mutants have
been characterized to study the role of D-TTN gene
that shows a homology to vertebrate TTN [97]. In
particular, D-Titin plays a crucial role into the forma-
tion of multi-nucleate syncytia and the organization
of actin-myosin filaments in the skeletal muscle.

GENOTYPE-PHENOTYPE
CORRELATION

As described above, variants in the TTN gene
may cause different diseases, including several mus-
cular disorders. Deducing a genotype–phenotype
correlation has, however, so far been possible only
to a limited extent, although the concentration of
the currently confirmed mutations in the C-terminal
(M-band) part of the gene is apparent. For instance,
dominant late onset tibial muscular dystrophy is
caused by mutations in the last exon 364 (Mex6)
[51–53, 98]. Young or early adult onset recessive
distal titinopathy is based either on one mutation in
exon 363 or 364 (Mex5 or Mex6) combined with a
truncating mutation on the other allele [54], or both
mutations in exons 363 or 364 (Mex5–6). LGMD2J
presentation may occur from similar mutational sites
but is more typical with FINmaj on one or both alleles
(Table 1) [50, 57].

Homozygous or compound recessive truncating
mutations in the first four M-line exons (exons
359–362 or Mex1–4) cause a range of severe
congenital or very early onset muscle diseases
with or without cardiomyopathy [67–70, 76]. The
reason why some truncations in the same exon cause
cardiomyopathy and others not is unexplained.
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All truncated transcripts do not undergo nonsense-
mediated decay and some read-through occurs,
which may lead to very variable amounts of titin pro-
tein available. Cardiomyopathy could be associated
with lower amounts of protein, but this has not been
conclusively confirmed. Compound heterozygosity
including a missense mutation with a truncating
change leads to functional homozygosity of the
missense transcript due to nonsense-mediated decay
of the truncated transcript. Moreover, a compound
heterozygous patient (patient IV in ref [54]), carrying
the FINmaj variant and a missense change in the
A-band (p.Pro30723Ser), shows an atypical, adult
onset, proximal lower limb titinopathy that spares
the anterior tibial muscle [54]. An identical pheno-
type occurs with compound heterozygosity of the
Italian TMD mutation (p.His35946Pro) and another
missense A-band mutation (p.His20165Arg) [88].

The different molecular mechanisms underlying
LGMD2J, the recessive distal titinopathy, or specific
atypical phenotypes have not been clarified so far.

Finally, HMERF represents a unique, well recog-
nized, phenotype (Table 3). Even if mutations in the
exon 344 are the only changes confirmed to cause
fully dominant HMERF, the recent finding of the
more recessive change (p.Pro31732Leu) [82] high-
lights the possibility that a a second variant in cis
may play an important role in the pathogenesis of a
clinical phenotype [82, 87].

In the pre-NGS era, the low number of described
patients, as well as the positional bias caused by the
extensive scanning of M-band exons as compared to
other TTN portions have prevented dissection of the
genotype–phenotype correlations. Novel data arising
from NGS projects, together with further functional
studies, will be useful to get a more clear picture of
TTN mutations and their associated phenotypes.

CHALLENGES ARISING FROM NGS
PROJECTS

In the last few years, the next generation
sequencing approaches have demonstrated to be
extremely useful in research and diagnostic testing
for various hereditary conditions, including neuro-
muscular disorders [99]. Whole exome (WES) [100],
whole genome (WGS) [9], and targeted sequenc-
ing approaches [101] have been utilized to identify
causative mutations in already known or novel dis-
ease genes. All these strategies are revealing a high
number of novel and rare variants in the TTN gene.

More than three rare non-synonymous titin variants
are identified in any individual and this is of course
partly due to the mere size of the gene.

In 2012, Herman et al. developed an affinity cap-
ture for the sequencing of the titin exons [102]. In this
way, they identified 72 loss-of-function variants, indi-
cating the important role of titin in the development of
dominant dilated cardiomyopathy. Later studies have
shown many truncating variants to be too common
for fully penetrant dominant effects [103].

Several custom enrichment assays, including
MyoCap [88], MotorPlex [104, 105], and others
[106–108], have been developed to sequence specific
genes of interest related to neuromuscular disorders.

The use of comprehensive NGS tools allows the
analysis of almost all the coding regions of TTN gene,
overcoming challenges related to its size.

On the other hand, novel challenges arise from the
NGS data. TTN variants identified in NGS studies are
rarely already known and characterized. Moreover,
recent papers underline that a single heterozygous
truncating mutation in the titin gene usually does
not cause any relevant muscular phenotype, and a
second mutation is necessary to generate a recessive
condition [54, 59, 70, 76, 89].

Most of the patients analyzed by NGS strate-
gies show previously undescribed rare missense
variants. The clinical interpretation of missense vari-
ants in the TTN gene represents one of the most
significant challenges related to NGS investigation
in the field of neuromuscular disorders. In silico
predictions are questionable and a careful approach
in the interpretation of missense variants should
include a comprehensive segregation analysis and
mandatory functional assays. Unfortunately, func-
tional validations of missense changes in the TTN
gene are notoriously difficult, as the huge size of
titin prevents the cloning and expression of the full-
length protein in in vitro systems. So far, for in vitro
experimentation, titin has been dissected into more
manageable protein constructs, which have been used
for testing the effects of mutations on protein–protein
interactions in various assays, or on structural stabil-
ity of the protein. For example, the missense variant
p.Trp34072Arg has been proven to abolish the inter-
actions of titin’s kinase domain (TK) with its known
ligands and to reduce the TK stability, providing a
robust proof of its pathogenicity [70]. Similarly, some
of the TMD-causing missense mutations have been
shown to destabilize the titin M10 domain and to
affect its binding to obscurin and/or obscurin-like 1
[109–111].
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According to a recent large-scale study, most
disease-associated variants perturb protein–protein
interactions without causing misfolding [112].
Moreover, each variant may affect only specific
interactions while leaving most other interactions
unperturbed [112], explaining how different variants
in the same gene can cause different phenotypes.
These notions likely hold true also for TTN vari-
ants, and for the related phenotypes. For most of
titin’s domains, interaction partners and biological
functions remain unknown. Their elucidation will
be a prerequisite for the correct interpretation of
rare missense changes identified as well as for the
identification of therapeutic targets for innovative
drug therapies for titinopathies.

Meanwhile, the research community has respo-
nded to the challenges arising from the use of
NGS through the formation of clinical and research
consortia [113, 114]. These collaborations take
advantage of the power of shared resources and
expertise, and particularly the benefit of combining
cohorts of patients into larger groups. This greatly
increases the likelihood of success of NGS projects
and enhances the impact of these projects in terms
of the clinically relevant data that is associated with
them. To reach this goal, there is an urgent need
to collect all reported, novel detected and rare TTN
variants from patients all over the world and combine
them into a single accessible database, in order to
better be able to compare the results and draw
conclusions on genotype–phenotype correlations.
As discussed in the recent 219th ENMC workshop
on titinopathies, an international database of TTN
mutations, variation and their clinical phenotypes,
could help all the researchers and clinicians to assess
the pathogenicity of found variants in NGS analyses
and would promote significant advances in the
understanding of titinopathies (Ms in preparation).

ACKNOWLEDGMENTS

This study was supported by the Folkhälsan
Research Foundation, the Jane and Aatos Erkko
Foundation, Association Française contre les
Myopathies (SB/CP2013-0106, B.U. and PF2016-
19522, M.S.), the Academy of Finland (no. 138491,
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