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Abstract

diabetes (n = 39) and healthy controls (n = 22).

Background: There is an ongoing need for improvements in non-invasive, point-of-care tools for the diagnosis
and prognosis of diabetes mellitus. Ideally, such technologies would allow for community screening.

Methods: In this study, we employed infrared spectroscopy as a novel diagnostic tool in the prediction of diabetic
status by analyzing the molecular and sub-molecular spectral signatures of saliva collected from subjects with

Results: Spectral analysis revealed differences in several major metabolic components - lipid, proteins, glucose,
thiocyanate and carboxylate - that clearly demarcate healthy and diseased saliva. The overall accuracy for the
diagnosis of diabetes based on infrared spectroscopy was 100% on the training set and 88.2% on the validation
set. Therefore, we have established that infrared spectroscopy can be used to generate complex biochemical
profiles in saliva and identify several potential diabetes-associated spectral features.

Conclusions: Infrared spectroscopy may represent an appropriate tool with which to identify novel diseases
mechanisms, risk factors for diabetic complications and markers of therapeutic efficacy. Further study into the
potential utility of infrared spectroscopy as diagnostic and prognostic tool for diabetes is warranted.

Background

The rapid, unequivocal diagnosis of both type 1 and
type 2 diabetes is essential to avoid the onset of com-
plications. Diabetes is a remarkably complex disease,
yet diagnosis is determined by measurements of a sin-
gle biomarker - glucose. The degree of hyperglycemia
changes over time and reflects both the severity of the
underlying metabolic process and the success of treat-
ment [1]. The American Diabetes Association (ADA)
treatment guidelines suggest that preprandial capillary
plasma glucose concentrations should be in the range
of 90-130 mg/dl (5.0-7.2 mmol/l), but that HbAlc
(glycosylated haemoglobin type Alc, < 7%) is the pri-
mary target for glycemic control [2]. Other measures
such as fructosamine and glycated albumin are avail-
able as markers of hyperglycemia, but there have been
no definitive ranges established to allow treatment to
goal [3,4].
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While there are no accepted diagnostic markers for dia-
betes other than glucose, many molecules have been tested
for their diagnostic potential, and several biomarkers have
been identified that provide important adjunctive informa-
tion. For example, ketone (B-hydroxybutyrate) measure-
ment, normally in urine, is useful in diagnosing diabetic
ketoacidosis [5]. Albumin excretion into urine is often
used to monitor deteriorating renal health [6], with creati-
nine clearance an additional available tool [7]. Lipid profil-
ing (total cholesterol, triglycerides, HDL and LDL) is
recommended for diabetics, with aggressive treatment
provided to those with dyslipidemia [2]. Specific auto-anti-
bodies, such as islet cell cytoplasmic, insulin, glutamic acid
decarboxylase, and islet cell antigen 512 (IA2/ICA512)
autoantigen, combined with other metabolic and genetic
markers, are effective for predicting eventual development
of type 1 diabetes in otherwise healthy individuals [8].
Autoimmune diagnostics are of particular importance to
discriminate between type 1 and type 2 diabetes and for
the differential diagnosis of type 1 diabetes when clinical
and metabolic criteria alone do not allow definite classifi-
cation [9]. Advanced glycation end products (AGEs;
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glycoxidation post-translational modifications of a variety
of polypeptides) and advanced lipoxidation end products
(ALEs; lipoxygenation post-synthesis modifications of a
variety of lipids), which promote inflammation, have also
been proposed as diagnostic and prognostic markers
[3,10]. The accumulation of AGE products is virtually irre-
versible; hence AGE formation is likely to impart a long-
term effect on the tissues [11,12].

Recent research suggests that specific salivary biomar-
kers such as glucose, a-amylase, and ghrelin appetite
hormone exhibit strong diagnostic potential for diabetes
[13-15]. Other potential diabetes-related biomarkers
have also been detected in saliva, including immunoglo-
bulins, glycated end products, and other markers of oxi-
dative status, such as myeloperoxidase, salivary
peroxidise, and multiple other oxidants [13-18]. Many
such biomarkers will exhibit unique signatures in the IR
spectrum of saliva.

Infrared (IR) spectroscopy can be employed to moni-
tor all molecules present in saliva rapidly and simulta-
neously. Briefly, the attenuation of the intensity of a
beam of infrared light upon passing through a sample is
measured. The intensities of IR spectra provide quanti-
tative information, while the frequencies reveal qualita-
tive characteristics about the nature of the chemical
bonds, their structure, and their molecular environment.
Thus, an IR spectrum is the sum of all such contribu-
tions and represents a molecular fingerprint including
those changes to cells, tissues, or fluids that accompany
all pathological processes. In the recent decades, IR
spectroscopy has demonstrated its strong potential in
detecting small and early biochemical changes associated
with disease. IR spectroscopy has been successfully
adapted, for example, to predict fetal lung maturity [19],
diagnose heart disease [20], rheumatoid arthritis [21]
and Alzheimer’s disease [22], as well as to, e.g., to moni-
tor lipidemia [23] using serum/plasma samples. We
expected that diabetes would induce multiple and speci-
fic alterations to the molecular profile of saliva and that
these pathogenic changes could be readily detected by
IR spectroscopy. Indeed, FT-IR spectroscopy has been
previously employed to monitor some specific molecules
that also represent diabetes-related signals such as early
glycation (Amadori) products [24] and glucose [25].
Therefore, we set out to monitor diabetes-specific
alterations to the molecular composition of saliva from
subjects with diabetes and control subjects using this
unique optical tool.

Methods

Study population

Thirty-nine patients diagnosed as having diabetes for at
least one year prior to the study using American Dia-
betes Association diagnostic criteria and who were
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consecutively referred to the Department of Metabolic
Diseases and Endocrinology at Ege University were
recruited by a single clinician (SC). Type 1 and type 2
diabetes were distinguished by patient history combined
with clinical characteristics and by autoantibody testing
(anti-GAD, ICA) in cases where medical history and
clinical findings were not characteristic. If type 1 and 2
diabetes were not distinguished by the aforementioned
criteria, C peptide analysis was employed. Twenty-one
systemically healthy control subjects without diabetes
were recruited from patients seeking dental treatment at
the School of Dentistry, Ege University. There were no
exclusion criteria. Written, informed consent was
obtained from all subjects, as approved by the local
ethics committee in Turkey. The demographics and
clinical characteristics of total population are presented
in Table 1. There were no statistically significant differ-
ences between subjects and controls in gender or smok-
ing status, although the mean age of the diabetes group
was slightly higher.

Saliva sampling

Saliva samples were obtained in the morning following
an overnight fast during which subjects were requested
not to drink (except water) or chew gum. Unstimulated
whole saliva samples were obtained by expectoration
into polypropylene tubes prior to clinical measurements.
The saliva samples were weighed and then immediately
frozen at -40°C until the sample collection period was
completed. The samples were then lyophilized and
stored at -20°C until subsequent biochemical analyses.
No adverse effects associated with saliva sampling were
reported.

Acquisition of mid-IR spectra from saliva samples

Duplicate 50 pl saliva aliquots were dried at 25 Torr on
13 mm BaF windows. IR spectra were recorded using a
Spectrum One FT-IR spectrometer (Perkin-Elmer, Fre-
mont, CA) at a nominal resolution of 2 cm™, with a
blank BaF window employed for background

Table 1 Demographics and clinical characteristics of
study population

Subjects (n = 39) Controls (n = 23)

Age (years, s.d.) 46.3, 14.9 382, 13.3*
Gender (% F) 62 61
Smokers (%) 59 61
HbA1c (%, s.d.) 74, 2.1 ND
Blood glucose (mg/dL, s.d.) 1496, 80.6 ND
Cholesterol (mg/dL, s.d.) 206.9,101.8 ND
HDL, (mg/dL, s.d.) 480,14.1 ND
LDL (mg/dL, s.d.) 1237, 544 ND

* p = 0.044; ND: Not determined.
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measurement. 256 scan signals were averaged for each
film, as we have previously described [26-28]. For the
generation of the mean spectra from each group and for
band integrations, the spectra were pre-processed for
area normalization at the range of 1480-1750 cm™ and
baseline corrected to avoid errors or artificial interfer-
ence during the sample preparations and spectral acqui-
sitions. Band integrations of relative components of each
spectrum were calculated using Grams/32 Al software
(Thermo Scientific). This software integrates and com-
putes the area of selected peaks by defining two end-
points on the bottom trace of the spectrum. To make
analyses consistent and reproducible, the endpoints for
each band area integration were predefined to avoid
artificial errors. Original absorbance spectra were also
converted into second derivative spectra using the
Savitzky/Golay algorithm with a 9-point window prior
to multivariate statistical analysis.

Generation of diagnostic algorithms for diabetes
(sensitivity, positivity, predictive values)

We generated combined (type 1 and type 2) diagnostic
algorithms, essentially as we have reported previously
[19,26,27]. The diagnosis of each saliva sample was pro-
vided prior to linear discriminant analysis (LDA) calcu-
lations. Thereafter, the processed spectra were further
exposed to the optimal region selection genetic algo-
rithm, which identified a set of discrete spectral sub-
regions that maximally enhance the differentiation
among the various spectral subtypes. In particular, LDA
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was used to partition the saliva samples into disease and
non-disease groups according to the discriminatory pat-
terns in the data and into a validation set which was
then used to test the accuracy of the trained algorithm.
LDA assumes multivariate normality and covariance
matrices of the groups are equal. Sensitivity, specificity
and positive and negative predictive values were deter-
mined for the classification process through cross-vali-
dation. Approximately two thirds of the samples were
designated the training set, the remaining one-third the
test set, again, as we have previously described
[19,26,27].

Results

Infrared spectral features of saliva

To better understand the characteristics of infrared
spectral features embedded in human saliva, we first
compared saliva spectra to that of serum, as shown in
Figure 1. This permitted us to correlate specific spectral
regions (shaded areas) in saliva with their respective,
established features in serum.

The strong bands at 2852 and 2926 cm™, highlighted
L (lipid), originate from the symmetric and asymmetric
stretching vibrations of lipid acyl CH, groups. P (pro-
tein) contains the two major prominent amide absorp-
tions - one at 1655 cm’', (arising from C = O
stretching, and termed the amide I band) and another at
1546 cm’, originating from N-H bending (termed the
amide II band) vibrations of the peptide groups in pro-
teins. The IR vibrational bands assigned to glucose,
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Figure 1 Comparison of IR spectra obtained from films of normal human saliva and serum. Areas marked L, S, P and G represent lipid,
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glycogen or sugar moieties are shown in the area high-
lighted in G (950 -1180 cm™'). Generally, the intensity of
lipid side chains found in serum is higher than that in
saliva; while the glycosylation associated sides chains of
spectral vibration absorbances are more prominent in
saliva. This may reflect a large contribution of AGEs
and ALE’s to salivary spectra.

Our group has previously confirmed that SCN™ can be
accurately quantitated in human saliva by IR spectro-
scopy because of its unique band position and lack of
interference from other salivary components [29].
Indeed, the band highlighted in S, which derives from
thiocyanate (SCN") anions, is unique to saliva. In saliva,
SCN’ is converted by salivary perioxidases to hypothio-
cyanite (OSCN"), a local antibacterial agent with high
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efficiency [30]. Several studies have demonstrated the
thiocyanate level is closely associated with the smoking
status of the subject [31]. Since this band only exists in
the spectrum of saliva, we attempted to verify whether it
buries any biochemical information regarding the status
of diabetes. To this end, by integrating this band area
from two groups, we compared the relative concentra-
tions in both groups and correlated them with the blood
glucose concentrations in the diabetic group, as shown
in Figure 2. However, there is no significant difference
between the band areas generated from the two groups
nor there is any correlation between this band and the
blood glucose concentrations. Neither was there any
correlation between salivary IR spectra and circulating
HbA,C levels (data not shown).
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Figure 2 Thiocyanate and glucose signatures in the IR spectra of saliva samples. (A) Representative thiocyanate band intensities in the IR
spectra of saliva from diabetes (n = 2) and control subjects (n = 2) chosen to highlight that clear differences in salivary thiocyanate signals are
readily apparent in saliva; (B) The histogram represents the integrated area (mean, s.e. SCN™ content) in subjects with diabetes (red bar) and
healthy controls (blue bar); and (C) the correlation plot revealing the association between SCN- band intensity and glucose concentration in the
saliva of the diabetes subjects.
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The IR spectrum of saliva includes specific spectral
contributions from protein, lipid, glucose, and other
metabolic compounds. Because of overlapping absorp-
tions, as shown in Figure 1, IR based analytical methods
which use spectral information spread across a wide
spectral range are commonly employed. We used Four-
ier self-deconvolution to narrow effective bandwidths,
enhance resolution, and increase available discriminatory
data to more fully utilize the biochemical information
embedded in salivary spectra.

Differences in FSD-processed mean IR spectra from
normal (control) and diabetic saliva are presented in
Figure 3. The difference spectrum helps identify those
molecular components most at variance between two
groups of spectra. The altered a-helix (1640 cm™) com-
ponent in the amide I region is obvious in the spectrum
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of diabetic saliva and is related to the decreased inten-
sity of intermolecular antiparallel B-sheets (1670 cm™).
The vibration of the tyrosine ring (1517 cm™') in many
proteins is also altered in the diabetic group. The amide
II band at 1550 cm™?, resulting from N-H bending, was
less prominent in diabetic saliva than those from normal
saliva, while the lipid ester band at 1735 cm™ was more
intense. This is interesting as it has been known for
some time that saliva contains cholesterol levels that
reflect serum concentrations[32]. Furthermore, we have
previously used IR spectroscopy to quantitate choles-
terol (HDL and LDL) in serum [28]. The bands marked
v,COO! and v,,COO™, located at 1400 and 1582 cm},
are the symmetric and asymmetric carboxyl radical
stretching vibrations of carboxylate groups, such as
those in lactic acid or side chains of protein in saliva.
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Figure 3 General features of FSD-processed mean IR spectra of control and diabetes (bottom) subjects and the difference spectrum
(diabetes minus control, top). Note: Although some non-highlighted bands exhibit pronounced differences, they are not known to convey
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Both carboxyl bands from diabetic saliva decreased com-
pared to controls. Interestingly, several genes controlling
carboxylic acid metabolism have previously been shown
to be dysregulated in diabetic subjects [33]. The band at
1452 cm™, originating from the bending vibration of
CH, group of amino acids in protein side chains, also
changed in diabetic group. Another important area in
the IR spectrum is the spectral range 950-1180 cm™
that originates from various C-C/C-O stretching vibra-
tions in sugar moieties. The 1020 cm™ band is usually
attributed to the C-O stretch vibration in glycogen
while the bands at 1070 and 1169 cm™" can be assigned
as C-O-C symmetric and asymmetric vibrations of sugar
moieties and phospholipids. Obviously, therefore, the
contribution of AGEs and ALE'’s to diabetic spectra may
be large.

Diagnostic accuracy of diabetes based on IR spectra of
saliva

Initially, we carried out a principle component-discri-
minant function analysis (PC-DFA). However, the
separation between the test and control groups was
not ideal (data not shown). Therefore, LDA was
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employed to identify six spectral regions that best
contribute to the differentiation of normal and dia-
betic groups. These spectral features are presented in
Figure 4.

The sensitivity, specificity, and positive predictive
value of the infrared spectra-based diagnostic algorithms
for diabetes are presented in Table 2. The diagnostic
sensitivity for diabetes of infrared spectroscopy was
100.0% for the training set and 90.9% for the test (vali-
dation) set; while the overall accuracy was 100% on the
training set, 88.2% on the test set.

Conclusions

Early diagnosis is key to the management of diabetic
complications, yet approximately 25% of Americans with
diabetes (> 6 million people) are thought to be undiag-
nosed [34]. A contributing factor to the under-diagnosis
of diabetes is a lack of simple, rapid, non-invasive,
accessible, and inexpensive point-of-care diagnostic
tools. To this end, we have investigated the potential of
a novel, non-invasive, infrared spectroscopy-based mod-
ality to identify disease-specific alterations to the mole-
cular profile of saliva.
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Figure 4 Linear discriminant analysis of the normal and diabetic groups. The bars identify the six spectral regions selected by the optimal
regional selection algorithm that best contribute to the differentiation of normal and diabetic groups by linear discriminant analysis.
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Table 2 Diagnostic accuracy of diabetes based on IR
spectra of saliva

n Accuracy

SP (%) PPV (%) NPV (%)
(%) a b c

Training

Set
Diabetes 28 0 100.0 100.0 100.0 100.0
Non- 0 8 100.0 100.0 100.0 100.0
diabetes

Validation

Set
Diabetes 9 0 100.0 75.0 818 100.0
Non- 2 6 750 100.0 100.0 818
diabetes

Overall accuracy: 100% on the training set, 88.2% on the test set. Diagnosis of
diabetes was determined by linear discriminant analysis of the infrared
spectra. Bold numbers are indicative of accurate classifications. Underlined
numbers are indicative of inaccurate classifications. The accuracy column also
represents sensitivity for diabetic patients (but not control subjects). SP =
specificity; PPV = positive predictive value; NPV = negative predictive value.

Saliva has multiple potential advantages over blood
testing, as recently reviewed [35]. These include the fact
that saliva collection is considered non-invasive by
patients; collection of saliva is safer (needle stick risk
eliminated); it is convenient to collect (phlebotomists
are not required); and it can be collected at home and
delivered to nearby facilities [35]. For specific purposes,
it may even be possible to mail saliva samples from a
patient’s home to the point of analysis. In the long term,
it has been conceived that an increased interest in sali-
vary diagnostics will “help catalyze a shift (in medical
practice) from disease diagnosis to health surveillance”
[35]. As noted earlier, saliva contains multiple compo-
nents whose concentrations are altered by diabetes
[13-15,17,18], some of which have strong diagnostic
potential [13,15]. The use of IR spectroscopy allows the
simultaneous measurement of all saliva components.
Therefore, our approach differs fundamentally from
prior studies that have attempted to quantify predomi-
nantly single saliva analytes, without convincing success.

On comparing the unprocessed spectra of saliva and
serum it was apparent that the major differentiating spec-
tral feature was the thiocyanate signal which, despite the
complexity of saliva, was free of interfering absorptions
[29]. Following Fourier self-deconvolution, the most
striking difference between the spectrum of diabetic sal-
iva and that of control were vibrations arising from sugar
moieties and/or glycosylation products, such as AGEs.
This is consistent with previous reports that stimulated
or unstimulated salivary glucose concentrations are
higher in diabetic patients than in control subjects
[36,37]. These findings are also in keeping with numer-
ous studies that have shown increased salivary AGE con-
tent on the development of diabetes complications [38].
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Also associated with diabetes was a decreased lactic
acid signature. Interestingly, the role of lactate in the
modulation of hormone release and responsiveness and
in the control of homeostasis is being increasingly
appreciated, as recently reviewed by Sola-Penna [39].
The protein profile, on the other hand, is increased in
the spectra of diabetes subjects relative to healthy
controls.

Diabetes is clearly multifactorial, yet previous attempts
to use saliva analysis as a diagnostic tool have generally
relied on the measurement of only one or two specific
saliva components. Since IR spectroscopy measures the
composite molecular content of saliva then, assuming
molecular alterations occur during the disease process,
then the chance for IR spectroscopy to distinguish var-
ious states of diabetes should be promising - in contrast
to previous one-dimensional biochemical approaches.
This hypothesis is supported by our LDA analyses,
which consider multiple components in the saliva as the
basis to designate individual spectra as healthy or dis-
eased. Even with our relatively small number of subjects
(n = 61) the overall accuracy for the diagnosis of dia-
betes based on infrared spectroscopy was 100% for the
training set, 88.2% for the test set. Such results leave us
confident that an expanded subject base will improve
the accuracy of diagnostic algorithms generated from IR
spectra and lead to still improved sensitivities and posi-
tive predictive values.

Several of the differentiating spectral features selected
by LDA have clear relevance to physiological mechan-
isms that underlie diabetes. Measurement of circulating
glycated end products, particularly glycated hemoglobin
(HbA;.) can be used (i) as an adjunct to glucose mea-
surement to monitor effective control of diabetes
[1,2,40] and (ii) as an independent risk factor for dia-
betic complications, particularly vascular complications
[16,40]. While hemoglobin is generally only found in
saliva at minute levels, many other glycated proteins will
be present. Indeed, we show that multiple bonds with
strong infrared absorptions that are present in glycated
proteins are found in the saliva and represent diabetes-
related structural shifts that are readily determined by
infrared spectroscopy. Since multivariate analysis bares
the risk of overfitting, is extremely important to clearly
separate the training and validation/test set. This has
been performed for our LDA and specificity and sensi-
tivity analyses. However, it should be noted that optimal
differentiating regions were identified by using the com-
plete data set.

An IR-based approach holds several attractions for
diabetic screening. Briefly, for such inexpensive, rapid,
and reagent-free multi-parameter testing only small
amounts of sample (50 pl saliva) are required; dried
films are expected to be stable over the long-term
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(unlike, e.g., blood glucose); and the technology can be
readily automated. It is simpler and less expensive
than other high-throughput techniques, such as pro-
teomic analysis of biofluids from diabetic subjects [41].
Furthermore, collection of saliva is non-invasive, sim-
ple, and can be performed almost anywhere, including
point-of-care sites, without the need for the extensive
training, for example, for phlebotomy. IR may also be
useful in research into diabetes as the study of specific
molecular features of the saliva of diabetics may iden-
tify diseases mechanisms, novel risk factors for diabetic
complications; and novel markers of therapeutic
efficacy.

In conclusion, we have assessed global, diabetes-asso-
ciated alterations to saliva at the molecular and sub-
molecular levels by using infrared spectroscopy and
have established that infrared spectroscopy can be used
to generate a complex biochemical profile of saliva and
can identify several diabetes-specific spectral features.
Such a tactic differs fundamentally from existing
approaches that have examined individual (normally glu-
cose) or, at best, small numbers of molecules as poten-
tial disease biomarkers. While our conclusions as to the
diagnostic potential of IR are limited by the small num-
ber of subjects, further study into the potential utility of
infrared spectroscopy as a diagnostic, prognostic, and
research tool for diabetes seems warranted.
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