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Ferroptosis is an iron-dependent form of cell death characterized by the accumulation
of intracellular lipid reactive oxygen species (ROS). Ferroptosis is significantly different
from other types of cell death including apoptosis, autophagy, and necrosis, both
in morphology and biochemical characteristics. The mechanisms that are associated
with ferroptosis include iron metabolism, lipid oxidation, and other pathophysiological
changes. Ferroptosis inducers or inhibitors can influence its occurrence through different
pathways. Ferroptosis was initially discovered in tumors, though recent studies have
confirmed that it is also closely related to a variety of neurological diseases including
neurodegenerative disease [Alzheimer’s disease (AD), Parkinson’s disease (PD), etc.]
and stroke. This article reviews the definition and characteristics of ferroptosis, the
potential mechanisms associated with its development, inducers/inhibitors, and its role
in non-neoplastic neurological diseases. We hope to provide a theoretical basis and
novel treatment strategies for the treatment of central nervous system diseases by
targeting ferroptosis.
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INTRODUCTION

Ferroptosis, an iron-dependent type of programmed cell death, is different from apoptosis,
autophagy, and necrosis with regards to both morphology and biochemistry (Stockwell et al.,
2017). Previous studies have shown that ferroptosis is not only related to tumorigenesis (Liang
et al., 2019) but also involved in the processes of various neurological diseases (Alim et al., 2019;
Derry et al., 2020). However, its specific role and mechanism in tumorigenesis and neurological
diseases are still unclear. This article reviews the mechanism of ferroptosis and its role in
non-neoplastic neurological diseases to provide novel ideas for the development of therapeutic
drugs that target ferroptosis.

DEFINITION AND CHARACTERISTICS OF FERROPTOSIS

Dolma et al. (2003) found that the compound erastin can selectively kill RAS-mutated tumor
cells, without any subsequent changes in nuclear morphology, DNA fragmentation, and other
processes. Interestingly, erastin cannot be repressed by caspase inhibitors. Later, other scholars
found that this ferroptosis can be inhibited by iron-chelating agents, and is accompanied by
an increase in lipid reactive oxygen species (ROS) in the cell cytoplasm (Yang and Stockwell,
2008). Therefore, Dixon et al. (2012) named this form of cell death ferroptosis and defined it as an
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iron-dependent, non-apoptotic form of cell death characterized
by intracellular lipid ROS accumulation, after which the concept
was widely accepted by other researchers (Cao and Dixon, 2016;
Xie et al., 2016).

Apoptosis, which refers to a process of programmed
cell death dependent on caspase-3, mainly manifests as cell
shrinkage, the disappearance of the mitochondrial membrane
potential, chromatin concentration, and plasma membrane
invagination to form apoptotic bodies (Williams and Smith,
1993). Autophagy is a process in which cells use lysosomes to
degrade damaged organelles or macromolecules, The autophagy
process is accompanied by the expansion of the Golgi
apparatus and endoplasmic reticulum, nuclear condensation,
and formation of the autophagosome (Mizushima and Komatsu,
2011). Necrosis refers to cell death that is caused by physical,
chemical, or biological factors. It is characterized by swelling
of the organelles, rupturing of the plasma membrane, and
the release of cellular contents, all of which lead to the
development of inflammation (Wallach et al., 2016). On
the other hand, ferroptosis is characterized by a complete
plasma membrane, increased mitochondrial membrane density,
a reduced or disappeared crest, increased release of oxidized
polyunsaturated fatty acids (PUFAs), and lipid ROS in the
cytoplasm, all of which can be inhibited by iron-chelating agents
(Stockwell et al., 2017).

MECHANISM OF FERROPTOSIS

Iron metabolism dysfunction, intracellular lipid ROS production,
and degradation imbalance contribute to the occurrence
of ferroptosis.

Iron Metabolism and Ferroptosis
Free Fe3+ in the blood forms a complex with extracellular
transferrin (Tf), which binds to transferrin receptor 1 (TfR1) on
the cell membrane, and forms endosomes that are transported
into the cell under endocytosis. In the cell, Fe3+ is catalyzed into
Fe2+ by the enzyme’s six-transmembrane epithelial antigen of
the prostate (STEAP3), which is transported from the endosome
to the cytosol through the divalent metal ion transporter 1
(DMT1; Koskenkorva-Frank et al., 2013). Fe2+ can be pumped
out through ferroportin, which is located on the cellular
membrane or stored in ferritin in the cytoplasm to achieve
intracellular iron homeostasis. When excess Fe2+ is produced
in the cells, lipid ROS are generated by the Fenton chemical
reaction, leading to the continuous accumulation of lipid ROS
within the cell and the eventual development of ferroptosis (Cao
and Dixon, 2016; Xie et al., 2016).

Lipid ROS Metabolism and Ferroptosis
The accumulation of lipid ROS is an important cause of
ferroptosis, though the exact way it is produced remains to be
elucidated (Muhoberac and Vidal, 2019; Stockwell and Jiang,
2020). ROS can interact with PUFAs on the lipid membrane to
form lipid ROS. When a large amount of lipid ROS accumulates
in the cell, it causes ferroptosis. Lipoxygenase is likely involved
in the formation of iron-dependent lipid ROS, as it catalyzes the

oxidation of PUFAs to lipid hydroperoxides. When numerous
iron ions are present in the cytoplasm, lipid hydroperoxides form
toxic lipid free radicals, causing cellular damage. In parallel, these
free radicals can transfer protons near PUFAs, which starts a
new round of lipid oxidation reaction and causes more serious
oxidative damage (Nakamura et al., 2019; Su et al., 2019; Wang
et al., 2020).

GPX4 Regulation and Ferroptosis
GPX4 is a class of antioxidant enzymes. GSH can degrade H2O2
and lipid ROS into H2O, and their corresponding alcohols,
respectively, thus reducing intracellular lipid hydroperoxide, and
organic hydroperoxide. These reactions cause cells to avoid
oxidative damage, which is essential for cell survival (Imai et al.,
2017; Ingold et al., 2018; Li et al., 2020).

GSH Synthesis Regulation Pathway and Ferroptosis
As GSH is a necessary co-factor for the function of GPX4, its
synthesis directly affects GPX4 activity. The cystine/glutamate
reverse transporter on the cell membrane, system x−c , transports
glutamate to the outside of the cell and cystine into the cell.
Once in the cytoplasm, cystine is transformed into cysteine
(Cys), which is involved in the synthesis of reduced GSH
(Massie et al., 2015). When system x−c transport cystine is
blocked, the intracellular Cys levels are reduced, resulting
in a decrease in GSH synthesis, a loss of GPX4 activity,
intracellular lipid ROS accumulation, and ferroptosis. Inducers
such as erastin can reduce intracellular Cys levels, inhibit
GSH synthesis, and attenuate the accumulation of intracellular
lipid ROS, leading to the development of ferroptosis by
inhibiting the activity of system x−c (Dai et al., 2020;
Wang et al., 2020).

Mevalonate Regulation Pathway
GPX4 is a selenium-containing protease, the activity of which is
affected by the catalytic center selenocysteine (Sec). The genetic
code of Sec is UGA, which is the same as the stop codon.
Therefore, special transport RNA (tRNA[Ser]Sec) is required
for this process (Wirth et al., 2014; Schweizer and Fradejas-
Villar, 2016). The maturation process of tRNA[Ser]Sec, a single
tRNA that transports Sec, requires prenylation modification at
a specific adenine site. This is required for Sec to participate
in the synthesis of selenoproteins. The prenyltransferase uses
isopentenyl pyrophosphate (IPP) as the donor, which is
an important product of the mevalonate (MVA) pathway.
Therefore, the activity of GPX4 is regulated by MVA (Seibt
et al., 2019). Interestingly, statins can hinder the maturation of
tRNA[Ser]Sec, which affects the synthesis of GPX4, and causes
ferroptosis (Yu et al., 2017).

Other Pathways
Other proteins regulate ferroptosis, such as the apoptosis
molecule p53, which inhibits the activity of the transporter,
reduces the intake of cystine and synthesis of GSH, and
hinders the activity of GPX4 by inhibiting the expression
of the system x−c subunit SLC7A11. p53 also reduces the
capacity of the antioxidant effect and increases lipid ROS levels,
leading to ferroptosis (Kang et al., 2019; Leu et al., 2019;
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Ye et al., 2019; Li et al., 2020a). Also, activation of
the mitogen-activated protein kinase (MAPK) pathway
can induce ferroptosis in cancer cells (Gao et al.,
2018; Li et al., 2018; Su et al., 2019). Thus, in cancer
cells with RAS mutations, blocking RAS/RAF/MEK
signal can inhibit ferroptosis caused by erastin (Imai
et al., 2017). However, the specific mechanism is still
not clear.

FERROPTOSIS INDUCER

Systeme x−
c

Systeme x−c is a heterodimer composed of the transmembrane
transporter SLC7A11 and regulatory protein SLC3A2L
connected by disulfide bonds. This complex mediates cystine
entry into cells and glutamate exit from the cells (Bridges et al.,
2012; Massie et al., 2015). When the extracellular glutamate
is present in excess, it inhibits the transfer of extra cysteine
by systeme x−c , reduces intracellular Cys levels, and blocks the
synthesis of GSH, resulting in the accumulation of intracellular
lipid ROS and development of cell death (Tobaben et al.,
2011; Kang et al., 2014; Yang and Stockwell, 2016). Previous
studies have shown that after adding the ferroptosis inducer
erastin, the level of intracellular radiolabeled Cys becomes
significantly reduced, and the synthesis of GSH is blocked,
subsequently causing ferroptosis (Dixon et al., 2012; Du et al.,
2020). Sorafenib, a targeted therapeutic drug approved by the
United States Food and Drug Administration (US FDA) for
metastatic kidney cancer, can inhibit the activity of CRAF,
BRAF, VEGFR, and PDGFR-β kinase in tumor cells (Hiles
and Kolesar, 2008; Rini et al., 2020). Studies have shown that
sorafenib can induce the occurrence of ferroptosis in tumor cells,
opening up a novel method for tumor treatment (Sun et al., 2016;
Xu et al., 2020). Sulfasalazine (SAS) is a sulfonamide antifungal
drug that is widely used in the treatment of colitis. It can inhibit
the expression of systeme x−c subunit SLC7A11 and reduce the
levels of intracellular Cys, leading to the induction of ferroptosis
in the pancreas, breast, head, or neck cancer (Kim et al., 2018;
Yamaguchi et al., 2018; Yu et al., 2019; Shin et al., 2020).
Glutamate can reduce intracellular Cys expression by inhibiting
the transfer of systeme x−c , which leads to the inhibition
of GSH synthesis and causes ferroptosis (Song et al., 2018;
Wang et al., 2019).

GPX4 Inhibitor
While erastin acts on systeme x−c , it indirectly affects the synthesis
of intracellular GSH, which, in turn, affects the activity of
GPX4, causing the accumulation of intracellular lipid ROS and
triggering ferroptosis (Yang et al., 2014; Hao et al., 2017).
RAS selective lethal small molecule 3 (RSL3) cannot affect the
synthesis of GSH in the cell, but can directly inhibit the target
protein GPX4, resulting in loss of GPX4 activity and triggering
ferroptosis (Sui et al., 2018; Ye et al., 2019; Vu čkovi ć et al.,
2020). The small molecule FIN56 promotes the degradation of
the GPX4 protein and reduces the synthesis of the lipophilic
antioxidant coenzyme Q 10 (CoQ 10) through the MVA
pathway. This weakens the inhibitory effect of CoQ 10 on the

production of lipid ROS, leading to the occurrence of ferroptosis.
When GPX4 was overexpressed in cells, FIN56-induced cell
death was inhibited (Shimada et al., 2016; Gaschler et al., 2018).

GSH Depleting Agent
As a reducing agent of GPX4, GSH directly affects the
activity of GPX4 and induces ferroptosis when its synthesis is
blocked. Previous studies have found that, in RAS mutant cells,
buthionine sulfoximine (BSO) can inhibit the GPX4 synthesis,
which reduces the synthesis of GSH, inhibits GPX4 activity,
leads to the accumulation of intracellular lipid ROS, and causes
ferroptosis (Nishizawa et al., 2018; Zhang et al., 2018).

FERROPTOSIS INHIBITOR

Iron Chelating Agent
Iron chelating agents can turn free iron ions into stable
compounds, thereby reducing its toxic effects and inhibiting
the process of ferroptosis. Deferoxamine (DFO), a bacterial
metabolite, is one type of iron-chelating agent that can bind to
the six coordinated bonds in the center of the iron atom, reduce
the Fe2+ level in the cytoplasm, and inhibit lipid ROS formation
caused by Fe2+ accumulation. Ultimately, DFO inhibits the
occurrence of ferroptosis (Louandre et al., 2013; Ma et al., 2016;
Chen et al., 2017). Another chelating agent, ciclopirox (CPX), is a
classical antifungal drug. The addition of CPX to neurons in vitro
can inhibit glutamate-induced cell death (Ma et al., 2013).

Lipid ROS Inhibitor
Ferrostatin-1 is an aralkylamine-containing antioxidant that
can lower levels of lipid ROS in the cytoplasm and inhibit
ferroptosis induced by either erastin or RSL3 (Wenzel et al., 2017;
Li et al., 2019). Similarly, lipoxstatin-1, which contains amide
and sulfonamide subunits, can inhibit the lipid peroxidation
pathway and the occurrence of ferroptosis by lowering lipid
ROS levels in the cytoplasm (Skouta et al., 2014). Zileuton
is a novel and selective 5-lipoxygenase inhibitor that can
prevent the production of ROS in the cytoplasm and effectively
prevent glutamate-induced ferroptosis in mouse hippocampal
neuronal cells (Liu et al., 2015; Yuan et al., 2016). As a
well-known lipid ROS inhibitor, vitamin E can reduce cell death
by inhibiting the lipid oxidation pathway, thereby attenuating
neurological dysfunction (Carlson et al., 2016; Imai et al., 2017;
Hinman et al., 2018).

FERROPTOSIS AND NERVOUS SYSTEM
DISEASES

Statistics show that the number of patients with neurological
diseases such as stroke and neurodegenerative disease increases
year by year, thus placing a great burden on families and society.
However, due to the unclear pathogenesis of these diseases
and a lack of reliable diagnostic and treatment methods, a
greater in-depth research is urgently needed. Previous studies
on ferroptosis have focused on the field of cancer. In recent
years, researchers have found that ferroptosis can also exert a
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significant effect on neurological diseases (Yan and Zhang, 2019;
Yan et al., 2020).

Traumatic Brain Injury and Ferroptosis
Traumatic brain injury (TBI) is a leading cause of disability and
mortality, with 1.5 million hospital admissions and 57,000 deaths
in Europe each year. Acute brain injuries resulting from
TBI can lead to lasting neurologic and cognitive problems.
Mechanisms accounting for brain damage after TBI include
biophysical forces, neuropathological changes (e.g., multifocal
axonal injury, microglial activation, and microhemorrhages)
and pathological responses (e.g., inflammation, mitochondrial
dysfunction, and oxidative stress). Therapeutic strategies for
TBI include pharmacological agents (e.g., anti-inflammatory
agents and cell cycle inhibitors), noninvasive approaches (e.g.,
exercise therapy and transcranial magnetic stimulation), and
biologics. Recent studies have shown that ferroptosis may
play a role in TBI. After establishing a controlled cortical
impact injury (CCI) mouse model, Xie et al. (2016) observed
iron accumulation, reduced GPx activity, and increased lipid
ROS after TBI. They also found that the administration
of Ferrostatin-1 by cerebral ventricular injection reduced
ferroptosis and attenuated injury lesions. The role of ferroptosis
in TBI and the neuroprotective function of baicalein were
supported by Li et al. (2020a) who conducted in vivo
and in vitro studies and also showed that baicalein had
neuroprotective effects against posttraumatic epileptic seizures.
Xie et al. (2016) detected the expression of ferroptosis-related
molecules at 6 h, 12 h, 24 h, 48 h, and 72 h following
CCI in mice. They reported that overexpression of miR-
212-5p reduced ferroptosis while downregulation of miR-212-
5p induced ferroptosis partially by targeting prostaglandin-
endoperoxide synthase-2. Moreover, the administration of miR-
212-5p significantly improved learning and spatial memory in
CCI mice. Therefore, ferroptosis participates in the pathological
process of TBI, and inhibiting ferroptotic death via different
pathways may have neuroprotective effects. Additionally, due
to a damaged blood-brain barrier and impaired homeostasis,
TBI can contribute to secondary injury that occurs from hours
to months. The delayed period suggests a potential therapeutic
window intervention. However, because of limited data, the time
window is under exploration and more studies on ferroptosis
associated treatment for TBI are needed.

Stroke and Ferroptosis
Stroke has high morbidity, high lethality, and a high disability
rate. Stroke can be classified into either hemorrhagic or ischemic
stroke. Ischemic stroke develops due to carotid and vertebral
artery stenosis or occlusion, causing the insufficient blood
supply to the brain. This results in a depletion of oxygen
and nutrients within the brain, leading to oxidative stress,
mitochondrial damage, and ultimately, cell death (Andrabi et al.,
2020; Datta et al., 2020). Previous studies have found that
ferroptosis is closely related to ischemic stroke (Ahmad et al.,
2014) found that in a mouse ischemic stroke model, GSH was
significantly reduced, and the levels of lipid ROS were increased.
Other scholars report that ferroptosis can cause neuronal death

after ischemic stroke and that an inhibitor of ferrostatin-1 or
liproxatin-1 plays a protective role in the mouse ischemic stroke
model (Guan et al., 2019; Lan et al., 2020). Li et al. (2020a)
analyzed the ultrastructure of tissue samples from patients with
cerebral hemorrhage using transmission electron microscopy
and observed that ferroptosis coexists with apoptosis, necrosis,
and autophagy (Nikoletopoulou et al., 2013; Li et al., 2018).
The combined use of inhibitors that target multiple avenues
of cell death is better than the use of a certain form of death
inhibitor in reducing neuronal damage (Weiland et al., 2019).
Previous studies have found that selenium ions can enhance
the expression of GPX4 and inhibit ferroptosis by activating
the transcription factors TFAP2c and Sp1 (Ingold et al., 2018;
Alim et al., 2019; Conrad and Proneth, 2020). Treatment of
selenium ions can enhance the expression of the antioxidant
GPX4, protect from neuronal injury, and improve behavioral
defects in mouse models of stroke (Alim et al., 2019). Li et al.
(2020b) found that inhibition of ferroptosis alleviates early brain
injury after subarachnoid hemorrhage in vitro and in vivo, which
is associated with a reduction of lipid peroxidation. Therefore,
suppressing ferroptosis can be used as an effective treatment
for stroke.

Neurodegenerative Disease and
Ferroptosis
Alzheimer’s Disease and Ferroptosis
Alzheimer’s disease (AD) is a familial neurodegenerative disease.
The clinical manifestations include cognitive impairment,
memory decline, executive ability decline, and personality
changes, among others. The pathological features of AD include
the presence of senile plaques that are formed by extracellular
β-amyloid deposition, nerve fiber tangles formed by abnormal
phosphorylation of Tau protein, neuronal damage, and abnormal
synaptic function (Ballard et al., 2011; Palop and Mucke, 2016).
Characteristics associated with ferroptosis can be detected in
the brains of AD patients and mice, such as iron metabolism
disorder, glutamate excitotoxicity, and lipid ROS accumulation.
Numerous studies show that ferritin in the brain of AD
patients is related to the content of apolipoprotein in the
cerebrospinal fluid. Increased ferritin is accompanied by an
up-regulation in the expression of the AD risk gene APOE-
ε4, indicating that the iron levels in the brain affect the AD
process and that high levels of iron in the brain can be
used as a risk factor of AD (Ayton et al., 2015; Xu et al.,
2016). Additionally, glutamate excitotoxicity is involved in
the pathogenesis of AD. Dysfunction of systeme x−c during
ferroptosis can lead to an increase in the concentration of
extracellular glutamate, causing excitotoxicity (Kang et al., 2018;
Zille et al., 2019; Zhang et al., 2020). Furthermore, oxidative
stress is critically related to AD. Recent studies have shown that
oxidative stress can promote oligomeric Aβ disorder and tau
protein tangles-induced neurotoxicity (Jiang et al., 2016; Luengo
et al., 2019). Accumulation of lipid ROS during ferroptosis
can cause oxidative damage to cells, resulting in neuronal
damage and the development of AD (Xie et al., 2016; Wu
et al., 2018). Hambright et al. (2017) found that a knockout of
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GPX4 in the mouse brain neurons caused neuronal degeneration,
accompanied by cognitive dysfunction. However, administration
of the ferroptosis inhibitor, Liproxstatin-1, can reverse the
neuronal degeneration and improve the cognitive function of
mice (Hambright et al., 2017).

Parkinson’s Disease and Ferroptosis
Parkinson’s disease (PD) is a degenerative neurological disease
that is mainly observed in the elderly population. The clinical
manifestations include resting tremor, bradykinesia, muscle
stiffness, and posture and gait disorders, accompanied by
memory loss, mental decline, and emotional disorders. The
pathological features of the disease mainly include degeneration
and death of midbrain substantia nigra dopaminergic (DA)
neurons, reduced striatum DA concentration, and formation
of Lewy bodies (Goedert and Compston, 2018; Homayoun,
2018). Recently, researchers found that in PD patients, iron and
hydroxyl radical levels in the substantia nigra are increased,
leading to damage of DA neurons. Besides, other ferroptosis
characteristics such as GSH depletion have also been observed
in the substantia nigra of PD patients (Zhao, 2019; Devos
et al., 2020; Zhang et al., 2020). Another study reported
that loss of plasma ceruloplasmin iron oxidase activity in the
substantia nigra of PD patients, which led to the accumulation
of iron peroxide. Interestingly, iron chelating agents were
able to reverse the accumulation of iron ions caused by the
absence of ceruloplasmin, improve the exercise ability of PD
mice, and effectively reduce any neurological damage caused
by MPTP (Ayton et al., 2013), consistent with prior results
performed in PD patients (Grolez et al., 2015). Do Van et al.
(2016) and Dächert et al. (2020) confirmed using in vitro
brain slice examination and in vivo MPTP mouse model that
PKCα activation caused MEK activation, which, in turn, caused

ferroptosis. Therefore, iron chelators, ferrostatin-1, and PKC
inhibitors, which regulate ferroptosis, may represent novel drugs
for PD patients.

Huntington’s Disease and Ferroptosis
Huntington’s disease (HD) is a type of inherited neurological
disease caused by repeated amplification of CAG in the
HTT gene. The clinical manifestations of HD are involuntary
dance-like movements, dementia, and mood disorders (Roos,
2010; Wyant et al., 2017). Ferroptosis is related to the
excitotoxicity of glutamate and GSH-mediated redox reactions
in HD. Abnormal levels of glutamate, GSH, iron ions, and
accumulation of intracellular lipid ROS have also been detected
in HD patients (Dubinsky, 2017; Kumar et al., 2020). In animal
HD models, characteristics of ferroptosis, including blocked GSH
synthesis and decreased activity of GPXs, have been detected
(Ribeiro et al., 2012; Mason et al., 2013). Treatment of HD
rats using the ferroptosis inhibitor ferrostatin-1 was found to
inhibit lipid peroxidation and reduce neuronal death. However,
the use of iron chelating agents can reverse the changes of
lipid peroxidation inhibition and neuronal death reduction, and
significantly improve cognitive dysfunction of HD rats (Chen
et al., 2013; Skouta et al., 2014; Agrawal et al., 2018).

Periventricular Leukomalacia and
Ferroptosis
Periventricular leukomalacia (PVL), a secondary brain white
matter injury, is commonly seen in premature infants and
surviving children with postpartum asphyxia. Hypoxia before
and after the perinatal period causes ischemia of the peripheral
ventricle region of the child, resulting in damage to neurons
and oligodendrocytes (OLs) and abnormal formation of the
myelin sheath. Hypoxia also causes softening of the white matter

FIGURE 1 | Mechanisms of ferroptosis and non-neoplastic neurological diseases.
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around the ventricles, resulting in bilateral spastic hemiplegia,
quadriplegia, and mental retardation (Deng et al., 2008; Back,
2017). Indirect evidence has indicated that ferroptosis may
play a key role in the development of PVL. Inder et al.
(2002) found a large number of lipid oxidation products in
the cerebrospinal fluid of infants with PVL. Furthermore, OLs
death in PVL is related to lipid peroxidation, which is one of
the key characteristics of ferroptosis. These results suggest that
ferroptosis may be involved in the pathogenesis of PVL (Inder
et al., 2002). Similarly, other studies that used cultivated OLs
in cysteine-free medium found that exhaustion of GSH caused
ferroptosis in cells, and the administration of ferrostatin-1 can
effectively prevent ferroptosis in OLs (Novgorodov et al., 2018;
Nobuta et al., 2019).

CONCLUSIONS AND PROSPECTS

In this review article, we mainly describe the role of ferroptosis
in non-neoplastic neurological diseases, including TBI, stroke,
neurodegenerative disease, and PVL (Figure 1). And summarize
the inducer and inhibitor of ferroptosis used in previous research.
Ferroptosis is an iron-dependent form of cell death characterized
by the accumulation of intracellular lipid ROS. Ferroptosis is

closely related to the progress of various neurological diseases
including AD, PD, HD, and stroke. However, there are still many
issues in this field that need to be resolved. First, researchers need
to examine the relationship between ferroptosis and other cell
death types such as apoptosis, autophagy, and necrosis. Second,
the similarities and differences in the molecular mechanism
of ferroptosis across different disease states need to be better
defined. Third, there needs to be further research on drugs
that target ferroptosis to determine whether they can play an
important role in the clinical treatment of neurological diseases.
In-depth research on ferroptosis will help us further clarify the
pathogenesis of neurological diseases and provide a theoretical
basis for clinical treatment targeting ferroptosis to prevent and
treat neurological diseases.
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