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Abstract

This paper presents a variational framework for dense diffeomorphic atlas-mapping onto

high-throughput histology stacks at the 20 μm meso-scale. The observed sections are mod-

elled as Gaussian random fields conditioned on a sequence of unknown section by section

rigid motions and unknown diffeomorphic transformation of a three-dimensional atlas. To

regularize over the high-dimensionality of our parameter space (which is a product space of

the rigid motion dimensions and the diffeomorphism dimensions), the histology stacks are

modelled as arising from a first order Sobolev space smoothness prior. We show that the

joint maximum a-posteriori, penalized-likelihood estimator of our high dimensional parame-

ter space emerges as a joint optimization interleaving rigid motion estimation for histology

restacking and large deformation diffeomorphic metric mapping to atlas coordinates. We

show that joint optimization in this parameter space solves the classical curvature non-iden-

tifiability of the histology stacking problem. The algorithms are demonstrated on a collection

of whole-brain histological image stacks from the Mouse Brain Architecture Project.

Author summary

New developments in neural tracing techniques have motivated the widespread use of his-

tology as a modality for exploring the circuitry of the brain. Automated mapping of pre-

labeled atlases onto modern large datasets of histological imagery is a critical step for elu-

cidating the brain’s neural circuitry and shape. This task is challenging as histological sec-

tions are imaged independently and the reconstruction of the unsectioned volume is

nontrivial. Typically, neuroanatomists use reference volumes of the same subject (e.g.

MRI) to guide reconstruction. However, obtaining reference imagery is often non-stan-

dard, as in high-throughput animal models like mouse histology. Others have proposed

using anatomical atlases as guides, but have not accounted for the intrinsic nonlinear

shape difference from atlas to subject. Our method addresses these limitations by jointly

optimizing reconstruction informed by an atlas simultaneously with the nonlinear change

of coordinates that encapsulates anatomical variation. This accounts for intrinsic shape

differences and enables rigorous, direct comparisons of atlas and subject coordinates.
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Using simulations, we demonstrate that our method recovers the reconstruction parame-

ters more accurately than atlas-free models and innately produces accurate segmentations

from simultaneous atlas mapping. We also demonstrate our method on the Mouse Brain

Architecture dataset, successfully mapping and reconstructing over 1000 brains.

Introduction

Mapping brain circuitry

Recent advances in brain imaging [1, 2], methods to label neurons [3], and computational

methods have brought about a new era of neuroanatomical research, with a focus on compre-

hensively mapping brain circuits [4]. Mapping whole-brain circuitry is important for three dis-

tinct reasons: scientific understanding of how the brain works, mechanistic understanding of

neurological and neuropsychiatric disorders, and as a comparison point for artificial neural

networks used in machine learning [5, 6].

Circuit mapping is technique limited, and falls into three broad scales corresponding to

distinct imaging modalities—indirect mapping at a macroscopic scale corresponding to

MRI-based methods [7], and direct mapping at light (LM) and electron microscopic (EM)

scales. For MRI and LM data, atlas mapping is an important step in the analysis. Several

approaches exist for gathering LM data at the whole brain level [8–10]. For some of these

approaches (two-photon serial block-face imaging, knife edge scanning microscopy and light

sheet microscopy for cleared brains) two-dimensional (2D) optical sections are acquired in

three-dimensional (3D) registry with each other, so that the only computational step required

is 3D volumetric registration of the individual brain data set to a canonical atlas. However,

for classical neurohistological approaches using tissue sectioning followed by histochemical

processing, the 2D sections are gathered independently and each section can undergo an

arbitrary rotation and translation compared to the block face. This may be considered a dis-

advantage of the classical neuroanatomical workflow, however the physical sectioning

method followed by conventional histochemical analysis has certain important advantages.

This allows for the full spectrum of histochemical stains, acquisition of physical sections for

downstream molecular analyses, and processing for larger brains (upto and including whole

human brains). Therefore it is necessary to perform an intermediate 2D to 3D registration

step, where the individually acquired 2D sections are mutually co-registered into a 3D

volume.

This paper develops a joint stack reconstruction and atlas mapping procedure that simulta-

neously restacks the 2D histology sections, applying a sequence of rigid motions to the sec-

tions, and estimates the diffeomorphic correspondence between the registered histology stack

and the 3D atlas. We apply these algorithms to data sets from the Mouse Brain Architecture

Project (MBAP), for which the experimental workflow generating the data utilizes a tape trans-

fer technique [11], allowing for the sections to maintain geometrical rigidity within section

and also allowing for physically disjoint components to maintain their spatial relations. The

tape method ensures that the number of missing sections is minimal, with serial sections cut at

a thickness of 20 μm and alternate sections subjected to Nissl staining alongside staining with

histochemical or fluorescent label. These Nissl stained sections form the basis of alignment to

a Nissl whole-brain reference atlas.

Variational solutions for informed reconstruction and registration of histology
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Computational anatomy methods for brain histology

The histological reconstruction problem has been explored by several groups previously.

Malandain first described the ill-posedness of reconstructing 3D sections and object curvature

without prior knowledge of the shape of the object [12]. Rigid transformations for stack recon-

struction have been estimated via block-matching of histological sections in [13], with point

information based on landmarks introduced to guide volume reconstruction [14]. Dense

external reference information such as MRI has been applied to guide reconstruction via regis-

tration of corresponding block-face photographs and for histology to MRI mapping [15, 16].

The principal contribution of this work is to rigorously solve the problem when an external

resource of identical geometry (such as an MRI of the same mouse) is not available, while

accommodating for the innate anatomical variation from atlas to subject. The lack of a same-

subject reference volume is often the standard in mouse brain histology and other large scale

histology studies. This places us into the computational anatomy (CA) orbit problem for

which constraints are inherited from an atlas that is diffeomorphic but not geometrically iden-

tical. With the availability of dense brain atlases at many resolution scales [17–20], methods to

map atlas labels onto target coordinate systems are being ubiquitously deployed across neuro-

science applications. Since Christensen’s early work [21], diffeomorphic transformation has

become the de-facto standard as diffeomorphisms generate one-to-one and onto correspon-

dences between coordinate systems. Herein we focus on the diffeomorphometry orbit model

[22, 23] of computational anatomy [24], where the space of dense volume imagery is modelled

as a Riemannian orbit of an atlas under the diffeomorphism group. We use the large deforma-

tion diffeomorphic metric mapping (LDDMM) algorithm first derived for dense imagery by

Beg [25] to retrieve the unknown high-dimensional reparameterization of the template

coordinates.

Of course, for the histological stacking problem solved here, the interesting twist is the aug-

mentation of the random orbit model with 3 rigid motion dimensions for each target section.

At 20 μm, this implies as many as 500 sections augmenting the high-dimensionality of the dif-

feomorphism space to include as many as 1500 extra dimensions for planar rigid motions for

restacking. Here lies the crux of the challenge. To accommodate the high-dimensionality of

the unknown rigid motions, the space of stacked targets is modelled to have finite-squared

energy Sobolev norm, which enters the problem as a prior distribution restricting the rough-

ness of the allowed restacked volumes. The variational method jointly optimizes over the high-

dimensional diffeomorphism associated to the atlas reparameterization and the high-dimen-

sional concatenation of rigid motions associated to the target.

Materials and methods

The log-likelihood model of the histology sectioning problem

Fig 1 shows the components of the model for the histology stacking problem. We define the

mouse brain to be sectioned as a dense three-dimensional (3D) object Iðx; y; zÞ; ðx; y; zÞ 2 R3,

modelled to be a smooth deformation of a known, given template I0 so that I = I0 � φ−1 for

some invertible diffeomorphic transformation φ. The Allen Institute’s mouse brain atlas [26]

(CCF 2017) is taken as the template. Distinct from volumetric imaging such as MRI which

delivers a dense 3D metric of the brain, the histology procedure (bottom row, Fig 1) consisting

of sectioning, staining, and imaging generates a jitter process which randomly translates and

rotates the stack sections. Denote the rigid motions acting on the 2D sectioning planes

Ri : R2
! R2

,

Riðx; yÞ ¼ ð cosyixþ sinyiyþ txi ; � sin yixþ cosyiyþ t
y
i Þ ; ðx; yÞ 2 R2

; ð1Þ

Variational solutions for informed reconstruction and registration of histology
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with θi the rotation angle and ðtxi ; t
y
i Þ 2 R2

the translation vector in section i. The histology

stack Jiðx; yÞ; ðx; yÞ 2 R
2
; i ¼ 1; . . . ; n, is a sequence of 2D image sections with jitter under

smooth deformation of the atlas in noise:

Ji � Riðx; yÞ ¼ I0 � φ� 1ðx; y; ziÞ þ noiseðx; yÞ; ðx; yÞ 2 R
2 : ð2Þ

Modeling the photographic noise as Gaussian and conditioning on the sequences of jitters

Ri, i = 1, . . ., n and atlas deformation I = I0 � φ−1, φ 2 Diff, the photographic sections Ji are a

Fig 1. The histological sectioning model. The template I0, the mouse brain in the orbit I 2 I and observed

histological sections Ji, i = 1, . . ., n are illustrated. The Sobolev image intensity prior and the shape prior are depicted in

the top row. The model shows the template and mouse brain as elements of the same orbit I0; I 2 I , such that there

exists diffeomorphism I = I0 � φ−1, φ 2 Diff.

https://doi.org/10.1371/journal.pcbi.1006610.g001
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sequence of conditionally Gaussian random fields with log-likelihood

‘ðv;R; JÞ ¼
X

i

� ai

Z

R2

jJi � Riðx; yÞ � I0 � φ
v;� 1ðx; y; ziÞj

2dxdy
� �

: ð3Þ

Here αi is a weighting factor dependent on the noise of each section such that damaged sec-

tions can be weighted; v denotes the vector field which indexes the deformation as a diffeo-

morphic flow (see below).

The priors: Diffeomorphisms and Sobolev smoothness of images

The parameterization of the histology pipeline augments the standard random orbit model of

computational anatomy with the rigid-motion dimensions of the random jitter sectioning pro-

cess. The unknowns to be estimated become ðR1; . . . ;Rn;φÞ 2 R
3n � Diff for n−sections. At

20 μm then n = 500 implying the nuisance rigid motions are of high dimension O(1500). The

solution space must be constrained. We use priors on the deformations and on the rigid

motion stacking of the images.

The diffeomorphism prior. The histological stacking constrains the brains as smooth

transformations of the template, where the diffeomorphisms are generated as diffeomorphic

flows φt 2 Diff [24], solving the ordinary differential equation

_φt ¼ vt � φt; t 2 ½0; 1�; φ0
¼ identity ; ð4Þ

with vt the Eulerian velocity taking values inR3
, identity the identity mapping. The top row of

Fig 1a shows that each φ has an inverse and that the random orbit model assumes any individ-

ual brain I 2 I can be generated from the exemplar under the action of the diffeomorphism,

so that for some φ 2 Diff, I = I0 � φ−1.

To score the distances between mouse brain coordinate systems and reject outlier solutions

we use geodesic flows minimizing metric length [27]. Large deviations as measured by the dif-

feomorphometry metric [22] from template atlas to target mouse brain are thus removed from

the solution space. The vector fields are modeled to be in a reproducing kernel Hilbert space

(RKHS) (V, k�kV), supporting one continuous spatial derivative, and having geodesic length

between coordinate systems determined by the norm-square kvk2

V of the RKHS:

kvk2

V ¼
X3

i¼1

Z

R3

ðð� r2 þ 1Þ
2viðx; y; zÞÞ

2dxdydz <1 : ð5Þ

This square-metric is used as a quadratic potential for the smoothness prior between images

I; I0 2 I [28, 29] minimizes the action

r2ðI; I0Þ ¼ min
φ:φ0¼id ;φ1 �I¼I0

Z 1

0

kvtk
2

Vdt : ð6Þ

See S2 Text for the explicit equations for geodesics satisfying the Euler-Lagrange equations

[27, 30] and S1 Text for the matrix Green’s kernel.

We use the notation φv to emphasize the dependence of the diffeomorphism and the geode-

sic metric on the vector field v. Strictly speaking, the group generated by integrating (4) with

finite norm k�kV is both dependent on the norm of V as well as a subgroup of all diffeomorph-

isms; we shall suppress that technical detail in the notation.

The prior distribution on image smoothness. To score the maximum a-posteriori

(MAP) reconstruction of the rigid motions acting on the stack, we exploit a smoothness prior

on the reconstructed histology stack which enforces the fact that anatomical structures are

Variational solutions for informed reconstruction and registration of histology
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smooth and continuous. We model the images as arising from a smooth “Sobolev” or RKHS I
2Hk supporting derivatives @hf ¼ @h1þh2þh3

@xh1 @yh2 @zh3
f that are square integrable, with norm:

kIk2

Hk ¼
X

h1 ;h2 ;h3:j
P3

i¼1
hi j�k

Z

R3

j@hIðx; y; zÞj
2dxdydz :

ð7Þ

This is a quadratic form for a Gaussian random field prior on the dense histology stack with

zero mean and covariance dependent on the squared norm kIk2

Hk . For the purpose of stacking,

the z-axis sections are sparse 20-40 μm; the differential operators @h are implemented via the

difference operator along the sectioning z-axis (see Eq (8)). The Gaussian field has covariance

determined by the difference operators; see [31] for example. We define the mixed differen-

tial-difference operator Dh as the centered difference for the z-partial derivatives,

Dhf ðx; y; zÞ ¼ @h1 ;h2

f ðx; y; z þ D=2Þ � f ðx; y; z � D=2Þ

D

� �

: ð8Þ

The gradient is forced to 0 at the boundaries of the image.

MAP, penalized-likelihood reconstruction

Model the random sectioning with section-independent jitter as a product density

pðRÞ ¼
Q
ipðyi; t

x
i ; t

y
i Þ, the priors centered at identity, with the priors on θ circular Gaussian

with standard-deviation σθ and translation with means mxc ; m
y
c at the center of the sections with

sxc ¼ s
y
c :

pðy; tx; tyÞ ¼
1
ffiffiffiffiffiffi
2p
p

sy
e
� y2

2s2
y

1
ffiffiffiffiffiffi
2p
p

sxc
e
�
ðtx � mxc Þ

2

2s2
c

1
ffiffiffiffiffiffi
2p
p

s
y
c
e
�
ðty � m

y
c Þ

2

2s2
c : ð9Þ

We choose our standard-deviations so that they are small relative to the center of the image,

and a small rotation, roughly 5 percent of the total range of each. Generating MAP estimates

of the rigid motions generates the MAP estimator of the histology restacking problem denoted

as

IRðx; y; ziÞ ¼ Ji � Riðx; yÞ; ðx; yÞ 2 R
2
; i ¼ 1; . . . ; n :

Since the diffeomorphisms are infinite dimensional, the maximization of the log-likelihood

function with respect to a function with the deformation penalty is termed the “penalized-like-

lihood estimator”. Conditioned on the known atlas, the augmented random variables to be

estimated are ðR1; . . . ;Rn;φÞ 2 ðR
3n � Diff Þ.

Problem 1 (MAP, Penalized-Likelihood Estimator).

Given histology stack Jiðx; yÞ; ðx; yÞ 2 R
2; i ¼ 1; . . . and reconstructed stack IR(�, zi) = Ji �

Ri(�), i = 1, . . ., n modelled as conditionally Gaussian random fields conditioned on jitter and
smooth dormation of the template. The joint MAP, Penalized-Likelihood estimators arg maxR,v

log π(R, v|J) given by

argmaxR;v �
1

2

Z 1

0

kvtk
2

Vdt �
1

2

X

i

kDhI
Rð�; ziÞk

2

2

þ
X

i

ðlog pðRiÞ � aikI
Rð�; ziÞ � I0 � φ

v;� 1ð�; ziÞk
2

2
Þ:

ð10Þ

Variational solutions for informed reconstruction and registration of histology
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The MAP, Penalized-Likelihood estimators satisfy

R� ¼ argmaxRi ;i¼1;...

X

i
ðlog pðRiÞ �

1

2
kDhI

Rð�; ziÞk
2

2
� aikI

Rð�; ziÞ � I0 � φ
v� ;� 1ð�; ziÞk

2

2
Þ;

v� ¼ argmaxv �
1

2

Z 1

0

kvtk
2

Vdt �
X

i

aikI
R� ð�; ziÞ � I0 � φ

v;� 1ð�; ziÞk
2

2

8
>>><

>>>:

with k � k2

2
denoting the norm per z-axis section:

kf ð�; ziÞk
2

2
¼

Z

R2

f ðx; y; ziÞ
2dxdy : ð11Þ

We call this the atlas-informed model. The first two prior terms of (10) control the

smoothness of template deformation and the realigned target image stack, with the third keep-

ing the rigid motions close to the identity. The last term is the “log-likelihood” conditioned on

the other variables.

The optimization for the R� rigid-motions is not decoupled across sections because of the

smooth diffeomorphism of the LDDMM update and the Sobolev metric represented through

the difference operator across the z− sections. Clearly, the smooth diffeomorphism is able to

interpolate through the measured target sectioning data when the restacking solution gives a

relatively smooth target, as diffeomorphisms are spatially smooth with at least one derivative.

The optimization of the vector field v� corresponds to the LDDMM solution of Beg [25].

The principal algorithm used for solving this joint MAP-penalized likelihood problem

alternates between fixing the rigid motions and solving LDDMM and fixing the diffeomorph-

ism and solving for the rigid motions. This is described below in the following section.

When there is no atlas available this is equivalent to setting αi small and becomes a MAP

rigid motion restacking of the sections:

argmaxRi ;i¼1;...

X

i

logpðRiÞ �
1

2
kDhI

Rð�; ziÞk
2

2

� �

:

We term this the atlas-free model. The gradient of the rigid motions with respect to the com-

ponents of translations tx, ty and rotation θ is defined in S3 Text. The registration is not inde-

pendent across sections due to coupling through the Sobolev metric.

Iterative algorithm for joint penalized likelihood and MAP estimator

Here we describe the details of the algorithm used for solving for the MAP/penalized–likeli-

hood problem described above. The algorithm alternately fixes the set of rigid motions while

updating LDDMM and fixes the diffeomorphism while updating the rigid motions.

Algorithm 1.
0. Initialize φnew, Rnew  φinit, Rinit, Iold  J � Rinit:
1. Update φold  φnew;Roldi  Rnewi , Iold(�, zi)  Inew(�, zi), i = 1,. . ..
2. Update LDDMM for diffeomorphic transformation of atlas coordinates:

vnew ¼ argmaxv �
1

2

Z 1

0

kvtk
2

Vdt �
X

i

aikI
R� oldð�; ziÞ � I0 � φ

v� 1

1
ð�; ziÞk

2
;

φnew ¼

Z 1

0

vnewt � φ
new
t dt þ id :

ð12Þ

Variational solutions for informed reconstruction and registration of histology
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3. Deform atlas I0 � φ
new−1 and generate new histology image stack:

Rnew ¼ arg max
Ri ;i¼1;...

X

i

ð logpðRiÞ �
1

2
kDhI

Rð�; ziÞk
2

2
� aikI

Rð�; ziÞ � I0 � φ
new� 1ð�; ziÞk

2

2

�

;

IR� newð�; ziÞ ¼ Ji � Rnewi ð�Þ ; i ¼ 1 . . .

ð13Þ

4. Return to Step 1 until convergence criterion met.

The form of the gradients for the rigid motions is given in S4 Text. The LDDMM update

solutions are given by Beg [25].

Software implementation

The algorithm described above is applied to Nissl histological stacks using the Allen Institute’s

mouse brain atlas as a template. The Allen Mouse Brain Atlas is a micron-scale atlas that

includes annotated Nissl-stained images at 10, 25, 50, and 100 μm voxel resolution, with 738

labeled compartments in the annotation.

Atlas mapping is computed on the Nissl-stained histological image stack showing the clear

definition of anatomical boundaries. The associated fluorescent tracer images are transformed

to the Nissl stack so that the atlas subvolume labels can be cast onto the new modality. The

fluorescent and Nissl images are registered within animals by applying rigid registration based

on a mutual information cost function.

A software pipeline which performs start-to-finish registration operations was imple-

mented on a high performance computing cluster for atlas-mapping and histology restacking

on the Mouse Brain Architecture data. To date, the pipeline has been successfully run on over

1000 MBAP brains. The general pipeline workflow is illustrated in Fig 2. In our application,

we apply a two channel LDDMM [32] algorithm for the optimization with respect to φ, where

the first channel is the Nissl-stained grayscale image, and the second channel is a mask of the

brain tissue with ventricles and background set to a pixel value of zero. The brain mask for

each brain stack is automatically generated by thresholding at an estimated background inten-

sity value and applying morphological opening and closing for denoising. The threshold value

is estimated by a RANSAC-like procedure over the image histogram, assuming a normal dis-

tribution of intensity values in the image foreground. A first-order Sobolev-norm (see below)

is used for the smoothness constraint regularization of the histology stack. In order to accom-

modate for sections damaged by the histology process or structures excluded from imaging,

the objective functions in all parts of the algorithm are optimized with respect to only the

Fig 2. Histology registration pipeline workflow. The pipeline begins with an atlas volume and target sections, proceeds

through nissl-to-atlas mapping following by fluoro-to-nissl mapping, and ends with connectivity analysis.

https://doi.org/10.1371/journal.pcbi.1006610.g002
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image data that exists. Essentially, this is a masking procedure on the cost function that allows

matching between a whole atlas brain and some target which is a partial, or subset of a whole

brain.

After registration of the structural Nissl image, the fluorescence volume is registered to its

corresponding Nissl volume. The registration is restricted to rigid motions on each individual

section. The optimization bears a similar form to Eq (13) with the squared error matching

term replaced with mutual information in order to account for the different modalities of the

template and target histology stack. Once fluoro-to-Nissl registration is complete, the Nissl

segmentation can be applied to the fluorescence image.

The LDDMM algorithm that maps the atlas image to an aligned stack of sections is imple-

mented in C++. Images and other data are stored as basic arrays, and there are no dependen-

cies other than for FFTs (we use FFTW or Intel MKL depending on availability). The

remainder of code is written in Matlab (Natick, MA).

The run-time/complexity for the volume LDDMM algorithm has complexity order nT Nvox-
log(Nvox), where nT is the number of steps for integrating the time varying velocity field, and

Nvox is the total number of voxels. The slice based portion of the code is order Nvox. While the

FFTs are order NlogN, in practice most computation time is spent during linear interpolation

(order N). The end-to-end running time from initial stack alignment to completed atlas regis-

tration is approximately 6-8 hours using 8 cores on an Intel Xeon E5-2665 processor for target

and template image volumes of approximately 200 × 300 × 300 voxels. Jobs are performed in

parallel on a high performance cluster at CSHL. The fluoro-to-nissl cross registration running

time is approximately 1 hour on the same environment and volume size.

The following hyper-parameters are required by our model, with sample values provided

for the MBAP dataset:

1. the weights between the matching term (1.0), the regularizing prior (0.001), and the Sobolev

norm (1.0) on the rigid objective function

2. the variances of the priors on rotation (p
9
) and translation (7.0) in each stacking plane

3. the weight between the matching term (0.4) and the regularizing term in LDDMM (1.0)

4. the LDDMM kernel size (a cascade of 0.05, 0.02, and 0.01)

5. the initial gradient descent step size (0.000025 for rigid parameters and 5e-13 for LDDMM

parameters)

The hyper-parameters were selected by grid search on a predefined range of parameter val-

ues, testing the rigid stack alignment and LDDMM parameters separately.

Results and discussion

Validation on simulated reconstructions

Binary phantom with curvature distortion. The model was applied to binary image

phantoms in order to examine the “curvature” problem in which a 3D curved object cannot be

accurately reconstructed after being sectioned. This is illustrated in Fig 3. We produced sec-

tions through the 3D phantom, applying the atlas-free and the atlas-informed models. The

results from the atlas-free algorithm in which the sections are aligned based on the Sobolev

smoothness followed by mapping of the atlas via LDDMM are summarized in Fig 3c. The

atlas-free section alignment reconstructs the target stack, demonstrating a cylindrical recon-

struction rather than the curved template shape, followed by LDDMM alignment I0 � φ−1.

This illustrates the curvature issue. The atlas coordinate grid is transformed significantly

Variational solutions for informed reconstruction and registration of histology
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(bottom right of Fig 3c) in order to match the target. Despite this significant deformation,

there is some residual error in the atlas-to-target mapping with the remaining tendrils where

the ends of the phantom did not shrink inwards. Here, the energy required to push the ends of

the atlas inwards was greater than the potential image matching improvement.

Shown in Fig 3d is the atlas-informed solution. The bottom row shows that simultaneously

solving for reconstruction and registration parameters allows for more consistent stack recon-

struction of the target resulting from the influence of the smooth deformation of the template

onto the target in the joint solution.

These results are depicted by the motions of the atlas coordinate grids when deforming

onto the targets in Fig 4. Tandem optimization of section alignment parameters and diffeo-

morphisms produces a nonlinear mapping with lower metric cost (Fig 4c is less warped than

Fig 4b).

Simulated jitter on the Allen atlas. A similar experiment was performed using the Allen

mouse brain atlas as the 3D phantom. A target histology stack was generated by sectioning the

Allen atlas in simulation and applying random rigid transforms to its coronal sections. The

atlas images were sampled at 40 μm isotropic voxels. This is depicted in Fig 5a. A simulated

atlas was generated by applying a given random diffeomorphism to the Allen atlas. This ran-

dom diffeomorphism is depicted in Fig 5c. The histology stacks were then reconstructed and

diffeomorphic transformations generated between the atlas and target stacks using both mod-

els, intending to recover both the unknown rigid transforms from Fig 5a and the unknown

Fig 3. Comparison of atlas-free and atlas-informed models in simulated binary phantom. a) An illustration of the

classic curvature reconstruction problem. b) The unobserved 3D-phantom is randomly sectioned and observed as Ji,
i = 1, . . ., n. c) Reconstruction of the histological stack using the atlas-free method. The top row shows the histological

stack and atlas. The bottom row shows the reconstructed histological stack IR̂ alongside the deformed phantom atlas

I = I0 � φ−1 which has been mapped to histological sections, and the diffeomorphic change of coordinates φ̂ � 1. d)

Reconstruction of phantom using the atlas-informed model. Each row depicts iterations of the reconstructed

histological stack IR̂ alongside the deformed atlas I ¼ I0 � φ̂ � 1 and deformed coordinates. The bottom row is the

convergence point of the algorithm.

https://doi.org/10.1371/journal.pcbi.1006610.g003
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diffeomorphism from Fig 5c. Fig 5b shows the atlas-free method method (bottom left) com-

pared to the atlas-informed method (bottom right). The atlas-informed method nearly repro-

duces the original coordinates whereas the atlas-free method drifts away from the original

coordinates. Note that although the diffeomorphisms are not identical, this does not necessar-

ily indicate segmentation error as small differences in stack alignment can be compensated for

by nonlinear registration during atlas-mapping.

Simulated bias and variance statistics. Figs 6 and 7 show results quantifying the bias and

viarance of the joint estimation of the diffeomorphism transformation and the rigid motion

jitter in simulation. Eq (2) was simulated over a range of Gaussian white noise selections while

simultaneously varying the jitter rigid motions of the sections along with multiple deforma-

tions of shearing applied to the template I0. Shearing produced images where each section was

successively offset by 0.25 pixels in both x and y directions, cumulatively producing the

“shear” effect illustrated in Fig 6. Fig 7a keeps the stack jitter fixed and varies the noise levels;

Fig 7b varies the stack jitter. The random rigid motion jitter was normally distributed

ðtx; tyÞ � N ðm ¼ 0;s2 ¼ 36Þ; y � N ðm ¼ 0;s2 ¼ 100Þ in pixel units. The RMSE, bias, and

standard deviation of the estimated parameters were computed in each experiment and plotted

as a function of error units versus noise level. 500 simulations per experiment were performed.

Fig 4. Comparison of resulting diffeomorphic transformation of atlas phantoms. The warped coordinate grids

illustrate the difference in the mapping deformation from the atlas-free methods from (A) to histology stack target (B)

versus the atlas-informed algorithm which produces (C).

https://doi.org/10.1371/journal.pcbi.1006610.g004

Variational solutions for informed reconstruction and registration of histology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006610 December 26, 2018 11 / 20

https://doi.org/10.1371/journal.pcbi.1006610.g004
https://doi.org/10.1371/journal.pcbi.1006610


In each experiment, estimator accuracy is preserved up to high noise levels. At typical noise

levels (σ� 0.5), we observe subpixel RMSE and small bias. Fig 7b shows that the rotation esti-

mator is virtually unbiased whereas the translation estimator does have small subvoxel bias. It

is likely that more rotational error is accounted for by section realignment than deformable

mapping, whereas both play a relatively balanced role in translation correction. Small motions

are ill-posed in that small rigid-motions can accommodate small atlas deformation. Fig 7c (top

row) shows the case where there is jitter in the target stack. Estimator statistics are computed

in each of these cases showing similar subpixel errors.

A similar analysis was performed for the Allen atlas brain phantom simulations. The recon-

struction RMSE observed in the brain phantom simulation (bottom row of Fig 7c) is lower

Fig 5. Atlas phantom simulation to validate recovery of sectioning parameters and diffeomorphic shape

difference. a) The ground truth target I is sectioned to generate the observed target Ji. b) Transformed grids illustrating

the brain phantom atlas (top) shown mapped onto the histological stack using the atlas-free algorithm (bottom left)

and the atlas-informed algorithm (bottom right). c) The ground truth diffeomorphism to be recovered.

https://doi.org/10.1371/journal.pcbi.1006610.g005
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than that observed in the simple curved phantom in pixels. It is likely that this is due to the

presence of more contour lines in grayscale images versus binary images. These additional fea-

tures allow for more accurate distinction of matching error than simpler images with small

numbers of distinct level lines. This is consistent with the demonstration in [27] showing that

the stabilizer of the group corresponding to vector fields tangent to the level lines of the image

cannot be uniquely identified or retrieved via any mapping methods that look at color or con-

trast of the image as the identifying feature.

Mouse Brain Architecture Project data

A final experiment was conducted on brain data sampled from the MBAP database, using the

Allen mouse brain as the atlas. We selected specific targets which were prone to poor registra-

tion results due to image intensity local minima. In particular, structures like the cerebellum

tend to be difficult to register accurately due to their folded nature; one fold can easily be mis-

taken for the adjacent fold, and if the target and atlas are not well initialized, the deformation

required to flow one fold onto another can have a high metric cost. We are also interested in

inspecting lower-contrast structures like the corpus callossum, which may be poorly registered

due to local minima in other nearby bright structures. We also evaluate our mapping quality

in the hippocampal region, which is one of the most relevant regions for the study of neurode-

generative diseases.

The reconstructed histological target stack in the atlas-informed model shown in Fig 8a

takes on the shape of the atlas but is prone to reconstruction artifacts. The deformation grids

Fig 6. Simulated noise on a binary image phantom. Left column shows phantom for identity, shearing, and jitter of

sections (successive rows); right column shows Gaussian white noise added to the atlas at various standard deviations.

https://doi.org/10.1371/journal.pcbi.1006610.g006
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produced by the atlas-informed mapping is much smoother and has many fewer wrinkles than

the atlas-free mapping. This is seen clearly in Fig 9.

Fig 10 shows examples of improved segmentations in selected regions of the brain. The

atlas-informed model generates more accurate segmentation results and produces smoother

mappings as exhibited by the less wrinkled and distorted grids (bottom row b), showing more

consistent results throughout the MBAP dataset.

Conclusion

This paper examines the CA random orbit model at the mesoscale for the stacking of sectioned

whole brains coupled with mapping to annotated atlases. The standard CA model has been

expanded to include the O(3 × n) extra rigid motion dimensions representing the planar

Fig 7. Evaluation of estimator MSE, variance, and bias. a) Statistics on the translation-rotation estimators for noise levels

varying initial conditions. b) Statistics on the rigid motion estimators where the section jitter was added in a random fashion.

https://doi.org/10.1371/journal.pcbi.1006610.g007
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histology sections. The estimation procedure solved here simultaneously estimates the diffeo-

morphic change of coordinates between atlas and target histological stack, as well as the “nui-

sance” rigid motion parameters for each section in stack space. This requires the introduction

of a smoothness constraint on the target jitter simultaneous with LDDMM, which is enforced

Fig 8. Comparison of reconstruction and mapping using atlas-free and atlas-informed models on data from the

MBAP database. a) Reconstruction of an MBA Nissl-stained brain histological stack using the atlas-free method. Top

row shows the histological stack and Allen mouse brain atlas. Bottom row shows the reconstructed histological stack IR̂
alongside the deformed phantom atlas I, and the diffeomorphic change of coordinates φ̂ � 1. b) Reconstruction using

the atlas-informed method. Top row shows the histological stack and Allen mouse brain atlas. Middle row depicts

intermediate iterations of the reconstructed stack IR̂ alongside the deformed atlas I0 � φ̂ � 1 and coordinate grid. Bottom

row shows the convergence point of algorithm.

https://doi.org/10.1371/journal.pcbi.1006610.g008
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via a Sobolev metric, encouraging the reconstructed stack to be smooth by controlling the

derivative along the cutting axis.

Results are shown demonstrating that the introduction of an atlas into the estimation

scheme and simultaneously accommodating for the nonlinear atlas-to-target shape difference

via diffeomorphism solves several of the classic problems associated with volume reconstruc-

tion, including the recovery of the curvature of extended structures. Since the atlas gives a pri-
ori indication of the global shape, the tendency to remove distortions along the section axis is

balanced against the desire to minimize the amount of deformation of the atlas onto the recon-

struction. The algorithm is shown to mediate this tension well.

The clear limitation of this method is that we model sections that are out of order, folded

upon themselves, or damaged by censoring from the mapping solution using the weighting

coefficient αi and removing their impact from the overall deformation. This is a global censor-

ing, but we do not apply shearing deformations within plane and we do not include in the

algorithm an automatic solution to detecting the folding problem. Although we do not cur-

rently include correction beyond rigid motion within the plane of each section, one could

imagine attempting to add such shearing distortions to the model, which would remain stable

as the number of new dimensions would remain low. The global censoring solution requires

human quality control within the pipeline for detection of globally deformed or damaged

sections.

Fig 9. Comparison of diffeomorphic transformation recovered from atlas-free and atlas-informed models. The

warped grids illustrate the difference in the mapping deformation from atlas (top) to target using the atlas-free method

(bottom left) versus the atlas-informed method (bottom right), performed on real brain data from the MBA Project.

https://doi.org/10.1371/journal.pcbi.1006610.g009
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Fig 10. Selected regions of the brain segmented by the atlas-informed and atlas-free models carry the label map

from the Allen atlas under the computed diffeomorphism. The left column shows several examples where

optimization of the atlas-free solution is trapped in false minima due to folded or low-contrast structures. The right

column shows correction by the atlas-informed algorithm. A) The corpus callossum and lateral ventricle. B) The

dentate gyrus, corpus callossum, and lateral ventricle. C) The cerebellar white matter.

https://doi.org/10.1371/journal.pcbi.1006610.g010
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The use of dense large deformation diffeomorphic image matching is being used extensively

for magnetic resonance imaging in the brain at 1 millimeter scale for both T1 and DTI [23, 25,

32, 33] as well as for human anatomy [22] including for transferring the geometries of Cardiac

fibers in dense Cardiac imaging [34, 35] and for radiation treatment planning [36]. These tech-

nologies form the basis of many implementations such as Ashburner’s important SPM [37,

38]. The aforementioned applications have not included complex prior distributions to encode

distortions such as the Sobolev derivative prior introduced here that may have be required due

to the distortions introduced in the imaging and stacking process.
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