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Abstract

Background: Biomarkers are required for pre-symptomatic diagnosis, treatment, and monitoring of neurodegenerative
diseases such as Alzheimer’s disease. Cerebrospinal fluid (CSF) is a favored source because its proteome reflects the
composition of the brain. Ideal biomarkers have low technical and inter-individual variability (subject variance) among
control subjects to minimize overlaps between clinical groups. This study evaluates a process of multi-affinity fractionation
(MAF) and quantitative label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) for CSF biomarker
discovery by (1) identifying reparable sources of technical variability, (2) assessing subject variance and residual technical
variability for numerous CSF proteins, and (3) testing its ability to segregate samples on the basis of desired biomarker
characteristics.

Methods/Results: Fourteen aliquots of pooled CSF and two aliquots from six cognitively normal individuals were
randomized, enriched for low-abundance proteins by MAF, digested endoproteolytically, randomized again, and analyzed
by nano-LC-MS. Nano-LC-MS data were time and m/z aligned across samples for relative peptide quantification. Among
11,433 aligned charge groups, 1360 relatively abundant ones were annotated by MS2, yielding 823 unique peptides.
Analyses, including Pearson correlations of annotated LC-MS ion chromatograms, performed for all pairwise sample
comparisons, identified several sources of technical variability: i) incomplete MAF and keratins; ii) globally- or segmentally-
decreased ion current in isolated LC-MS analyses; and iii) oxidized methionine-containing peptides. Exclusion of these
sources yielded 609 peptides representing 81 proteins. Most of these proteins showed very low coefficients of variation
(CV,5%) whether they were quantified from the mean of all or only the 2 most-abundant peptides. Unsupervised
clustering, using only 24 proteins selected for high subject variance, yielded perfect segregation of pooled and individual
samples.

Conclusions: Quantitative label-free LC-MS/MS can measure scores of CSF proteins with low technical variability and can
segregate samples according to desired criteria. Thus, this technique shows potential for biomarker discovery for
neurological diseases.
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Introduction

Dementia of the Alzheimer type (DAT) currently affects an

estimated 30 million people worldwide. This number is expected

to grow three-fold over the next 40 years as the population ages

[1]. In addition to those affected by DAT, many more are afflicted

by Alzheimer’s disease (AD, the pathological process responsible

for DAT) but have not yet begun to experience symptoms.

Individuals in this 10- to 15-year pre-symptomatic or ‘pre-clinical’

phase of AD are at increased risk to develop dementia [2–5] but

have not yet experienced significant neuronal damage [6,7]. For

this reason, they are likely to receive relatively greater benefit from

disease modifying treatments that are on the horizon. Indeed, the

failure of many recent clinical trials aimed at AD is commonly

attributed to the exclusive enrollment of participants who already

have mild or moderate dementia and concomitant neuron loss.

Therefore, tools and strategies (biomarkers) must be developed to

diagnose and enroll individuals in the pre-clinical phase of AD,

when brain pathology is present but cognition remains intact. By

definition, this phase is not reliably detected by clinical examina-

tion, so biomarkers (for example, those measured by radiographic

imaging and laboratory tests) will be required for diagnosis.

Ideally, biomarkers should also estimate an individual’s risk of

impending cognitive decline (prognosis) and even allow monitor-

ing of pathological progression and response to treatment. Once

such biomarkers are developed, clinical trials should become more

efficient and effective treatments will be identified more quickly.

Subsequently, once successful treatments are identified, these

biomarkers are likely to remain useful in a clinical setting.

Some progress has already been made in this direction. To date,

leading modalities for such biomarkers include radiological

imaging and cerebrospinal fluid (CSF) analysis (reviewed in

references [1,8,9]). Both techniques can detect amyloid deposits

(Alzheimer plaques) in the brain either directly, using amyloid-

binding tracer compounds (e.g. Pittsburgh compound B, or PIB)

and positron emission tomography, or indirectly, by measuring

low CSF beta-amyloid42 (Ab42) concentrations that correlate with

amyloid deposition [3,10–14]. Imaging and fluid biomarker

studies have also shown potential to predict cognitive decline by

measuring amyloid deposition [5], regional volumetric and

metabolic changes in the brain [15–17], or specific changes in

the CSF proteome (including concentrations of tau, YKL-40,

VILIP-1, and calbindin, each in association with Ab42)

[2,3,18,19]. CSF analysis may even allow classification of disease

stage [20] and monitoring of acute changes in response to disease

modifying therapies, as illustrated recently with gamma-secretase

inhibitors [21]. In spite of these advances, however, these

techniques must still be improved. Additional biomarkers will be

required to improve the sensitivity and specificity of pre-clinical

AD diagnosis, increase the accuracy of prognosis, and expand the

breadth of pathophysiological changes that can be monitored.

CSF proteome analysis provides a favorable arena for such

efforts. Indeed, many increasingly more powerful yet complemen-

tary proteomics technologies have been leveled at CSF biomarker

discovery in the past decade, including: variations of 2D gel

electrophoresis [2,20,22–30]; SELDI-TOF-MS [31–34]; offline

LC – MALDI-TOF [35]; and LC-MS/MS with either isotope-

coded affinity tags (ICAT) [36], Tandem Mass Tags [37] or

iTRAQ (isobaric tag for relative and absolute quantification)

[38,39]. These techniques have all been used successfully to

identify candidate biomarkers because they provide accurate

relative quantitative information between or among samples. In

order to provide this information, they share a common

requirement: proteins or peptides must be stained or labeled for

precise and accurate quantification. This requirement necessarily

increases procedural costs and also may introduce additional

sources of error. These techniques also share a major limitation in

clinical proteomics (for review see [40]): they cannot readily be

used to compare directly large numbers of samples, even with

advances in multiplexing technologies and strategies [41]. This

second shortcoming is quite important because most CSF

biomarkers, at least in the AD field, show relatively modest

disease-associated quantitative changes, on the order of 30%;

detecting such differences with statistical rigor in a cross-sectional

study requires precise and accurate measurements with potentially

hundreds of CSF samples.

Label-free, quantitative proteomic methods have emerged that

obviate the requirement for protein staining or peptide labeling

[41]. Many of these ‘label-free’ approaches take advantage of the

correlation between high-resolution LC/MS extracted ion cur-

rents (XIC’s) and peptide abundances [42,43]. Bioinformatics

software tools have been developed that align LC elution times

and accurate m/z values of the XIC’s across numerous samples

(n,10–100) [44]. Thus, the signals of XICs with identical

retention/elution times and m/z values can be directly compared

(mathematically and visually) to measure statistically significant

differences between sample groups. The actual sequences and

genes of origin of the peptides responsible for XICs of interest can

be determined by LC-MS/MS. Given sufficient sample and

analytical time, extensive annotated libraries that match XICs

(defined by elution time and m/z value) to their unique peptide

sequences can be accumulated for a given sample type (e.g. CSF).

This accurate mass and time tag (AMT) approach can be applied

retrospectively or prospectively, reducing or eliminating the need

for tandem mass spectrometry in subsequent studies of that

biofluid within a given laboratory [45]. Alternatively, MS2 can be

performed in series with LC-MS during primary quantitative data

acquisition.

In this work, we apply quantitative label-free LC-MS/MS to the

analysis of replicate CSF samples: to identify sources of technical

variability that can be mitigated; to assess the inter-individual and

residual technical variance with which this technique measures

numerous proteins in cognitively normal (healthy control) subject

samples; to compare alternative strategies for protein quantifica-

tion from quantitative peptide data; and to test the ability of its

output to segregate biological samples according to desired

biomarker characteristics. In this way, we demonstrate the

suitability of quantitative label-free LC-MS/MS as a tool for

CSF biomarker discovery.

Materials and Methods

Ethics Statement
The study protocols were approved by the Human Research

Protection Office at Washington University. Written and verbal

informed consent were obtained from participants at enrollment

and annually, thereafter. Capacity to consent was assessed in the

following manner. Each participant was recruited with a ‘collateral

source’ (spouse, next-of-kin, or close friend) to accompany them at

research interviews, to provide information about the participant’s

level of memory impairment and to assess the participant’s

willingness to participate in the research. Cognitive status

(dementia level) was determined in a 2 hour semi-structured

interview conducted by dementia experts. Whereupon a partici-

pant was determined to have mild, moderate or severe dementia,

the Durable Power of Attorney for Health Care or next-of-kin was

asked to provide or renew consent. All aspects of this study were

Label-Free LC-MS/MS for CSF Biomarker Discovery
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conducted according to the principles expressed in the Declaration

of Helsinki.

Participant Selection and Sample Preparation
14 replicates of a pooled sample of CSF were evaluated for

assessment of coefficients of variation (CV); two aliquots of CSF

samples from 6 cognitively normal individuals were evaluated for

subject variance (Fig. 1). Participants, community-dwelling volun-

teers enrolled at the Knight Alzheimer Disease Research Center at

Washington University, were $60 years of age and in good

general health, having no other neurological, psychiatric, or major

medical diagnoses that could contribute to dementia, nor use of

exclusionary medications (e.g. anticoagulants) within 1–3 months

of lumbar puncture (LP). Individuals were not excluded on the

basis of gender, race, ethnicity, or APOE genotype. Cognitive

status was evaluated based on criteria from the National Institute

of Neurological and Communicative Diseases and Stroke-

Alzheimer’s Disease and Related Disorders Association [46].

Samples were de-identified and coded immediately after initial

collection. Samples processed individually were selected from

among many stored frozen samples donated by cognitively normal

individuals (with a Clinical Dementia Rating of zero [CDR 0]) on

the basis of high aliquot abundance and generally low CSF tau

and high CSF Ab42 levels (a biomarker profile consistent with the

absence of AD pathology [10,47,48]); ranges of actual ‘individual’

samples chosen were: age of participant at LP, 62–80 years; Tau,

176–393 pg/mL; p-tau181, 37.2–108 pg/mL; Ab42, 283–

703 pg/mL. For creation of a pooled sample, stored frozen

samples collected from participants who were cognitively normal

(CDR 0, n = 58), very mildly demented (CDR 0.5, n = 33) or

mildly demented (CDR 1, n = 9) at the time of LP were selected

without regard to CSF tau and CSF Ab42 measurements. Some

CDR 0.5 participants met criteria for mild cognitive impairment

(MCI); others showed even milder impairment, and could be

considered ‘‘pre-MCI’’ [49]. All CDR 1 individuals had received a

diagnosis of DAT. For each individual LP, fasted CSF (20–30 mL)

was collected, gently mixed, centrifuged, aliquoted (0.5 mL) and

frozen at 280uC in polypropylene tubes (2.0 mL tubes for storage)

as described [3]. For preparation of pooled sample aliquots, all

selected 0.5 mL samples were simultaneously thawed in an ice

slurry within a 4uC room, combined and gently but thoroughly

mixed in larger polypropylene tubes, re-aliquoted (0.5 mL) into

fresh pre-chilled 2.0 mL polypropylene tubes, and frozen and

stored at 280uC until use. Replicate samples from individuals

were also processed in this manner; for each sample, two 0.5 mL

aliquots of each sample were thawed, combined, mixed, re-

aliquoted and re-frozen as described above.

Enzyme Linked Immunosorbent Assays (ELISAs)
CSF samples were analyzed by ELISA in duplicate for Ab42,

total tau, and phospho-tau181 (INNOTEST, Innogenetics, Ghent,

Belgium) after one freeze-thaw cycle.

Multi-affinity Fractionation (MAF) of CSF
To enrich for proteins of low-abundance, each sample was

depleted of six proteins that are highly abundant in CSF (albumin,

IgG, IgA, haptoglobin, transferrin, and a-1-antitrypsin) by

immunoaffinity chromatography (Agilent Technologies, Palo Alto,

CA) using an automated adaptation of the method described in

[29]. Multi-affinity fractionation was performed on a BioCad

Vision Workstation, using a Cavro AFC 2000 autosampler/

fraction collector. The affinity runs were monitored with a UV

detector at 280 nm. The fluid path configuration of the automated

chromatograph is shown in Fig. S1A. For automated MAF, an

equal volume (0.5 mL) of 2X TBS (20 mM Tris-HCl, 300 mM

NaCl, pH = 7.4) was added to each of the frozen CSF samples.

After gentle inversion, each sample was filtered through a 0.45 mm

filter unit (Millipore, Billerica MA) and an 800 mL aliquot of the

filtrate was diluted to 2100 mL with 1X TBS. The diluted samples

were injected (applied to the affinity column) in randomized order

(Fig. 1) from an autosampler at 4uC. Bound proteins were eluted

from the column with 25 mL of 100 mM glycine buffer, pH = 2.5,

and discarded. The affinity column was then neutralized with

100 mM Tris-Cl, pH = 8 and re-equilibrated with TBS pH = 7.4.

The flow-through fraction was transferred to a concentrating

device (Amicon Ultra-15, nominal molecular weight cut off = 3 -

kDa) and centrifuged according to manufacturer’s guidelines

(40006g, 4uC), reducing the volume to ,300 mL for subsequent

analyses.

Analytical 1D SDS-PAGE
The reproducibility of automated MAF of the CSF samples was

initially evaluated using analytical SDS-PAGE. Protein concen-

trations of the concentrated CSF samples were determined using

the Advanced Protein Assay reagent (Cytoskeleton, Denver, CO)

against a curve made with BSA standard solution (Pierce,

Rockford, IL), measured at 590 nm. Aliquots of the concentrated

samples, each containing 5 mg of protein (,10 mL), were diluted

with 5 mL of 4X sample buffer (Bio-Rad Laboratories, Hercules,

CA) and 1 ml of 20X reductant (Bio-Rad), heated to 95uC for

5 min, cooled to room temperature, centrifuged at 13000 rpm for

30–60 s and loaded with molecular weight markers (Bio-Rad

Precision Plus Protein standards, cat # 161-0363) onto 4–12%

Criterion XT Bis-Tris gels. Gels were run in MES buffer,

monitored using the blue dye front, placed in fixative solution

(10% methanol, 5% acetic acid) for 1 hour, stained with

SyproRuby (Invitrogen, Carlsbad, CA) for 2 h, destained (10%

methanol, 5% acetic acid) for 30 min and scanned on a Typhoon

9400 scanner (GE Healthcare, United Kingdom) using the

following settings: 457 nm excitation, 610BP30 emission filter,

Figure 1. Chromatographic run order for MAF and LC-MS
analysis. Duplicate aliquots of CSF (denoted by ‘a’ and ‘b’) from each
of six cognitively normal individuals (numbered 1 through 6) and
fourteen aliquots of CSF (labeled P1 through P14) pooled from 100
individuals with mild [n = 9], very mild [n = 33], and no [n = 58] dementia
of the Alzheimer type were selected for single block proteomic analysis.
The order that samples underwent MAF (Y-axis) and then LC-MS
analysis (X-axis) were independently randomized. A single sample (P7)
that did not pass the 1D SDS-PAGE quality assessment (Fig. S1) and was
not analyzed by LC-MS is not represented.
doi:10.1371/journal.pone.0064314.g001
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photomultiplier tube voltage adjusted to stay below saturation for

the darkest band (Fig. S1B,C).

Preparation of peptides from MAF CSF
The concentrated, unbound eluates from the multi-affinity

columns were precipitated using the vendor protocol for the 2D

clean-up kit (GE Healthcare, Pittsburgh, PA, Cat. No. 80-6484-

51). Protein pellets were solubilized in 20 mL of Tris buffer

(100 mM, pH 8.5) containing 8 M urea. Disulfide bonds were

reduced with 1 mM tris(2-carboxyethyl)phosphine (TCEP bond

breaker, 0.5 M solution, Thermo Fisher, Waltham, MA, Cat

No. 77720) at room temperature for 30 min. Cysteine alkylation

was performed using 2.2 mL of 100 mM iodoacetamide, 30 min-

utes at room temperature protected from light, quenched with

10 mM dithiothreitol at room temperature for 15 min. The

reduced and alkylated protein samples (,30 mL) were digested

overnight at 37uC in 8 M urea with 1 mg of endoproteinase Lys-C

(2 ml of a 0.5 mg/mL stock; Roche, Basel, Switzerland), then

diluted 1:4 with 100 mM Tris, pH 8.5, incubated with trypsin

(Sigma Chemical, St. Louis, MO; Cat No. T6567) (,1:4 enzyme

ratio) for 24 h at 37uC, and acidified with aqueous 5% formic acid

(3.3 mL) (Fluka, St. Louis, MO; Cat No. 56302). Peptides were

extracted with Nutip carbon tips (Glygen, Columbia, MD; Cat

No. NT3CAR) that were preconditioned by repetitive pipetting

with 25 mL (x 3) of the peptide elution solvent (60% acetonitrile in

1% formic acid) followed by equilibration with 10 washes (25 mL)

of extraction solvent (1% formic acid). Samples were loaded with

50 pipetting cycles. The tips were then washed four times with

extraction solution. The peptides were recovered by 20 pipetting

cycles with 25 mL of elution solution, followed by four washes

(20 mL each) of elution solution. The extraction and wash solutions

were combined in an autosampler vial (SunSri, Rockwood, TN;

Cat No. 200 046) and dried in a SpeedVac (Thermo ScientificSa-

vant). AS2 autosampler vial caps were from National Scientific

(Rockwood, TN; Cat. No. 03-396AA).

Comparative Nano-LC-MS
The complex mixtures of peptides from the endoprotease

digests of the affinity-depleted CSF samples were reconstituted in

1% acetonitrile, 1% formic acid (35 mL) and analyzed using high-

resolution nano-LC-MS on a linear quadrupole ion trap Fourier

transform ion cyclotron mass spectrometer (LTQ-FTMS, Thermo

Fisher). Liquid chromatography was performed on a nanoflow

HPLC system (NanoLC-2DplusTM) interfaced to the mass

spectrometer with a nanospray source (PicoView PV550; New

Objective, Woburn, MA). The in-house packed LC column

(Jupiter C12 Proteo, 4 mm particle size, 90 Å pore size [Phenom-

enex, Torrance, CA]) was equilibrated in 98% solvent A (aqueous

0.1% formic acid) and 2% of solvent B (acetonitrile containing

0.1% formic acid). The samples (10 mL) were injected using the

autosampler at a flow rate of 1.0 mL/min followed by segmented

linear gradient elution at 250 nL/min as follows: solvent B:

isocratic, 0–2 min; 2% B to 40% B, 2–65 min; 40% to 80%, 65–

70 min; isocratic at 80%, 70–72 min; 80% to 2%, 72–77; and

isocratic at 2% B, 77–82 min. All samples were run in a

continuous block, and their injections were randomly ordered to

minimize the contribution of instrument bias (Fig. 1).

The mass spectrometer was operated in the data-dependent

mode, in which only abundant ions are targeted for MS2. The

survey scans (mass/charge ratio [m/z] = 350–2000) (MS1) were

acquired at high resolution (,100,000 at m/z = 421.75). The 8

most abundant ions were isolated in the ion trap and fragmented

after reaching a target value of ,40,000. The MS2 isolation width

was 2.5 Da, and the normalized collision energy was 35%. The

following ion source parameters were used: capillary temperature

200uC, source voltage 3.5 kV, source current 100 mA, and the

tube lens at 79 V. The data were acquired using Xcalibur, version

2.0.7 (Thermo Fisher, San Jose, CA).

MS Data Processing and Protein Quantification
The LC-MS data processing pipeline is detailed in Fig. S3.

Briefly, for relative peptide quantification, the LC-MS unpro-

cessed files were imported into Rosetta ElucidatorTM (Rosetta

Biosoftware, ver 3.3) for m/z and retention time alignment of the

peptide ion currents across the samples (pooled replicates and

samples from individuals) using previously-described parameters

[50] that are detailed in the legend of Fig. S3. The aligned,

normalized peptide ion currents were annotated at the feature

level within the alignment software by generating database search

files (*.dta). The ion current signals from all charge states for each

peptide were concatenated unique using a visual script within the

software. The table of peptides and peptide intensities was

exported in Excel *.csv format.

For protein identification, the LC-MS/MS files that were

acquired using Xcalibur were processed using Mascot Distiller

software (ver. 2.0.3) for the preparation of files for database

searching. A UNIPROT human protein database (downloaded

April 21, 2011, with 105,706 sequences) was searched using

Mascot software (ver. 2.2.04) with the parameters given in the

legend of Fig. S3. The protein database searches were further

processed using Scaffold software (ver. 3.00.07) and the proteins

were qualified using the Protein Prophet algorithm [51] with

protein and peptide probabilities of 95% and 50%, respectively, as

implemented in Scaffold [52]. All proteins were identified with a

minimum of two peptides and at least one peptide with a

probability score of.95%. The identified peptide sequences and

mass spectrometric data that were used for protein identifications

are given in Table S2.

The peptides were grouped as products from individual genes

(Table S2). The gene-grouped and peptide intensity data were

imported into DAnTE-R for statistical analysis [53,54]. Only

proteins represented by 2 or more annotated peptides were

considered for subsequent data analyses (all annotated peptides are

reported in Table S2). Annotated peptides with missing data (any

intensity value = 0) from any sample (Table S3, fourth [‘ART-

MET-EEP’] tab) were excluded from protein quantification

analysis; no imputation algorithm was applied. For quantification

of each protein (gene product), a mean value was calculated from

all contributing annotated peptides. For the purpose of comparing

two different strategies for quantifying proteins from peptide data,

protein abundances and most other downstream statistical

analyses were calculated twice: first, using all contributing

annotated peptides, and second, using only the two most abundant

peptides from each protein. Results from this second strategy are

represented in supporting figures S5, S6, S7, S8, S9, S10

(numbered to correspond with ‘non-supporting’ figures represent-

ing the first strategy) and also in figures S12 and S13.

Assessment of Variability/Reproducibility
To estimate the overall correlation between pairs of CSF

aliquots on a peptide level, Pearson correlation coefficients (PCC)

were calculated for all aliquot pairs using the central tendency

normalized data after a log2 transformation; several iterations of

this procedure were performed, including all aligned charge

groups (Fig. S11), or including only annotated peptides (Fig. 2B),

with subsequent sequential selective exclusions of subsets of

annotated peptides that were found to exhibit excessive variance

(Table S5, Fig. 3, Fig. 4).
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Technical variability of each peptide/protein was estimated

among replicates from the pooled sample by calculating the

coefficient of variation (CV = standard deviation/absolute value of

the mean). Inter-individual variability (subject variance) was

estimated for each peptide/protein by comparing paired replicates

from individuals using a random effects mixed model (SAS

statistical analysis program, v9.2) (Table S6). The magnitude of

each source of variability for each protein is depicted or reflected

in figures 5, 6, 7.

Processing gradient (‘drift’) effects from MAF and LC-MS were

evaluated at the protein level, with abundance values determined

from the average of the two most abundant peptides. For each

protein, abundance values from pooled sample replicates were

plotted against run order during MAF (Fig. S12) or during LC/

MS (Fig. S13). The effects of MAF run order and LC-MS run

order (run orders depicted in Fig. 1) were each assessed

independently by Pearson’s correlation coefficient and Fisher’s z

transformation using PROC CORR in SAS v 9.1.3.

To illustrate the potential of identified proteins as ensembles to

segregate samples, unsupervised hierarchical clustering using

Euclidean dissimilarity and average linkage analysis (Partek

Genomics Suite v6.6 software) was applied: first, to values of all

proteins for individual paired replicates (Figs.8, S8); second, to

values of all proteins for all CSF aliquots (Figs.9, S9); and third, to

all CSF aliquots, using only values of a subset of proteins that were

selected on the basis of high inter-individual variability (high

subject variance) (Fig. 10).

For the purpose of comparison, calculations of protein

abundance, CV, subject variance, and unsupervised clustering

were performed in two ways, using protein abundance values

calculated from all contributing peptides for each protein (Figs. 5,

6, 7, 8, 9, 10, S10), or from only the two most abundant peptides

from each protein (Figs. S5, S6, S7, S8, S9, S10, S12, S13).

Results

The major goals of this study were: first, to identify the major

reparable sources of technical variability within this complex

proteomic workflow; second, to quantify the effect sizes of inter-

individual and residual technical variability on measurements of

protein abundances; third, to compare two strategies for protein

quantification from peptide data generated using label free

proteomics (mean of two most abundant peptides versus mean

of all contributing peptides); and fourth, to evaluate the potential

of the data generated by this proteomic workflow to segregate

biological samples on the basis of desired biomarker characteris-

tics.

Technical Variance from Sample Processing
The CSF samples analyzed in this study included (1) fourteen

aliquots of a pooled CSF sample derived from 100 individuals and

(2) two aliquots from each of six cognitively normal individuals.

The first group was selected to allow evaluation of technical

variability associated with replicate processing of the same sample;

the second, to allow assessment of inter-individual variability in a

control group relevant to neurodegenerative biomarker discovery.

Figure 2. Data processing and symmetrical matrix for all
sample pairwise comparisons of log2 annotated peptide
intensities. A. Data processing steps in the visual script used within
Rosetta ElucidatorTM software. The intensities from the aligned peptide
chromatograms were normalized and concatenated to sum signals
from all charge states, isotope groups (Steps 1 through 3). Peak
intensities of the isotope groups that were assigned to unique peptide
sequences within each sample were summed (Step 4) for Pearson
correlation coefficients (PCC). Common laboratory contaminants (e.g.
keratin) and residual proteins from the MAF procedure (summarized in
Table S4) were removed in Step 5. Methionine-containing peptides
were removed in Step 6. ‘Early-eluting’ peptides were removed in Step
7. At each step the data were exported from the software and imported
into DAnTE-R for further analysis using pair-wise correlations and
scatter plots of the log2 transformed intensity data. B. Symmetrical
matrix/non-clustering heatmap of PCC values from all pairwise
comparisons from the annotated peptide intensity data (center), using

a colorimetric scale ranging from black (low correlation, 0.65 and
below), to red, orange, yellow, and white (high correlation, maximum 1).
Self-pairwise comparisons, which yield a PCC equal to 1.0, appear as the
diagonal of white squares. C, D, E, F. Representative scatter plots of all
aligned charge group intensities from paired samples: P13b vs P5; P5 vs
P6; 1a vs 1b; and P3 vs P4. Units of X- and Y-axes both represent log2

transformed charge group intensities.
doi:10.1371/journal.pone.0064314.g002
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To minimize variability associated with different reagents and

instrument performance, all samples were processed continuously

as a single block within each sequential experimental step: MAF

(total processing time, 16.5 hours), endoprotease digestion/peptide

preparation (,3 days), and LC-MS (,115 hours). The experi-

mental design also included the randomization of sample order for

MAF and again for LC-MS, to minimize the impact of any

processing gradient (‘drift’) effects. Fig. 1 shows the two

dimensional matrix of the run orders for MAF and LC-MS,

showing, for example, that the pooled sample aliquot #2 (P2) was

the fifth sample processed using MAF and the first to be analyzed

in the LC-MS queue. As a quality assessment of MAF, the flow-

through fractions were analyzed using 1D-gel electrophoresis (Fig.

S1B, C). All 1D-gel image patterns were similar, except for pooled

sample aliquot number 7 (P7), which had markedly less protein

staining; P7 was not processed further.

After preparation of peptides, the remaining 25 samples were

analyzed by LC-MS. All 25 samples showed similar total ion

current profiles (Fig. S2) and intensities (within 20% of the mean),

with the exception of pooled sample 13, which showed no MS

signal from the initial data acquisition (P13a). A repeat LC-MS

analysis of P13 (P13b) showed a total ion current (TIC) intensity of

,50% of the mean TIC calculated from the other samples (Fig.

S2, Table S1). The cause of the lower intensity in the peptide

sample from P13 was not apparent. The high-resolution LC-MS

analyses were time and m/z aligned, resulting in 37,629 aligned

ion chromatograms that corresponded to 11,433 charge groups

(Table S3 - fifth [‘ALL-PEP-INT’] tab). The frequency of missing

data (charge groups with an intensity value of ‘0’) was very low for

Figure 3. Correlations of pairwise sample comparisons after ‘removal’ of process contaminant, methionine-containing and early-
eluting low-intensity peptides. A. Non clustering heat map of Pearson correlation values, after removal of pooled sample 13, calculated from all
annotated peptides; B. Heat map after removal of contaminant and residual MAF-related peptides; C. Heat map after removal of Met-containing
peptides from the contaminant-minus and MAF-minus set; D. Heat map after removal of low intensity, early eluting peptides (retention time = 20–
42 min) from the contaminant/MAF/methionyl-peptide minus set. Colorimetric scale as depicted and described in Figure 2B. The ‘removed’ peptides
and intensities are summarized in Table S4. Pearson correlation matrices are represented numerically in Table S5.
doi:10.1371/journal.pone.0064314.g003
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most samples; in contrast, sample P13b lacked measurable

intensities for 24% of the charge groups (Table S3 - sixth

[’MISSING DATA’] tab).

Sources of Technical and Subject Variance at the Peptide
Level

During the performance of each of these LC-MS analyses, the

mass spectrometer was operating in data dependent mode and

automatically isolated the most abundant ions for MS2. After

processing, the MS2 data were then searched against the

UNIPROT database for annotation (protein identification) as

described in Fig. S3. The annotated features (n = 5630) were

processed using a visual script that was executed with Rosetta

ElucidatorTM software (Fig. 2A). The annotated peak intensities

were normalized (Fig. 2A, Step 2) as described in Fig. S3. Because

some peptides were detected in more than one charge state, the

individual charge states for each peptide were combined, yielding

1360 annotated isotope groups (Fig. 2A, Step 3). Additionally,

Figure 4. Annotated peptide intensity scatter-plots from select pairwise comparisons with removal of methionine-containing,
early-eluting peptides. A. Scatter plot of annotated peptide intensities from individual sample aliquots 1a and 1b (process contaminant peptides
already removed); B. Scatter plot of annotated peptide intensities from 1a and 1b after removal of Met-containing peptides from the contaminant-
minus set; C. Scatter plot of annotated peptide intensities from pooled sample aliquots P3 and P4 (process contaminant and methionyl peptides
already removed); D. Scatter plot of annotated peptide intensities from P3 and P4 after removal of early-eluting peptides. Colorimetric scale (in A)
represents range of peptide intensities along x-axis, ranging from black (log2 intensity = 11), through red, orange and yellow to white (log2

intensity = 28). The ‘removed’ peptides and intensities are summarized in Table S4.
doi:10.1371/journal.pone.0064314.g004
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when multiple isotope groups within an LC-MS analysis were

found to be associated with a common peptide sequence, their

peak intensities were summed, yielding 926 annotated, aligned

peptide ion chromatograms across the 25 samples (Fig. 2A, Step 4)

[55]. The data from each step of the sequential processing

diagrammed in Fig. 2A were exported into a spread sheet (Table

S3), grouped as gene names (HUGO convention) and imported

into DAnTE-R software [52] for further analysis.

To evaluate variability in the proteomics workflow at the level of

annotated peptides, non-clustering heat maps of Pearson correla-

tion coefficients (PCC) were used. PCC values were generated

using the log2 transformed peptide intensity data for all pair-wise

sample comparisons (Table S5). Fig. 2B shows the symmetrical

matrix of PCC values from all pairwise correlations among the

pooled (P1-P14) and individual (1a–6b) sample aliquots, calculated

from all annotated charge groups; for the purpose of comparison,

Fig. S11 shows a similar matrix, calculated from all aligned charge

groups. The diagonal white squares represent self-comparisons

that yield a perfect correlation of 1.0 on a scale of 0.65 to 1.0; as

shown by the color bar, imperfect correlations are represented by

increased shading that ranges from yellow to orange to red, with

the lowest values appearing as black squares.

These Pearson correlation heat maps corroborate the ion

current results; pairwise comparisons of the pooled sample with

the lowest ion current (P13) (Table S1) yielded uniformly low

PCC’s, represented by intense black bars in Fig. 2B and Fig. S11,

with samples P13b and P5 showing the poorest correlation (PCC

,0.3) (Table S5). The corresponding P13 vs. P5 scatter plot

(Fig. 2C) appears as a wide, homogeneous cloud of log2

transformed aligned charge group intensities. In contrast, the

scatter plot of two pooled samples with a high PCC (P5 vs. P6,

PCC = 0.928), represented in Fig. 2D, appears predominantly as a

tight linear cluster. We concluded from these data that TIC values

below ,25% of the mean value of the data set are not normalized

by the algorithm described in Materials and Methods. Therefore,

sample P13 was removed from the set in subsequent analyses.

The heat maps in Fig. 2B and Fig. S11 also revealed that,

among the paired aliquots from individual samples, 1a vs. 1b gave

a relatively poor pairwise correlation (PCC = 0.8377). Inspection

of the corresponding scatter plot (Fig. 2E) showed many data

points above and below the primary linear cluster. Similarly, the

heat map in Fig. 2B showed uniformly poor correlations for P3,

and the scatter plot comparing pooled sample aliquots P3 vs. P4

(PCC = 0.804) displayed a group of points with higher values in

the P4 sample than in P3 (Fig. 2F). Many of the other aliquots

from the pooled sample showed much higher correlation values;

all P4–P12 pairwise comparisons showed PCC’s = ,0.9–0.95.

However, P1–P3 displayed lower correlations, with

PCC’s = ,0.75–0.85 (Table S4). The overall variability observed

among these individual and pooled sample aliquots did not

correlate with the order in which samples were processed by MAF

or LC-MS analysis; for example, samples P2 and P3 (poor

correlation) were processed 5th and 6th in the MAF order and in

relatively short succession (1st and 5th) for LC-MS, whereas

samples P4 and P9 (high correlation) were widely separated in the

MAF order (9th and 24th) and in the LC-MS order (2nd and 18th)

(Fig. 1).

To investigate the source(s) of this variability, we examined the

sequences of peptides that were poorly correlated in pairwise

comparisons and considered the proteins from which they were

Figure 5. Coefficient of variation for each of 81 proteins. Coefficients of variation were calculated using values from all contributing peptides
from pooled sample replicates. Numerical values in Table S6.
doi:10.1371/journal.pone.0064314.g005
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derived. Examination of the identified proteins (Table S3) revealed

that some samples contained ‘‘process contaminant’’ proteins

(keratins [e.g. KRT1, KRT2, and KRT10] and residual proteins

from the MAF [e.g. albumin and transferrin]). The peptides (103

total; Table S4, first [‘ART’] tab) from these proteins were

removed from subsequent analyses of all samples (Table S3) and a

new correlation heat map was generated (Fig. 3B). Although this

exclusion of keratins and MAF proteins improved the correlations

between selected pairwise comparisons (particularly those involv-

ing P1), it did not improve all poor correlations (for example, those

involving aliquot 1a) (Fig. 3B). Further examination of the scatter

plot of annotated peptide intensities for one of these unchanged

pairwise comparisons (sample 1a vs. 1b) showed a distinct cloud of

points with lower values in sample 1a (Fig. 4A). All the sequences

of these discordant peptides contained at least one methionine

residue (145 total; Table S4, second [‘MET’] tab). Removal of

these methionyl peptides from subsequent PCC calculations

(compare Fig. 4B to 4A) resulted in an increased correlation

coefficient for 1a vs. 1b (0.967 vs. 0.835) (Table S5; also, compare

Fig. 3C to Fig. 3B), and a modest increase in the correlation

coefficient for 5a and 5b. However, the removal of methionyl

peptides did not significantly alter the poorer correlation between

P3 and the other pooled samples (Fig. 3C). A scatter plot of the

peptide intensities of P3 vs. P4 showed a discrete group of peptide

intensities that were lower in aliquot P3 than in P4 (Fig. 4C). Upon

inspection, these discordant peptides (69 total; Table S4, third

[‘P3’] tab) were found to have early elution times (20–42 min)

during liquid chromatography. The markedly decreased ion

current for P3 compared to P4 during this early elution window

is shown in Fig. S4, panels A and B. As an example of the marked

reduction in signal for P3 during this elution time window, all

sample intensities for an early-eluting NCAM-1 peptide (DGE-

QIEQEEDDEK, elution time = 40.2 min) are shown in Fig. S4,

panels C and D. Scatter plots of the peptide intensities of P3 vs. P4

before and after removal of the early eluting peptides (Fig. 4C and

4D, respectively) show improved correlation after exclusion. In

kind, a new non-clustering heat map of PCC values, created after

excluding these early-eluting peptides from all PCC calculations,

showed improved correlations and a narrower range of PCC

values between P3 and all other pooled samples (compare Fig. 3D

to Fig. 3C). Although the reason for the low intensities of early-

eluting peptides found in sample P3 remains unclear and does not

appear to affect other samples substantially, these early-eluting

peptides were excluded from subsequent analyses of all samples.

Quantification, Technical Variance and Subject Variance
at the Protein Level

To evaluate the reproducibility of this proteomics method and

the overall differences between individual samples on a protein

level, annotated peptides were grouped according to their gene

product (protein) of origin. After ‘process contaminant’ peptides,

methionyl peptides and ‘early-eluting’ peptides were excluded

Figure 6. Subject variance for each of 81 proteins. Subject variance was calculated using values from all contributing peptides from paired
replicates of individual samples. Numerical values in Table S6.
doi:10.1371/journal.pone.0064314.g006
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(Fig. 2A, steps 5,6,7), 81 proteins were represented by more than

one of the remaining 609 peptides (Table S3, fourth [‘ART-MET-

EEP’] tab). Each of these proteins was then quantified in each

sample by calculating the mean of the values of its representative

peptides. To compare two alternative strategies for protein

quantification, these calculations were performed in two ways:

using values from all contributing peptides (Figs. 5, 6, 7, 8, 9, 10);

or using values from only the two most abundant peptides (Figs.

S5, S6, S7, S8, S9, S10, S12, S13).

To estimate the residual technical variability with which this

technique quantifies each of these proteins, coefficients of variation

(CV) were calculated from replicates of the pooled CSF sample; to

determine the inter-individual variability of each of these proteins

within a group of cognitively normal individuals, subject variance

was calculated from the paired aliquots from individual samples.

These assessments of variability are important for biomarker

studies because, hypothetical proteins with relatively higher CVs

and/or relatively high subject variance among controls will be

more likely than those with lower CVs and lower subject variances

to show overlapping ranges between diseased and control cohorts,

given equivalent fold-changes associated with disease. Greater

overlaps mean lower sensitivity and specificity and, therefore,

relatively less potential for a candidate to serve as an effective

disease biomarker. Remarkably, almost all 81 proteins showed

CVs,5% (Fig. 5; Figs. S5, S10; Table S6); this range of values is

comparable or superior to those of other techniques (e.g., ELISA)

that are commonly applied to quantify proteins in solution. Not

unexpectedly, the range of subject variances was broad across the

81 proteins (Fig. 6, Table S6). Nevertheless, for the vast majority of

these proteins, the technical variability and inter-individual

variability were very modest in comparison to the median values

of the proteins in question (Fig. 7, Fig. S7).

Processing Gradient (‘Drift’) Effect at the Protein Level
To evaluate whether MAF or LC-MS processing order might

introduce processing gradient (‘drift’) effects at the level of protein

quantification, Pearson correlation coefficients were calculated for

each of the 81 proteins, using values calculated from the two most

abundant peptides from each of the pooled sample replicates. With

a significance threshold of p = 0.05, only four such correlations in

each category might be expected by chance, alone. However,

these analyses identified six proteins (C1S, CHRB, FN1, NELL2,

SPP1, UBA52) with significant positive or negative correlations

with MAF (Fig. S12) and 17 proteins (APOA1, APP, B2M, C1s,

C4A-C4B, CFH, CLU, FBLN1, GC, IGFBP6, NCAN, NEO-1,

PLG, PTGDS, RNASEI, SERPINA3, VSTM2A [though

VSTMA2 95% CI spans zero]) with significant positive or

negative correlations with LC-MS (Fig. S13). Nevertheless, the

magnitudes of these gradient effects were modest relative to

median protein abundance values (depicted in Figs. S12 and S13

as individual graphs), as evidenced by uniformly low CVs,

discussed above.

Classification of Samples
To assess the capacity of these 81 proteins to segregate the

different CSF samples, unsupervised hierarchical clustering was

Figure 7. Biological variability and technical variability of 81 proteins, represented by all contributing peptides. Box and whiskers
plot. All proteins ranked by mean of values from pooled sample replicates, left to right. Bar indicates median, box indicates 25th to 75th percentile,
and whiskers indicate 10th to 90th percentile. Values derived from individual samples (n = 6; n = average of each pair of aliquots) are indicated in blue;
those from pooled sample aliquots (n = 12), in red. Numerical values in Table S6.
doi:10.1371/journal.pone.0064314.g007
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performed. Without any prior selection for proteins of interest,

when all contributing peptides were used for protein quantifica-

tion, this method accurately segregated duplicate aliquots of

individual samples (Fig. 8) but did not completely segregate

samples when pooled sample aliquots were included (Fig. 9). When

a similar clustering analysis was performed, including only 24

candidate biomarkers selected for their high (.60%) subject

variance (greater potential to distinguish individual samples),

perfect segregation of pooled and individual samples was achieved

(Fig. 10).

Protein Quantification Using All or Two Most Abundant
Peptides

A direct comparison of two strategies for quantifying proteins on

the basis of peptide-level data showed the following: when only the

two most abundant peptides, rather than all contributing peptides,

were used, values of abundance were slightly higher, values of CV

were marginally smaller (more so for some proteins of lower

abundance), values of subject variance were slightly higher, and

unsupervised clustering was less complete (Figs. S5, S6, S7, S8, S9,

S10). Nevertheless, the two approaches yielded generally compa-

rable results.

Discussion

This study evaluates the technical merits and potential of a non-

biased proteomics technique, label-free quantitative LC-MS/MS,

for CSF biomarker discovery. In so doing, it describes analytical

methods that can be applied to identify variability arising from

technical sources across the workflow, from sample procurement

through LC-MS. It also compares two approaches to quantify

proteins (gene products) from peptide data (mean of all contrib-

uting peptides versus mean of two peptides with greatest

intensities). Further, it presents baseline statistical data for 81

relatively abundant CSF proteins within a neurologically normal

(‘control’) group of older individuals, calculates the technical

variability and gradient effects observed in the measurement of

these proteins within multiple replicates of a pooled CSF sample,

and illustrates how selective subsets of these proteins might be used

to classify samples that differ by biological phenotype. Thus, it

provides a framework for future experiments that will evaluate

CSF samples from individuals with neurological diseases, in search

of relevant biomarkers.

Alternative and Evolving Strategies for Peptide
Identification

Recently, other reports have also described the use of this

technique for CSF proteome characterization and biomarker

discovery. Impressively, some have identified and quantified

hundreds or thousands of proteins in a single CSF sample

[56,57], by referencing the unique LC retention times and m/z

values of the extracted ion chromatograms of peptides to an

annotated ‘library’ of retention times and m/z values compiled

from previous MS/MS analyses of similar CSF preparations

(accurate mass and time tag [AMT] strategy). For this current

experiment, no such annotated AMT library was available.

Instead, MS1 and MS2 scanning were performed simultaneously

to enable the annotation of peptides in real time. This approach

availed the identification of a comparatively smaller number of

proteins, but was wholly adequate for the purpose of this

experiment, which was not intended to discover novel rare CSF

proteins or to maximize the number of proteins identified. As it

happens, recent instrumentation advances during the short

interval since this experiment was conducted now allow for the

annotation of many more peptides in real time, effectively

increasing the sensitivity of simultaneous scanning; these changes

have reduced the popularity of the more laborious AMT

approach. Regardless, even without such advances, either

Figure 8. Unsupervised hierarchical clustering of duplicate
samples from 6 cognitively normal individuals and all 81
proteins. All proteins were represented by two or more peptides. Data
from all contributing peptides were used to calculate protein
abundance. Samples are represented by columns as indicated by
lettered and numbered colored blocks, below; proteins are represented
by rows, as indicated by gene symbols on the right. Normalized protein
abundance values (Z-scores) are indicated colorimetrically for each
protein in each sample; red = high, black = mean value, green = low.
doi:10.1371/journal.pone.0064314.g008
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approach is likely to identify promising candidate biomarkers.

Indeed, even in this limited experiment, in which tandem mass

spectrometry was triggered solely on the basis of relatively high

peptide abundance, a comparatively modest list of 81 proteins

generated sufficient diagnostic potential to allow perfect segrega-

tion of ‘individual’ and ‘pooled’ sample replicates with a much

smaller subset of 24 selected proteins (compare Fig. 9 and Fig. 10).

It is also encouraging that many of the 81 proteins have already

been reported as potential biomarkers for AD by multiple

independent groups [2,20,28,31,36,58–61]. Indeed, because none

of these previously reported candidate biomarkers have been

vetted sufficiently to be applied in clinical trials, they will have to

be studied further: individually and in combination; in larger

cohorts and in different diseases. Thus, particularly with recent

advances, this technique is well suited for application in future AD

research studies to facilitate the validation of promising biomark-

ers.

Limitations of Quantitative Label-Free LC-MS/MS
In spite of its many advantages, quantitative label-free LC-MS/

MS is not without limitations [41]. The use of endoproteolytic

peptides as protein surrogates eliminates isoform information

encoded in the CSF proteome; protein molecules that are

modified by physiological or pathological proteolytic cleavage,

differential mRNA splicing, or isolated post-translational modifi-

cations may be difficult or impossible to detect in the company of

‘full-length’ or ‘unmodified’ proteins encoded by the same gene;

such information may be detectable using other techniques such as

2D gel analysis. Nevertheless, quantitative label-free LC-MS/MS

is faster, less labor-intensive, more reproducible, more amenable to

automation and peptide/protein identification, and more accom-

modating of larger sample sets than most complementary gel-

based techniques.

A related challenge involves the reliability with which quanti-

fication at the peptide level can be ‘‘rolled up’’ to the protein level.

Fortunately, statistical approaches have been developed to address

this problem and are available in the open source proteomics

platform DAnTE (http://omics.pnnl.gov/software/) [54]. As

demonstrated by this study, when DAnTE is applied to multiple

replicates of a pooled sample, quantification at the protein level is

highly reproducible (CV,5% for most of the proteins analyzed).

When all contributing peptides are used for protein abundance

calculations, there appears to be a trend of increasing CV

associated with decreasing abundance (Fig. S10), but this trend is

diminished when only the top two peptides for each protein are

considered. It remains to be seen in future studies whether

comparably low CVs will be achieved for less abundant proteins.

Nevertheless, these results suggest that this technique is highly

quantitative, with technical reproducibility similar to that of

ELISA and other, more ‘conventional’ methods that are

commonly used to quantify protein concentrations in fluids. It is

also conceivable that reference samples, containing known

amounts of proteins of interest, could be processed and analyzed

with patient CSF samples to provide for absolute, and not just

relative, quantification of protein abundance.

Subject Variance/Inter-individual Variability
Another issue regarding candidate biomarker discovery that is

independent of this technique, but is addressed in this study and

has strong implications for the potential of a protein to serve as a

biomarker, is that of inter-individual variability. Hypothetically, if

two biomarkers show identical fold-changes between a group of

control samples and another group of samples representing a

Figure 9. Unsupervised clustering of duplicate samples from 6 individuals, replicates of pooled CSF, and 81 proteins. Formatted as
described for Fig. 8.
doi:10.1371/journal.pone.0064314.g009

Figure 10. Unsupervised clustering of pooled and individual CSF replicates, limited to proteins with subject variance.60%.
Formatted as described for Fig. 8.
doi:10.1371/journal.pone.0064314.g010
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disease state, the biomarker with lower inter-individual variability

(tighter clustering about the median) in each group will show less

overlap between groups and will yield higher sensitivity and

specificity for diagnosis than the biomarker with greater inter-

individual variability. In this study, the distributions of values from

cognitively normal control samples for each of these 81 proteins

(Fig. 7) are generally quite narrow about the median. Of course,

the amplitude of fold-change for the disease state in question is also

a very important driving variable in determining the sensitivity

and specificity of a biomarker. Indeed, even proteins with

relatively broad ranges of concentration among cognitively normal

individuals (e.g. chromogranin A, NrCAM) can show potential for

diagnosing AD and control samples as part of a biomarker panel

[20]. Nevertheless, most proteomic fold-changes reported to date

for CSF biomarkers have been rather modest (,1.5 fold) and

would show far greater biomarker utility in a background of far

lower inter-individual variability.

Process Gradient Effect – Randomization Required
A separate issue that confronts this technique involves processing

gradient or ‘drift’ effects that may occur in the performance of MAF

and LC-MS over the course of an experiment. In this experiment,

processing gradient (‘drift’) effects appear to have influenced the

values of multiple proteins, as demonstrated by statistically

significant correlations of pooled sample replicate values with

MAF or LC-MS run order (Figs. S12 and S13). However, these

influences were small relative to mean protein abundances, as

evidenced by low CV’s among the 81 proteins (Fig. S5).

Nevertheless, this observation of ‘drift’ does warrant sample

randomization and the insertion/distribution of multiple technical

control sample replicates throughout the processing order in future

applications of this technique, as was practiced in this experiment.

Classification of Samples
A final point of discussion addresses the purpose and the

implications of the hierarchical clustering analyses performed in

this study. Such analyses are employed here to illustrate the

potential of this technique to measure ensembles of proteins that

can classify samples according to desired characteristics. In most

biomarker discovery studies, such clustering analyses would be

preceded by a selection process in which candidate biomarkers are

vetted on the basis of statistical association with a diagnosis of

interest (as in [20]). In the current study, because the samples

analyzed do not strictly represent two (or more) different disease

states, the proteins were evaluated, instead, for their ability to

segregate CSF from different sources (6 individuals and a pooled

sample). In this context, each source of CSF, represented by

multiple replicates, may be considered a surrogate for a different

clinical state; subject variance may be considered analogous to

fold-changes between different clinical conditions. The improved

clustering of samples in Fig. 10 relative to Fig. 9 reflects a selection

of biomarkers that can distinguish these individual samples. Thus,

although this study does not directly illustrate the potential of these

proteins as biomarkers for neurological diseases, it does suggest

that this technique could perform such a task, when applied to

CSF samples from appropriate cohorts.

Summary
Though it is not free from some of the limitations of ‘bottom-up’

proteomics approaches, label-free LC-MS/MS is a powerful

quantitative technique with a high capacity for multiplexing

(simultaneously measuring multiple biomarkers), a modest per-

analyte sample volume, and very low technical variability,

provided that analytical procedures are used to identify variations

in peptide intensities that can be ascribed to correctable technical

sources. Therefore, quantitative label-free LC-MS/MS shows

great promise as a tool for the discovery of CSF proteins that can

serve as biomarkers for the diagnosis, staging, prognosis and

monitoring of neurological diseases.

Supporting Information

Figure S1 Instrument configuration for multi-affinity fraction-

ation (A) and 1D-SDS-PAGE of individual (B) and pooled (C)

samples. Molecular weight markers indicated by black bars to

right of gel images represent (from top, in kD): 250, 150, 100, 75,

50, 37, 25, 20, 15, 10.

(TIF)

Figure S2 Total ion current chromatograms from LTQ-FTMS

analysis of ‘flow-through’ from multi-affinity fractionation of CSF

samples. Numerical values of total ion currents in Table S1.

(TIF)

Figure S3 Data processing for quantitative, label-free proteo-

mics analysis of CSF. In step 1, the unprocessed LC-MS/MS files

that were acquired using X-calibur (Thermo Fisher, ver. 2.0.7)

were analyzed using Mascot Distiller software (ver 2.0.3) for

preparation of files for database searching. After creating the *.mgf

files, the MS2 data were searched using MASCOT (ver. 2.2.04)

[62] against the UNIPROT human protein database (downloaded

April 21, 2011, with 105,706 sequences), allowing for up to 4

missed cleavages (Step 2). The MS1 and MS2 mass tolerances

were set at 20 ppm and 0.8 Da, respectively. Carbamidomethyl

was set as a fixed modification for Cys residues and Met residue

oxidation was allowed as a variable modification. The protein

database searches were further analyzed using Scaffold software

(ver. 3.00.07) (Step 3) and the proteins were identified using the

Protein Prophet algorithm [51] with protein and peptide

probabilities of 95% and 50%, respectively (Step 4), as

implemented in Scaffold [52]. All proteins were identified with a

minimum of two peptides and at least one peptide with a

probability score of .95%. The identified proteins and supporting

mass spectrometric data are given in Table S2. For relative protein

quantification, the same set of unprocessed LC-MS files was

imported into Rosetta ElucidatorTM (Rosetta Biosoftware, ver 3.3)

and the peptide ion chromatograms were aligned and mean

normalized using the following modification of the previously

described parameters [50]: Peak time score minimum = 0.5; peak

m/z score minimum = 0.5; Scan width of m/z = 350–1400; LC

time range of 30–140 min; intensity scaling based on the mean

intensity of all features (Step 5). The aligned peptide ion currents

(PIC’s) were annotated within the software by generating *.dta files

(Step 6) and searching the UNIPROT human database using

MASCOT as described above (Step 7). The ion current signals

from all charge states for each peptide were concatenated unique

using a visual script within the software. The table of peptides and

peptide intensities was exported in Excel *.csv format (Step 8). The

peptides were grouped as individual genes (Table S2) (Step 9). The

gene-grouped peptide intensity data were imported into DAnTE-

R for statistical analysis [53,54] (Step 10).

(TIF)

Figure S4 Total ion current of early-eluting peptides (samples

P3 and P4); ion intensity of NCAM-1 peptide. The ion traces for

the initial phase of the gradient elution of peptides from samples

P4 (A) and P3 (B) are shown. The peak height intensities for an

‘early-eluting’ NCAM-1 peptide (DGEGIEQEEDDEK) for all

samples are graphed (C) and listed (D) for all samples.

(TIF)
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Figure S5 Coefficients of variation for 81 proteins, calculated

using only the two most abundant peptides. Numerical values in

Table S6.

(TIF)

Figure S6 Subject variance for each of 81 proteins, calculated

using only the two most abundant peptides. Calculated using

values from all paired individual sample replicates. Numerical

values in Table S6.

(TIF)

Figure S7 Biological variability and technical variability of 81

proteins, represented by the two most abundant peptides. Box and

whiskers plot, as described for Fig. 7. Numerical values in Table

S6.

(TIF)

Figure S8 Unsupervised clustering of individual sample repli-

cates, 81 proteins quantified using the two most abundant

peptides. Formatted as in Fig. 8.

(TIF)

Figure S9 Unsupervised clustering of individual and pooled

replicates; 81 proteins quantified using two most abundant

peptides. Formatted as in Fig. 8.

(TIF)

Figure S10 Relationship of coefficient of variation and protein

abundance, comparing two alternative strategies for protein

quantification. Abundances (median values among pooled sample

replicates) of 81 proteins were calculated from the mean of all

peptide intensities (blue open circles) or from the mean of peptide

intensities from the two most abundant peptides (red open

squares). Abundance values are plotted against CVs that were

calculated from pooled sample replicates, as described in Materials

and Methods.

(TIF)

Figure S11 Symmetrical matrix of Pearson correlation analyses:

all aligned charge groups (11,433), all pairwise sample compari-

sons. Formatted as in Fig. 2. Peptide intensity features were time

and m/z aligned as described in Materials and Methods. The MS

data were processed through Steps 1–3 (Fig. 2A). Sample P7,

which did not pass 1D-gel-electrophoresis QC analysis (Fig. S1),

was excluded.

(TIF)

Figure S12 Influence of multi-affinity fractionation (MAF) run

order on protein abundance measurements. For each of 81

proteins (organized alphabetically by gene symbol of origin), log2

transformed abundance values (calculated from the mean of the

two most abundant peptides) for each of the pooled sample

replicates are plotted versus MAF run order. Pearson correlation

coefficients and statistics (Fisher’s z transformation) are listed for

each protein.

(PDF)

Figure S13 Influence of LC-MS run order on protein

abundance measurements. For each of 81 proteins (organized

alphabetically by gene symbol of origin), log2 transformed

abundance values (calculated from the mean of the two most

abundant peptides) for each of the pooled sample replicates are

plotted versus LC-MS run order. Pearson correlation coefficients

and statistics (Fisher’s z transformation) are listed for each protein.

(PDF)

Table S1 Total ion currents from LC-MS analysis of CSF.

Duplicate aliquots from 6 individual samples and 14 aliquots from

a pooled sample were assayed, as described under ‘Materials and

methods’.

(XLSX)

Table S2 Mass spectrometry, peptide data, database parameters

and search results. Scaffold Proteome Software (v.3.1.4.1) was used

to display MASCOT search results. Protein probability filter was

set at 95%, peptide probability at 50%, and a minimum of 1

peptide required. Protein and peptide false discovery rate were

determined by Scaffold using the probabilistic method used by the

Trans-proteomic pipeline (see http://proteome-software.

wikispaces.com/FAQ+-+Statistics).

(XLSX)

Table S3 Amplitude-normalized peptide intensites from m/z

and time alignment of ion chromatograms; contaminants, outliers

sequentially removed. The gene grouped peptides are listed under

the first (‘ALL-PEP’) tab. The intensities after removal of process

contaminant, Met-containing, and early-eluting peptides are given

under the second (‘ART’), third (‘ART-MET’), and fourth (‘ART-

MET-EEP’) tabs, respectively. Intensity values for all 11,433

charge groups are given under the fifth (‘ALL-PEP-INT’) tab.

Missing data values (number and percent of charge group

values = 0, in ‘ALL-PEP-INT’ tab) for each sample are given

under the sixth (‘MISSING DATA’) tab.

(XLSX)

Table S4 Contaminant and outlier peptides. Artifactual peptides

from contamination or incomplete removal of targeted proteins

during MAF are given under the first (‘ART’) tab. Methionine-

containing peptides that were discordant in the scatter plot analysis

of ‘duplicate’ samples (e.g. samples 1a and 1b, Fig. 4A, 4B) are

shown under the second (‘MET’) tab. Early eluting peptides from

pooled sample 3 (P3) (Fig. 4C, 4D and Fig. S4) are given under the

third (‘P3’) tab.

(XLSX)

Table S5 Pearson correlation coefficients for all pairwise

comparisons from the log2 transformed intensities of annotated

peptides. The correlation coefficients from all pairwise compari-

sons of the log2 transformed peptide intensities are given under the

first (‘ALL-PEPS’) tab. The matrices of correlation coefficients

after removal of peptides from ‘artifactual’ proteins and after

removal of ‘artifactual’ and methionine-containing peptides are

given under the second (‘ART’) and third (‘ART-MET’) tabs,

respectively.

(XLSX)

Table S6 Statistical analysis of protein data for CSF sample

replicates. The first (‘SUBJ’) tab includes mean, median, standard

deviation and subject variance for all 81 proteins among individual

CSF sample aliquots. The second (‘POOLS’) tab includes mean,

median, standard deviation and coefficient of variation for all 81

proteins among pooled sample aliquots. Values derived from

protein abundances calculated using all contributing peptides are

labeled ‘ALLPEP’ (columns B–E); those derived from abundances

calculated using only the top two peptides are labeled ‘TOP2’

(columns F–I).

(XLSX)
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