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ABSTRACT

Actinomycin D (ActD) is a small molecule with
strong antibiotic and anticancer activity. However,
its biologically relevant DNA-binding mechanism
has never been resolved, with some studies sug-
gesting that the primary binding mode is intercal-
ation, and others suggesting that single-stranded
DNA binding is most important. To resolve this con-
troversy, we develop a method to quantify ActD’s
equilibrium and kinetic DNA-binding properties as
a function of stretching force applied to a single
DNA molecule. We find that destabilization of
double stranded DNA (dsDNA) by force exponen-
tially facilitates the extremely slow ActD-dsDNA on
and off rates, with a much stronger effect on
association, resulting in overall enhancement of
equilibrium ActD binding. While we find the
preferred ActD–DNA-binding mode to be to two
DNA strands, major duplex deformations appear to
be a pre-requisite for ActD binding. These results
provide quantitative support for a model in which
the biologically active mode of ActD binding is to
pre-melted dsDNA, as found in transcription
bubbles. DNA in transcriptionally hyperactive
cancer cells will therefore likely efficiently and
rapidly bind low ActD concentrations (�10 nM), es-
sentially locking ActD within dsDNA due to its slow
dissociation, blocking RNA synthesis and leading to
cell death.

INTRODUCTION

Actinomycin D (ActD) is a DNA binding (1) small
molecule with potent activity as an antibiotic (2) and
anticancer agent (3). It is a neutral molecule that

contains a planar tricyclic phenoxazone ring that intercal-
ates dsDNA and two cyclic pentapeptide side chains
(Figure 1a). ActD can intercalate between double
stranded DNA (dsDNA) base pairs (4–8), bind to
single-stranded DNA (ssDNA) (9–12) and can even
‘hemi-intercalate’ between the bases of a single DNA
strand (13,14). Early studies found that once bound
ActD dissociates slowly from dsDNA (4), with a compo-
nent of its dissociation occurring on a time scale of
�1000 s. These studies attributed ActD’s anticancer
activity to this slow kinetics, and found it to be due to
the slow fitting of its two highly stressed cyclic
penta-peptide side chains into the DNA minor groove
below and above the intercalated phenoxazone ring
(4,15) (Figure 1b). The fitting into the groove is stabilized
by hydrogen bonding of the ActD side chains to guanine
bases (5–7), and associated with major DNA duplex de-
formations, such as strong bending (6,8), unwinding (6,16)
and even base flipping (16,17). Duplex deformations are
also driven by optimization of the tricyclic phenoxazone
ring stacking with the 30 faces of guanine (or adenine)
residues in the opposite DNA strands (8,14,16).
Competing models for the anticancer activity of ActD
depend on the favored binding mode; Intercalation may
inhibit replication by stabilizing dsDNA in front of
the replication fork (8), while binding to destabilized
duplexes such as transcription bubbles may inhibit DNA
transcription (18–20), and ssDNA binding may directly
stall the DNA polymerase (12). However, despite many
years of study by a variety of methods and detailed know-
ledge of the relationship between DNA sequence, struc-
ture and the strength of ActD–DNA interactions, there is
no consensus for any of these models and the reason for
the selective anti-cancer activity of ActD at low concen-
trations remains unclear.
Here we develop a single molecule method using optical

tweezers to probe the DNA structural dynamics as ActD
binds. This method allows us to completely characterize
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the kinetics and thermodynamics of ActD binding to a
single polymeric dsDNA molecule as a function of force.
In the optical tweezers experiments dsDNA is stretched by
applying a force, F, to the polystyrene beads attached to
its ends (Figure 2a). The beads are chemically attached to
the opposite strands of the dsDNA such that it can freely
rotate while stretching. As the dsDNA is stretched it is
progressively destabilized by force until it undergoes a
melting transition at force Fm� 65 pN (Figure 2b).
During this transition the duplex DNA melts at essentially
constant force, and progression into the transition reflects
the increasing fraction of melted DNA base pairs. Above
this transition force (F>Fm), stretching of predominantly
ssDNA with a few remaining dsDNA regions is observed.
Gradually releasing back the DNA retraces most of its
stretching curve, signifying rapid re-annealing of the two
melted DNA strands (at a pulling rate of 100 nm/s). This
type of DNA force spectroscopy experiment makes ss or
dsDNA substrates available for protein or ligand binding
in a controllable way, and allows us to study the effects of
these small molecules on either DNA state, as well as on
the transition between them. Depending on the type of
interaction, equilibrium and/or kinetic properties of
binding can be characterized by stretching dsDNA in
the presence of these small molecules (21). This
approach has been successfully employed to characterize
the equilibrium DNA interactions of rapidly binding
duplex-stabilizing intercalators (22) as well as duplex-
destabilizing ssDNA-binding proteins (23–25). A similar
optical tweezers setup was used to quantify the slow
dsDNA association kinetics of a novel threading
intercalator (26).
In this study, we completely characterize the equilib-

rium binding as well as the extremely slow on and off
kinetics of ActD binding to duplex DNA, which cannot
be directly measured by conventional methods. The
observed systematic facilitation of this ligand’s on and
off rates and dissociation constant by duplex destabilizing

force allows extrapolation of these parameters to their
force-free values. In addition, information on the struc-
tural changes in duplex DNA associated with the on and
off processes as well as equilibrium binding are obtained.
We find that ActD binding requires large dsDNA
structural changes, which readily occur in a strongly
destabilized DNA duplex that is functionally equivalent
to two parallel single strands, but which are rare for
stable dsDNA, resulting in much slower kinetics when
the DNA is stable. The results allow us to propose a mo-
lecular mechanism for the anticancer activity of ActD
based on the measured DNA structural dynamics. We
use force spectroscopy in several complementary ways to
obtain the same characteristics of ligand–DNA binding,
rendering our conclusions definitive and self-consistent.
This approach can be used as a general tool for studying
the equilibrium and kinetic properties of small ligands and
proteins that bind DNA slowly and non-cooperatively
with measurable changes in DNA structure.

MATERIALS AND METHODS

The experiments described used a dual beam optical
tweezers to stretch a single bacteriophage � DNA
molecule, end-labeled with biotin, between two
streptavidin-coated polystyrene beads. After capturing a
molecule, the surrounding solution was exchanged to
obtain the desired concentration of ActD. The force-
extension curves in the presence of ActD were then
obtained at pulling rates of 100 nm/s and characterized
according to the methods described in the manuscript.
As these stretching experiments were observed to be out
of equilibrium, a force clamp technique was also imple-
mented to explore the slow ActD-binding process. During
these constant force experiments DNA was stretched
rapidly (�2 s) to a constant force and then maintained
at that force using feedback. The feedback was obtained
by measuring the change in force every second as the
length changed in response to ligand association or dis-
sociation. If this force was greater or less than the force
setpoint by >1 pN, the force clamp adjusted the micro-
pipette to a new position to maintain the force within 1 pN
of the desired constant force value. These experiments
were done while flowing the desired concentration of
ActD through the cell (at a rate of �100ml/s). Once the
extension reached equilibrium the ActD flow was stopped
and buffer was flowed to wash out the ActD. The exten-
sion change during this rinse was also observed at
constant force to characterize the dissociation kinetics.
In principle, time constants as fast as 100ms could be
measured with this technique. However, in practice
force-dependent binding at low forces before the
setpoint is reached and the need to flow in a new
solution with or without buffer limit the time constants
we have measured to a few seconds or longer. To further
check the effect of flow on the measured binding kinetics,
control experiments first filled the cell with the desired
concentration of ActD, followed by constant force meas-
urements. All experiments were performed at 20�C, pH 7.5
and 100mM Na+.
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Figure 1. Actinomycin D structure and DNA interactions.
(a) Chemical structure of ActinomycinD (ActD), with the planar
phenoxazone ring system shown in green and pentapeptide side
chains shown in red. (b) Ball and stick structure of two ActD molecules
interacting with two DNA strands (different shades of blue) obtained
from the pdb file IMNV, where phenoxazone rings (cyan for top
molecule and green for bottom molecule) intercalate between DNA
base pairs and the pentapeptide side chains (red) lie in the minor
groove.
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RESULTS

Limited available data (4,27–30) suggest that DNA duplex
destabilization either by low salt, high temperature or
DNA sequence mismatches leads to stronger and faster
ActD–DNA binding compared to stable dsDNA. In
order to test this hypothesis, we use a single molecule
approach to destabilize dsDNA by applying a stretching
force to its opposite ends with optical tweezers in the
presence of ActD (Figure 3). The results below quantita-
tively demonstrate that DNA destabilization increases
both the on and off rates of ActD, as well as its equilib-
rium DNA-binding affinity.

Non-equilibrium ActD–DNA binding observed in DNA
stretching experiments

The DNA stretching curves in the presence of low concen-
trations of ActD ([ActD]< 100 nM) overlap the DNA
stretching curves in the absence of the drug until the
DNA is stretched into the melting transition, indicating
that there is negligible binding at low ActD concentrations
unless the dsDNA is destabilized (Figure 3a). Further
stretching beyond the melting transition (F>Fm) shows
an immediate effect of the drug, where the DNA length
observed in stretching curves obtained in the presence of
ActD appears shorter than those obtained without drug.
The DNA release curves almost retrace the stretching
curves above the melting transition, indicating that
ActD–DNA binding is in equilibrium at these high
forces. The most pronounced effect of ActD is that the
DNA release curve after stretching through the melting
transition does not match its stretching curve below
melting transition (F<Fm) at our DNA pulling rate of
100 nm/s. The observed hysteresis indicates that ActD as-
sociation to and dissociation from stable dsDNA at
F<Fm is much slower and weaker compared to unstable
dsDNA at F>Fm. This result is further illustrated in
Supplementary Figure S1, which shows increasing hyster-
esis in each DNA stretch-release cycle as DNA is progres-
sively stretched further into its melting transition in the
presence of 50 nM ActD. The observed hysteresis repre-
sents an increasing fraction of ActD-bound DNA complex

that is proportional to the fraction of force-melted DNA
and is locked within the duplex at F<Fm.
The strength of ActD binding to the two force-melted

DNA strands at F>Fm can be quantified as illustrated
in Supplementary Figures S2a and S2b. At forces above
the melting transition, F>Fm, the equilibrium DNA
stretching curve shifts to smaller extensions as ActD con-
centration is increased from zero to �75 nM. Fitting this
DNA stretching curve at high forces as a weighted average
between ActD-free ssDNA and ActD-saturated dsDNA
yields the fractional ActD binding � as a function of
ActD concentration presented in Supplementary Figure
S2b. The same stretch and release curves allow us to
perform a complementary analysis that assumes the
DNA release curve at F<Fm after complete force-induced
melting is the weighted average between re-annealed
ActD-free dsDNA and ActD-saturated DNA. This
analysis assumes that the same fractional ActD binding
y that was in equilibrium at F>Fm becomes locked within
the duplex at F<Fm. Fitting �([ActD]) using both of these
complementary methods with a simple expression for a
non-cooperative two-state binding isotherm [described in
the legend to Supplementary Figure S2 and similar to
Equation (3) below] yields the ActD–DNA dissociation
constant, Kd (F>Fm) =18±6nM. Our measured value
of Kd (F>Fm) is similar to the value of Kd �10 nM
measured previously for some specific sequence-
mismatched DNA oligomers (10), supporting our hypoth-
esis that dsDNA destabilization by either force or any
other factor facilitates ActD binding. In addition to the
use of stretching curves to obtain the equilibrium ActD–
DNA binding affinity, the DNA pulling rate dependence
of these curves can be used to estimate the kinetics of
ActD–DNA binding at F>Fm (see Supplementary
Figure S3).
As ActD concentration is further increased (Figure 3b),

the effect of the drug becomes prominent during stretching
even at low forces below the melting transition (F<Fm),
suggesting that higher ActD concentration leads to
binding even to stable duplex DNA. However, the DNA
stretch and release curves still do not overlap at low forces
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Figure 2. Stretching DNA with optical tweezers. (a) Schematic diagram of a dual beam optical tweezers instrument, which is used to trap and stretch
single DNA molecules. (b) Typical force-extension curve obtained while stretching (solid curve) and releasing (broken curve) a single DNA molecule
with optical tweezers at a pulling rate of 100 nm/s.
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(F<Fm) illustrating the non-equilibrium nature of the
ActD–DNA complex and its slow on and off kinetics.
The DNA stretching curve shows progressively more
ActD binding until it converges with the DNA release
curve at [ActD]� 4 mM. Analysis of the elastic properties
of this saturated ActD–DNA complex (Supplementary
Figure S4) suggests that it consists of two DNA strands
strongly bound together at all forces by intercalated ActD,
which we will denote ActD–2DNA hereafter. ActD–
2DNA remains a rigid, well-defined structure that shows
no signs of a melting transition, similar to saturated DNA
complexes with more conventional intercalators
(Supplementary Figure S4).

Measuring time-dependent ActD–DNA binding at
constant force

The non-equilibrium DNA stretch and release curves
observed below the melting transition (F<Fm) at
100 nm/s DNA pulling rate are expected to converge at
some intermediate equilibrium curve as the DNA pulling
rate is decreased to allow more time for ActD–2DNA
complex association and dissociation. While we cannot
pull slowly enough to directly observe this equilibrium
ActD–DNA stretching curve, we can rapidly stretch or
stretch and then release DNA to a particular force, and
wait for the DNA extension to relax to equilibrium
(Figure 4). Confirming our hypothesis, the DNA exten-
sion always converges to approximately the same equilib-
rium value, xeq(F, [ActD]), independent of the stretching
history. Following the relaxation of the DNA extension
x(t, F, [ActD]) to xeq(F, [ActD]) with time at a constant
force allows us to completely characterize the equilibrium
affinity and kinetics of ActD–2DNA complex formation
(Figure 5). Presented in Figure 5a are four x(t) traces

following ActD–DNA association as solution with
500 nM ActD is being flowed through the optical
tweezers flow cell (open circles in Figure 5a). Fitting the
x(t) traces in Figure 5a to an exponential time dependence
(solid curves in Figure 5a) yields the total relaxation rate
kt= (kon+koff) of ActD–2DNA and its equilibrium exten-
sion per basepair (xeq)

xðtÞ ¼ xeq+ðx0 � xeqÞ expð�kttÞ ð1Þ

Determination of force-dependent equilibrium
DNA-binding affinity

The fractional DNA binding with ActD, �(F), at force F
can be determined given the fitted xeq(F), ActD–2DNA
extension xsat(F) (obtained from the ActD–DNA
saturated curve in Supplementary Figure S4) and the
known ActD-free dsDNA extension xds(F):

�ðFÞ ¼
xeqðFÞ � xdsðFÞ

xsatðFÞ � xdsðFÞ
ð2Þ

Using a simple binding isotherm, which assumes non-
cooperative ligand binding to identical non-overlapping
sites on DNA, the equilibrium dissociation constant
Kd(F) can be obtained:

KdðFÞ ¼ ½ActD�
1� �ðFÞ

�ðFÞ
: ð3Þ

This measured Kd(F) decreases exponentially with force
(Figure 5b), and can be fit to the expression

KdðFÞ ¼ Kdð0Þ exp �
F�xeq
kBT

� �
ð4Þ
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Figure 3. Stretching DNA in the presence of Actinomycin D. (a) DNA stretching (solid violet, blue, green and red) and releasing (corresponding
broken curves) in the presence of low concentrations of ActD (6–75 nM) and in the absence of drug (black). The main features indicate that there is
no sign of ActD binding until the DNA is stretched into the melting transition, while the hysteresis suggests association and dissociation are slower
than the stretching time of 100 s. (b) DNA stretching (solid violet, blue, green, orange and red) and releasing (corresponding broken) curves in the
presence of high concentrations of ActD (0.25–4 mM) and in the absence of drug (black). The results suggest faster binding to dsDNA at high
concentrations, which saturates at [ActD] �4 mM.
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to determine the dsDNA elongation associated with a
single ActD–DNA binding event, �xeq, and the equilib-
rium dissociation constant in the absence of force,
Kd(0). Fitting yields �xeq=0.20±0.05 nm, in the range
expected for an intercalator (21), and Kd(0)=
1.2±0.5 mM, which is similar to the value of
Kd�3.5 mM for ActD–dsDNA binding obtained in
previous solution studies (11). Extrapolation of the force
dependence of Kd to high forces (F�Fm), suggests that Kd

becomes close to the value measured independently at
high forces Kd(F>Fm)=18±6nM as illustrated in
Supplementary Figure S2.

Binding kinetics of ActD and DNA structural dynamics

Furthermore, Kd(F) and kt(F)=kon(F) + koff(F) can be
used to calculate individual ActD–DNA rates kon(F) and
koff(F):

konðFÞ ¼
ktðFÞ

1+KdðFÞ= ActD½ �
ð5Þ

koffðFÞ ¼
ktðFÞ � KdðFÞ= ActD½ �

1+KdðFÞ= ActD½ �
ð6Þ

In deriving Equations (5) and (6) we assumed that
KdðFÞ ¼ ½ActD�ðkoff=konÞ, i.e. that ActD–DNA association
is non-cooperative and bimolecular. The bimolecular
nature of ActD–DNA association is demonstrated by
comparison of kon values obtained in the presence of
50 nM (Supplementary Figure S5b) and 500 nM ActD
(Figure 5c), showing a 10-fold difference in rates. It is
also directly confirmed in a separate experiment in which
we performed analogous DNA relaxation measurements
at the fixed force F= 30 pN and several ActD concentra-
tions (Supplementary Figure S6).
The ActD–2DNA on (green points in Figure 5c) and off

rates (red and brown points in Figure 5c) at a particular
concentration increase exponentially with the applied
force:

kðFÞ ¼ kð0Þ exp
Fx

kBT

� �
, ð7Þ

where k is either kon or koff and x is either xon or xoff. Fits to
the data (green and red line in Figure 5c) yield the rates in the
absence of force kon(0)=(3.5±0.9)� 10�4/s and
koff(0)=(9.8±1.9)� 10�4/s, which are in the range of
rates measured in bulk studies (4,31,32). The off rate fit
extrapolated to the high force limit agrees well with the
range 0.004/s< koff< 0.02/s estimated at high-force
(F>Fm) from the pulling rate dependence of the DNA
stretching curves (Supplementary Figure S3). In addition,
these fits yield the length change required for a single ActD
molecule to bind to or dissociate from DNA, xon=
0.33±0.03nm and xoff=0.11±0.02nm. The DNA elong-
ation upon equilibrium ActD intercalation given by
�xeq=xon – xoff=0.33� 0.11nm=0.22nm agrees with
�xeq=0.20±0.05nm within uncertainty, which was
determined above from the force dependence of Kd(F)
using Equation (4) (Figure 5b). The off rates can also be
independently obtained directly from the washing off experi-
ments, where clean buffer is flowed through the cell to replace
the ActD solution while holding the DNA at constant force
(Supplementary Figure S7). The directly measured off rates
(brown points in Figure 5c) agree very well with those given
by Equation (6) (red points in Figure 5c).
We also obtained the force dependent bimolecular as-

sociation rate ka(F) (Figure 5d) by combining force de-
pendent measurements obtained at 50 nM (blue points),
500 nM (green points) and concentration dependent
rates obtained at 30 pN (dark pink point). The expo-
nential fit yields the zero force association rate
ka(0)= (1.0±0.2)� 103/Ms. Very similar ka(0) values
are obtained from analysis of the force Fk([ActD], n)
that promotes major intercalation of ActD into dsDNA
at pulling rate n=100 nm/s described in Supplementary
Figure S8. The extrapolation of the force dependent bi-
molecular association rate ka(F) to high force (F�Fm)
agrees well with the range of 2� 105/Ms
< ka(F>Fm)< 106/Ms obtained from the pulling rate ex-
periments described in Supplementary Figure S3.
Analogous control experiments performed in the absence
of solution flow and in the presence of 50 nM ActD have
shown the flow itself to have no effect on measured ka(F)
or koff(F) (Figure 5c, d and Supplementary Figure S5b).
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DISCUSSION

The agreement of all of the ActD–DNA binding param-
eters measured in this study by several independent
approaches confirms that ActD binds to and stabilizes
two bound DNA strands via non-cooperative, bimolecu-
lar binding with very slow on and off rates. As the DNA
stretching force is increased from 0 to �65 pN, leading to
progressive duplex destabilization, ActD–DNA binding
becomes �20-fold stronger (Figure 5b), while its on and
off rates become �100-fold and �5-fold faster, respect-
ively (Figure 5c). The fact that the DNA stretching force
promotes both the ActD–2DNA on and off processes
implies that the rate-limiting step for either event

requires dsDNA lengthening. The DNA lengthening
obtained from force dependent on rates,
xon=0.33±0.03 nm, represents the large length change
required for both intercalation and fitting of the
penta-peptide side chains into the dsDNA the minor
groove (Supplementary Figure S9). The structure then
relaxes to �xeq= 0.20±0.05 nm, corresponding to the
duplex elongation associated with ActD’s phenoxazone
ring intercalation as its side chain fitting is optimized.
The additional DNA elongation xon��xeq=
0.13±0.03 nm is within error equal to the lengthening
required to dissociate that is obtained from the force de-
pendence of the off rates (xoff=0.11±0.02 nm). This
suggests that the DNA distortion required to remove the
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ing to Equations (5) and (6), along with directly measured off rates (brown points) from Supplementary Figure S7. The green and red lines are fits
to the on and off rates using Equation (7) with the parameters kon(0)= (3.5±0.9)� 10�4/s, koff (0)= (9.8±1.9)� 10�4/s, xon=0.33±0.03 nm
and xoff=0.11±0.02 nm. (d) Force dependence of the bi-molecular association rate constant ka(F) calculated using measured kon(F) values for
50 nM (blue points), 500 nM (green points) ActD, and concentration-dependent studies at F=30 pN (pink point) discussed in Supplementary Figure
S6. The solid dark red line represents an exponential fit to ka(F) corresponding to Equation (7) with ka(0)= (1.0±0.2)� 103/M s and
xon=(0.25±0.02) nm.
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side chains from the DNA minor groove during dissoci-
ation is similar to that required to accommodate
the chains during ligand association. The intercalation
is known to be rapid (�ms) (33), occurring in
pre-equilibrium to much slower side chain fitting (4,28).
Therefore it is clear that DNA duplex destabilization,
either by force or other factors (4,27–30), facilitates the
rate limiting step of fitting and removing the side chains
during both binding and unbinding of ActD by making
the duplex more deformable. ActD shares this feature with
so-called ‘threading’ intercalators that are being developed
as a new class of anticancer drugs (26). While destabiliza-
tion of the DNA duplex structure facilitates the kinetics of
ActD binding as well as its equilibrium binding affinity, its
final preferred bound state is always to two, not just one
DNA strand. This is consistent with earlier observations,
in which ssDNA oligomers fold back on themselves to
form mismatched duplexes upon ActD binding (10).

The efficient anticancer activity of ActD is due to its
ability to inhibit DNA transcription and replication at
low (�10 nM) concentrations, with a lower toxicity for
normal cells than cancer cells (34). The concentration of
DNA-binding sites for ActD in the nucleus is high and
variable, as it depends on DNA accessibility within chro-
matin, which changes dramatically during the cell cycle.
However, the effective DNA-binding site concentration
always exceeds the Kd �1 mM for the ActD binding to
B-form dsDNA, such that all available ActD will always
be DNA-bound. In normal cells with relatively low tran-
scriptional activity, most of the DNA exists in its normal
B-form duplex. In such cells, most of the ActD will be
absorbed by the few ‘alternative’ or defective DNA struc-
tures, and will likely not strongly alter normal DNA tran-
scription. In contrast, in cancerous cells with greatly
elevated transcriptional activity, a majority of the ActD
will accumulate within helicase-unwound DNA tran-
scription bubbles. These sites have an especially high
ActD-binding affinity, as the binding to such sites occurs
100-fold faster than to B-form dsDNA, due to duplex de-
stabilization by the helicase. An additional preference of
ActD for these sites may be ensured by their steric acces-
sibility within the chromatin. At the same time, ActD un-
binding after enzyme dissociation is expected to be as slow
as its unbinding from stable B-form dsDNA, which should
occur on the �1/koff(0)�1000 s time scale. Therefore, tran-
sient DNA bubbles are not only favored by a 100-fold
higher equilibrium ActD–DNA-binding affinity, but they
are also kinetically selected and effectively locked on a
time scale larger than typical biological processes.

In summary, our results suggest that the efficient
anticancer activity of ActD is related to the strong facili-
tation of its DNA-binding kinetics by the elevated activity
of dsDNA unwinding enzymes in cancerous cells, leading
to an efficient transcription block by ActD that is effect-
ively locked into the dsDNA structure after enzyme dis-
sociation. This generic mechanism of activity explains the
predominant effect of ActD on DNA transcription
(18–20), and the low selectivity of ActD for different
types of cancer, leading to its relatively high toxicity
(34). Taken together with the large body of microscopic
data on ActD–DNA interactions, these results may

facilitate the development of anticancer drugs by exploit-
ing the molecular properties of ActD responsible for this
phenomenon while also lowering the toxicity of the drug.
The single molecule method developed here allows us to

monitor ligand–DNA binding as a function of time, re-
vealing both its kinetics and thermodynamics. Moreover,
in the case of ActD this approach allows us to understand
its preferred DNA-binding mode, the structural changes
in DNA associated with its equilibrium binding, and the
rate limiting deformations for the on and off processes.
The approach developed in this work should be useful
for studies of largely sequence non-specific and non-
cooperative DNA-binding small molecules that bind and
unbind DNA on a time scale >�10 s, while causing
measurable changes in DNA length. As most slow
binding processes are associated with significant structural
changes in DNA, a majority of these processes are
expected to lead to essential variation in DNA length,
and will therefore be exponentially affected by the
stretching force. In conclusion, we expect the method de-
veloped in this study to be a highly informative and
general approach to the study of slow small molecule-
DNA-binding processes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–9 and Supplementary
References [35–37].
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