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Abstract

Safe and effective immunization of newborns and infants can significantly reduce childhood 

mortality, yet conventional vaccines have been largely unsuccessful in stimulating the neonatal 

immune system. We explored the capacity of a novel mucosal antigen delivery system consisting 

of non-living, non-genetically modified Lactococcus lactis particles, designated Gram-positive 

Enhancer Matrix (GEM), to induce immune responses in the neonatal setting. Yersinia pestis 

LcrV, used as model protective antigen, was displayed on the GEM particles. Newborn mice 

immunized intranasally with GEM-LcrV developed LcrV-specific antibodies, Th1-type cell-

mediated immunity, and were protected against lethal Y. pestis (plague) infection. The GEM 

particles activated and enhanced the maturation of neonatal dendritic cells both in vivo and in 

vitro. These dendritic cells showed increased capacities for secretion of pro-inflammatory and 

Th1-cell polarizing cytokines, antigen presentation and stimulation of CD4+ and CD8+ T cells. 

These data show that mucosal immunization with L. lactis GEM particles carrying vaccine 

antigens represents a promising approach to prevent infectious diseases early in life.

INTRODUCTION

One of the major challenges in vaccinology is the development of safe and effective 

vaccines that can protect newborns and infants against infectious diseases. Conventional 

vaccines are notoriously poorly immunogenic during the first months of life, inducing 

immune responses that are short-lived and heavily Th2 biased. Th1-type cell-mediated 
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immunity is modest or absent, and the combination of these factors heightens the risk of 

intracellular bacterial infections1–3. Even though routine immunization of human infants 

starts at 6 to 12 weeks of age, several booster doses are needed to achieve protective 

immunity. Mounting evidence indicates that these poor responses are not due to intrinsic 

deficiencies of the neonatal immune system, which has a fully constituted T cell repertoire 

and is capable of responding to antigens, but mainly to the presence of immature or 

“inexperienced” immune cells, particularly dendritic cells (DC), which have a limited 

capacity for antigen presentation and stimulation of naïve T cells1,3–5. The field of neonatal 

vaccinology has experienced unprecedented progress in recent years, and the literature 

supports the assertion that newborns are indeed capable of mounting potent adaptive 

immunity, including adult-like Th1-type immune responses to vaccine antigens, provided 

that these antigens are administered with the appropriate stimulatory signals1–3,5–7.

In this study, we examined the possibility of priming the neonatal immune system through 

mucosal immunization using a novel antigen delivery system consisting of non-living, non-

genetically modified cell wall particles derived from Lactococcus lactis. These particles, 

referred to as Gram-positive Enhancer Matrix (GEM) particles, are produced by the heat-

acid treatment of freshly grown L. lactis, a process that removes the DNA and most of the 

bacterial proteins, but leaves the peptidoglycan (PGN) envelope intact8,9. Multiple antigens 

can be displayed on the particle surface using recombinant protein and affinity technology: 

recombinant fusion proteins containing a vaccine antigen and a PGN protein anchor domain 

that binds with high affinity to the bacterial PGN, are produced in a suitable host-cell, 

purified, and then combined with naked GEM particles. The recombinant proteins bind 

tightly to the GEMs, creating antigen-displaying particles. A major advantage of the GEM 

particles for neonatal immunization is their safety profile. L. lactis is a non-pathogenic 

Gram-positive, lactic acid bacterium, generally recognized as safe (GRAS) and widely used 

in dairy products. Probiotics have been safely given to newborns10, young children in day-

care11 and even critically ill children12. Unlike recombinant live organisms, including 

attenuated pathogens, the L. lactis GEM particles do not contain DNA, i.e. there is no risk of 

potential reversion to a virulent form. The composition of the GEMs also contributes to their 

immune-stimulating properties. As spherical particles, the GEMs can be efficiently taken up 

by M cells in the epithelium above the mucosal lymphoid follicles, and the transported 

antigens can be delivered directly to underlying DC in mucosal inductive sites. Furthermore, 

the PGN envelope is a potent stimulator of innate immunity13.

We used Yersinia pestis LcrV as a model vaccine antigen to demonstrate the feasibility of 

successful early life immunization using the GEM platform technology. The 

immunogenicity and protective efficacy of L. lactis GEM particles displaying Y. pestis LcrV 

was investigated in a neonatal mouse model. We showed, for the first time, that intranasal 

immunization of newborn mice with GEM-LcrV elicits a potent mucosal and systemic 

immunity that protects against lethal systemic plague infection. We also demonstrated that 

the L. lactis GEM particles enhance the maturation of neonatal CD11c+ DC, and that these 

cells have increased capacity for secretion of pro-inflammatory and Th1-type promoting 

cytokines and can stimulate antigen-specific IFN-γ-secreting CD4+ T cells. Furthermore, we 

showed that the GEM particles were taken up by DC from human newborns and that these 
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cells also acquired a mature phenotype such that they were able to stimulate human T cells. 

Together, these results indicate that mucosally delivered antigen-displaying L. lactis GEM 

particles represent a highly promising vaccine approach for immunization early in life.

RESULTS

L. lactis GEM particles induced maturation of neonatal and adult mouse DC

To ascertain whether the L. lactis GEM particles could provide strong immunological 

signals to stimulate the neonatal immune system, we first examined the ability of the GEM 

particles to activate and enhance the functional capacity of neonatal DC. The expression of 

activation and maturation cell surface markers CD80, CD86, CD40 and MHC-class II (I-Ad) 

was measured on bone marrow (BM)-derived CD11c+ cells from newborn (7-day-old) mice 

stimulated with L. lactis GEM particles or mock-stimulated (Figure 1a). To determine the 

strength of the activation of GEM-stimulated neonatal DC in comparison with that of adult 

DC, BM-derived CD11c+ cells from 6–8 week-old mice were included in all experiments. 

All markers were upregulated in neonatal and adult DC after GEM stimulation, compared 

with the mock-treated DC (Figure 1a). Neonatal GEM-exposed DC exhibited a noticeable 

increase in the expression of CD86, while both CD86 and MHC-II were the markers most 

abundantly expressed on adult GEM-stimulated DC. A summary of the increases in the 

expression of cell surface markers in both neonatal and adult DC exposed to the L. lactis 

GEMs or to E. coli LPS (used as positive control) is shown in Table 1. It is noted that the 

upregulation of MHC-II and costimulatory molecules in both neonatal and adult GEM-

stimulated DC was remarkably similar to that induced by LPS under the same experimental 

conditions.

DC stimulated with L. lactis GEMs secreted pro-inflammatory cytokines

To assess the functional capacity of the GEM-activated DC, we examined their ability to 

secrete pro-inflammatory, Th1-promoting and regulatory cytokines, as these are all critical 

signals required for the development of an effective adaptive immune response. The levels 

of IL-12p70, TNF-α, IL-10, IL-6, IFN-γ and MCP-1 were measured in culture supernatants 

from neonatal and adult BM-derived CD11c+ cells treated with L. lactis GEMs or LPS, or 

from mock-treated cells. For all of the cytokines tested, both neonatal and adult GEM-

stimulated DC had an increased capacity for cytokine production as compared with mock-

treated cells (Figure 1b). The levels of cytokines produced by both adult and neonatal mouse 

DC stimulated with the L. lactis GEM particles were comparable, suggesting that neonatal 

GEM-activated DC can reach a degree of functional activity similar to that of adult mature 

DC. Interestingly, the fold-increases for TNF-α and IL-6 were much higher in DC from the 

newborns regardless of whether they were stimulated with the GEMs or LPS (Table 1).

GEM-exposed mature DC had reduced capacity for antigen uptake

During the process of maturation, DC relent their endocytic and phagocytic activity as they 

become more efficient antigen-presenting cells14. Accordingly, we examined the capacity 

of GEM-stimulated DC to incorporate FITC-dextran as a measure of antigen uptake. Both 

neonatal and adult CD11c+ DC exposed to the GEM particles had a markedly lower capacity 

to incorporate FITC-dextran (Figure 1c). Compared with mock-stimulated DC, the adult and 
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neonatal DC showed 85% and 90% reduction in FITC-dextran incorporation, respectively, 

further attesting to their mature phenotype.

In vivo activation of mucosal neonatal mouse DC by the GEM particles

To confirm that the in vitro process of neonatal DC maturation mediated by the GEM 

particles also occurs in vivo, we examined the phenotype of CD11c+ DC in the nasal-

associated lymphoid tissue (NALT) and the lungs of 15-day-old mice that had been 

immunized with the L. lactis GEM particles at 7 days of age. Figure 1d shows the 

expression of CD40, CD80, CD86 and MHC-class II on CD11c+ cells. As observed in vitro, 

DC from newborn mice exposed in vivo to the GEM particles also exhibited a more 

activated and mature phenotype as compared with the naïve (mock-exposed) controls. A 

remarkable increase in the number of CD11c+ cells expressing both CD40 and CD80 was 

seen in the NALT. A more pronounced level of activation was observed in this tissue as 

compared with the lungs, consistent with the proximity of the nasal tissue to the site of 

inoculation.

GEM particles activated neonatal and adult DC through TLR2

We hypothesized that the recognition of GEM particles by DC and their subsequent 

activation was mediated through toll-like receptor (TLR) signaling. Thus, we investigated 

the capacity of the GEMs to bind a panel of human and mouse TLRs expressed in HEK293 

cells. NF-κB activity was measured and used as a readout for activation. The GEM particles 

interacted with human TLR2 but not with any of the other TLRs tested, (human TLR3, 

TLR4, TLR5, TLR7, TLR8 and TLR9, and mouse TLR7 and TLR8; Figure 2a). The 

capacity of the GEM particles to signal through TLR2 expressed on neonatal and adult 

mouse DC was confirmed by antibody inhibition. In this assay, the production IL-6, detected 

in culture supernatants, were used as a measure of TLR2 activation. CD11c+ DC pre-

incubated with increasing amounts of TLR2-specific antibodies and subsequently stimulated 

with the GEM particles produced significantly lower levels of IL-6 than untreated DC (or 

DC incubated with isotype control). The level of IL-6 produced decreased in a dose-

dependent manner, further confirming the specificity of the antibody blockage and the TLR2 

involvement (Figure 2b).

Enhancement of neonatal antigen presentation and stimulation of antigen-specific T cells

We used the Y. pestis LcrV as a model antigen to test the ability of the L. lactis GEMs to 

prime an immune response in the neonatal setting. LcrV-based vaccines have been shown to 

induce complete protection against Y. pestis challenge in animal models [Reviewed in15]. 

However, none of these vaccines has been tested for tolerability and efficacy in young hosts. 

We therefore undertook the study of the GEM-LcrV system as a plague vaccine candidate 

for neonatal and infant immunization. LcrV-PGN binding domain fusions were produced in 

a recombinant L. lactis and attached externally to the GEM particles, as described in Figure 

3.

We first examined in vitro the capacity of neonatal DC exposed to LcrV-carrying GEM 

particles to process the vaccine antigen and present it to T cells. To this end, neonatal 

CD11c+ DC pre-treated with GEM-LcrV or LcrV, or mock-treated DC, were incubated with 
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LcrV- specific CD4+ and CD8+ T cells. Lymphocyte proliferation and the frequency of IFN-

γ secreting CD4+ T cells were measured as readouts of T cell activation (Figure 4a and b). 

Both CD4+ and CD8+ T lymphocytes showed remarkable proliferative responses when 

stimulated with neonatal DC previously exposed to GEM-LcrV. These responses largely 

surpassed those of T cells stimulated with LcrV- or mock-treated DC. The frequency of 

LcrV-specific IFN-γ-secreting CD4+ T cells also rose sharply and in a dose-dependent 

manner when T cells were stimulated with DC treated with GEM-LcrV, as opposed to 

stimulation with LcrV- or mock-treated DC, both of which failed to induce a significant 

IFN-γ response (Figure 4b).

Immunization with GEM-LcrV elicited potent mucosal and systemic immunity early in life

We next evaluated the immunogenicity and protective efficacy of the GEM-LcrV particles 

in vivo. Newborn mice were immunized intranasally (i.n.) on days 7, 15 and 21 after birth, 

with GEM-LcrV, recombinant LcrV or GEM alone (Figure 5a). A group immunized 

intramuscularly (i.m.) with recombinant LcrV adsorbed to alum was included as control. 

The GEM-LcrV particles elicited high levels of LcrV-specific serum IgG antibodies that 

were first detected on day 21 after birth; 80% of the animals seroconverted at this time. The 

IgG levels increased on day 28 after birth, one week after the last immunization, and 

remained increased up to day 77, the last time point tested (Figure 5b). In contrast, no 

responses were detected in mice immunized i.n. with GEMs or LcrV alone. The control 

group immunized i.m. with LcrV-alum developed IgG responses, but they peaked on day 56 

after birth (5 weeks after the last immunization) and started to decrease soon after (IgG 

mean titers on day 56 and 77 were 137,708.1 and 62,262.9 EU ml−1, respectively). Both 

IgG1 and IgG2a were produced in mice that received GEM-LcrV or LcrV-alum (Figure 5c). 

However, the proportion of IgG2a was larger in the GEM-LcrV group, resulting in a higher 

IgG2a/IgG1 ratio, as compared with group that received LcrV-alum (Figure 5c).

Increased levels of LcrV-specific IgM were observed in mice immunized with GEM-LcrV 

on day 21 after birth, which exceeded those of all the other groups (Figure 5d). 

Immunization with GEM-LcrV also produced high LcrV-specific serum IgA responses that 

were first seen on day 21; these IgA levels peaked on day 28 and remained steady thereafter 

(Figure 5e). The similarity between the kinetics of IgG and IgA production is noteworthy, 

with both curves showing faster responses following immunization with GEM-LcrV over 

LcrV-alum (Figure 5b and e).

We also examined the presence of LcrV-specific antibody secreting cells (ASC) in the 

spleen and BM, which are believed to represent reservoirs of vaccine-induced plasma cells 

that support the production and maintenance of circulating antibodies. Significant IgG LcrV 

ASC responses were found in mice immunized with GEM-LcrV but not in mice immunized 

with LcrV or GEMs alone. The positive control group immunized with LcrV-alum also 

lacked IgG LcrV ASC responses (Figure 5f).

The induction of mucosal immunity was assessed by measuring the frequency of IgA and 

IgG ASC in the NALT (Figure 5g). Mice immunized i.n. with GEM-LcrV exhibited high 

numbers of IgA and IgG ASC on day 21 after birth, coinciding with the appearance of serum 

antibodies. IgG ASC were also found in the lungs 21 days after birth, albeit at a much lower 
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frequency (data not shown). No mucosal ASC responses were ever detected in any of the 

other groups.

We also investigated the induction of cell-mediated immunity by measuring the proliferative 

responses of LcrV-specific T cells in the spleen at different time points. Newborn mice 

immunized with GEM-LcrV exhibited a significant T cell response on day 15 after birth, 

and this response further increased on day 56; in contrast, responses were negligible in mice 

immunized i.n. with GEMs or LcrV alone (Figure 5h). Mice that received LcrV-alum had a 

positive response on day 56, albeit at a significantly lower level compared to those of mice 

that received GEM-LcrV.

Finally, we examined the cytokine profile induced in response to GEM-LcrV immunization, 

in the NALT and lungs as critical mucosal lymphoid tissues. These measurements were 

performed 21 days after birth, ~ one week after the second immunization. Th1, Th2, pro-

inflammatory and T regulatory cytokines were measured in the culture supernatants of cells 

stimulated in vitro with LcrV or mock-stimulated cells. We included in this experiment only 

the most relevant groups: newborn mice immunized i.n. with GEM-LcrV or GEMs alone, 

and mock-immunized (naïve controls). Increased levels of IL-2 and IL-12 (p40 and p70) 

were observed in the NALT of newborns immunized with GEM-LcrV but not in those that 

received GEMs alone (Figure 5i). IL-6, TNF-αand IL-10 were also increased, but this 

increase occurred in both groups (GEMs and GEM-LcrV), suggesting a broad and non-

specific stimulation of neonatal immune cells induced by the GEMs alone. This non-specific 

stimulation was not seen in naïve mice. Lung cells from newborn mice immunized with 

GEM-LcrV produced remarkably high levels of IFN-γ and exhibited increased production of 

IL-2 and IL-6 upon in vitro antigen stimulation, none of which was seen in mice immunized 

with GEMs alone or in naïve controls. Marginal levels of IL-5 were found in the lungs of 

GEM-LcrV immunized mice, whereas IL-4 was negligible in both tissues; IL-5 and IL-4 

were undetectable in mice that received GEMs alone or in naïve controls.

GEM-LcrV protected newborn mice against systemic lethal plague

Mice immunized as newborns with GEM-LcrV, LcrV and GEMs alone, along with naïve 

controls, were challenged intravenously with ~30 lethal doses of Y. pestis EV76, 8 weeks 

after the last immunization (Figure 6). The attack rate in naïve mice was 100%. These 

animals showed significant weight loss and severe disease, and all died by day 6 after 

challenge. In contrast, all mice immunized with GEM-LcrV were protected. Some of these 

animals exhibited minimal weight variations and mild signs of disease during the first week 

after challenge, but completely recovered thereafter. Only 20% of the animals immunized 

i.n. with LcrV or GEMs alone survived after challenge; mice in these groups showed 

significant weight loss and signs of disease. Among those immunized i.m. with LcrV-alum, 

80% were protected. These animals showed moderate signs of disease during the first week 

but recovered thereafter.

Human DC stimulated with GEM particles exhibited an activated and mature phenotype

To further evaluate the potential of the L. lactis GEM particles as a vaccine platform for 

human newborns, we investigated whether the immune stimulatory properties observed in 

Ramirez et al. Page 6

Mucosal Immunol. Author manuscript; available in PMC 2010 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mice also extended to human neonatal DC. Human newborn DC derived from CD34+ 

precursors from umbilical cord blood were stimulated with GEM particles or were mock-

treated. DC derived from peripheral mononuclear cells from adult human subjects were 

tested in parallel to compare the degree of activation of neonatal vs. adult DC. In both cases, 

stimulation with TNF-α was included as a positive control. The expression of activation and 

maturation markers on CD11c+ DC was measured by flow cytometry. GEM-stimulated 

neonatal and adult human DC upregulated expression of MHC-II (HLA-DR) and 

costimulatory molecules CD80, CD86 and CD83 (Figure 7a). Consistent with the results 

obtained in mice, CD86 exhibited the highest increase in neonatal DC, whereas both CD86 

and HLA-DR were the most increased in adult cells (Table 1). The ability of human 

newborn CD11c+ DC to phagocytose the GEM particles was demonstrated by confocal laser 

microscopy (Figure 7b). A cluster of FITC-stained GEM particles can be seen in the DC 

cytoplasm, and the abundant red surface staining indicates CD11c expression.

Human DC matured by GEM particles had decreased phagocytic activity and enhanced 
capacity for cytokine secretion and T cell activation

The functional capacity of GEM-stimulated neonatal and adult human CD11c+ DC was 

assessed by measuring the levels of Th1-promoting, pro-inflammatory and T regulatory 

cytokines in culture supernatant of cells treated with GEMs or TNF-α (positive control), or 

mock-treated cells. Increased levels of TNF-α, IL-10, IL-6 and IL-8 were produced by both 

neonatal and adult human DC. Production of IL-12p70 was also elevated in neonatal DC, 

and production of IL-1β was elevated in adult DC (Figure 7c). Consistent with their 

activated and mature phenotype, human neonatal and adult DC stimulated with GEM 

particles exhibited reduced phagocytic activity, as evidenced by lower levels of FITC-

dextran uptake compared with mock-treated DC (Figure 7d).

Finally, we examined the capacity of the GEM-activated human neonatal and adult DC to 

stimulate CD3+ T cells in a mixed lymphocyte reaction (Figure 7e). TNF-α- and mock 

treated-DC were included as controls. Mature DC expressing high levels of MHC-II 

molecules, as opposed to immature DC, are expected to activate allogeneic T cells. Indeed, 

proliferative responses were higher when T cells were stimulated with GEM-activated DC 

compared with mock-treated DC. T cell activation followed a dose-response pattern, with 

proliferation levels increasing in the presence of higher DC:T cell ratios.

DISCUSSION

In this study, we demonstrated the usefulness of non-living and non-genetically modified L. 

lactis antigen-displaying particles for early life immunization. We show, for the first time, 

that intranasal immunization of newborn mice with L. lactis GEMs displaying Y. pestis LcrV 

is well tolerated and elicits a potent mucosal and systemic immunity that protects against 

lethal plague infection.

The GEM particles accomplished one of the most desired tasks for a neonatal vaccine: they 

effectively targeted a vaccine antigen into neonatal DC, and activated and enhanced the 

maturation of these cells in such a manner that they became proficient antigen presenting 

cells capable of stimulating antigen-specific Th1-type effector cells. Both neonatal mouse 
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and human DC were powerfully activated and acquired a mature phenotype when exposed 

to the GEMs. Neonatal DC from mucosal lymphoid tissues also acquired a mature 

phenotype when stimulated by the GEM particles in vivo.

Newborn mice immunized intranasally with GEMs displaying Y. pestis LcrV induced high 

levels of LcrV-specific serum antibodies, systemic and mucosal IgG and IgA ASC and 

robust T cell responses. LcrV was remarkably immunogenic when carried by the GEM 

particles but not when given alone, which is probably the result of higher efficiency of key 

processes, including activation of innate immunity through interaction with TLR2, DC 

uptake and direct stimulation of B cells. A pro-inflammatory cytokine milieu with elevated 

levels of IL-6 and TNF-α, indicative of a general immune stimulation, was found in the 

NALT of newborns immunized with the GEMs. IL-10 was also produced, most likely to 

counter-balance such broad immune activation. The excellent tolerability of the vaccine also 

indicates that a finely tuned mechanism of immune balance indeed takes place.

Neonatal mucosal immunization with GEM-LcrV also surpassed parenteral immunization 

with LcrV-alum in 1) the swiftness to reach peak antibody level, 2) the steadiness of the 

antibody response, 3) the capacity to induce mucosal and systemic ASC and 4) the ability to 

prime systemic effector T cells early in life. The induction of potent immune responses in 

the respiratory mucosa is particularly important, as this is the portal of entry for many of the 

pathogens that cause severe disease in early childhood. Such a response can block infection 

locally, preventing systemic dissemination of the pathogen. Earlier studies have shown 

mucosal and systemic responses in adult mice immunized i.n. with GEM particles 

displaying pneumococcal antigens16 and significant protection against lethal respiratory 

pneumococcal challenge17. The capacity of the GEM-LcrV particles to induce high levels 

of antigen-specific IFN-γ and IL-2 in the lungs is a remarkable finding considering the 

importance of Th1-type responses in the protection of young hosts against intracellular 

pathogens and the difficulty of inducing such effector responses early in life, especially in a 

mucosal tissue. Most importantly for its use as a prophylactic vaccine, intranasal 

immunization with GEM-LcrV conferred the highest level of protection against lethal Y. 

pestis infection in neonatally immunized mice. The capacity of the GEMs to activate non-

specific immune defenses, can explain the 20% survival in mice that received particles 

alone, as opposed to complete lethality in the naïve group. This effect is most likely due the 

PGN (exposed on the particle surface), which has been shown to stimulate not only innate 

immune cells but also T cells, including those of neonatal origin, through interaction with 

TRL218–20. Despite this broad immune activation, the protection conferred by the GEM-

LcrV was clearly antigen-specific.

Y. pestis causes a severe and often fatal disease in humans for which no licensed vaccine is 

available15. The pulmonary form (pneumonic plague) is particularly virulent as it quickly 

spreads from person to person via aerosol droplets21. Y. pestis has drawn considerable 

attention lately as a potential biological weapon, and biowarfare concerns have revived 

efforts toward the development of new vaccines candidates. These endeavors, however, 

have been focused almost exclusively on vaccines for adults, and these vaccines are unlikely 

to meet the needs of other (more vulnerable) segments of the population, such as children. A 

L. lactis GEM-based plague vaccine for pediatric use would represent a unique tool in the 
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biodefense armamentarium. If needed, the GEM-LcrV platform could be further improved 

by displaying additional Y. pestis antigens such as F1 or Yersinia outer proteins (Yops). A 

GEM-based plague vaccine would be ideal for early life, surpassing the leading alum-

adjuvanted F1-V vaccine in the quality and strength of the responses and surpassing live 

attenuated vaccine strains with regards to safety.

Recombinant lactic acid bacteria, including L. lactis strains, expressing heterologous 

antigens have been sought as mucosal vaccines and could potentially be used in children22–

25. Major concerns associated with the use of these organisms include the possibility of 

causing disease by establishing niches within the commensal flora and the introduction of 

exogenous DNA, especially plasmids that confer antibiotic resistance. The GEM particles 

alleviate these concerns because they are non-living and non-genetically modified. They 

also have many other advantages over live recombinant vectors that increase their appeal for 

infant immunization: 1) the amount of antigen displayed and delivered in vivo is known and 

remains constant, unlike antigen expression in living recombinant organisms, which can be 

affected by plasmid loss, metabolic burden and promoter activation; 2) the antigen is always 

exposed on the particle surface at a high density and in a multimeric form, facilitating the 

activation of B cells; 3) multiple antigens can be displayed simultaneously, a feature that has 

not yet been achieved using live probiotics, and 4) the GEMs are highly stable and can be 

stored at room temperature, avoiding the need of cold chain.

The GEMs have additional properties that make them suitable for large-scale vaccination in 

field settings: their production is simple and inexpensive, and they are easy to preserve and 

to administer. A recent structural analysis of GEM-LcrV particles showed that the 

attachment of the LcrV-PGN binding domain fusion proteins to the particle surface is indeed 

strong, stable, specific (proteins without the PGN anchor domain do not bind to the 

particles), and abundant (multiple antigen clusters are loaded onto the surface)26. It is also 

pH specific: LcrV binds to the particles under physiological conditions (pH 7.2) but 

detaches when exposed to an acidic environment (pH 4.4), facilitating its release within the 

phagolysosomes for processing and presentation26.

The L. lactis GEMs were administered i.n. to newborn mice with the rationale that being 

inert particles, L. lactis GEMs could also conceivably be given to human infants by the nasal 

route, thus departing from the traditional orogastric delivery of live probiotics. There are 

also many advantages associated with intranasal immunization. Vaccine antigens 

administered by this route are less likely to be blocked by maternal antibodies27,28. 

Intranasal vaccination is not affected by physiological intestinal barriers, including the 

resident flora, which may prevent access of vaccine antigens to immunological inductive 

sites. Nor does intranasal vaccination disturb the gastrointestinal microbial environment, 

which plays an important role in the process of neonatal immune development29. 

Furthermore, a nasally delivered vaccine would encounter a higher frequency of 

“immunogenic” as opposed to “tolerogenic” DC, which more prevalent in the gut.

A handful of studies have examined the ability of L. lactis to activate mouse and human DC 

in vitro17,23,30–33. These studies described the phenotype of the activated cells but, for the 

most part, did not examine their capacity for immunological priming. We demonstrated the 
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ability of “mature” GEM-stimulated neonatal DC to present a vaccine antigen and to 

stimulate Th1-type effectors cells in a neonatal setting. Our results agree with those of Niers 

et al., who showed in vitro that naïve neonatal human T cells can be skewed towards a Th1-

type response upon exposure to L. lactis-primed DC32.

This is the first report seeking the use of probiotic antigen-displaying particles to “jump-

start” the neonatal immune system for the purpose of early life immunization. Also unique 

to our studies is the comparison of vaccine-activated neonatal and adult DC from both mice 

and humans, demonstrating in both cases that the GEM particles can induce neonatal DC 

activation levels comparable to those achieved by adult DC.

In summary, we demonstrated that L. lactis GEM particles have the inherent capacity to 

activate the neonatal immune system and that they provide a well tolerated, effective and 

practical vaccine platform for early life immunization, overcoming the limitations of 

conventional vaccines. These results show the exceptional potential of GEM-based vaccines 

and warrant future studies of such vaccines in humans.

METHODS

Generation of neonatal and adult DC

Dendritic cells were isolated from the BM of newborn (7-day-old) and adult (6 to 8-week-

old) BALB/c mice as previously described34. One-week-old newborn mice were used in all 

experiments as their state of immune maturation is considered equivalent to that of human 

neonates1. Cells were cultured in RPMI 1640 containing 2 mM L-glutamine, 10 mM 

HEPES (Gibco-Invitrogen, Grand Island NY), 0.1 mM 2-mercaptoethanol (Sigma-Aldrich, 

St. Louis MO), 50 μg ml−1 gentamicin and 10% FBS (HyClone, Logan, UT) (cRPMI) for 7 

days in the presence of GM-CSF and IL-4 (10 ng ml−1) (PeproTech, Rocky Hill, NJ) at 

37°C, 5% CO2. CD11c+ DC were further purified by negative magnetic cell sorting (BD 

Pharmingen, San Jose, CA); purity ranged between 80 and 95%. Human cord blood was 

obtained from the placentas of normal, full-term deliveries at the University of Maryland 

Medical Center. DC were generated from magnetically sorted CD34+ progenitors (Miltenyi 

Biotec, Auburn, CA). Adult peripheral blood samples were obtained from healthy 

volunteers, and mononuclear cells were isolated by density gradient centrifugation with 

Lymphocyte Separation Medium (LSM®, MP Biomedicals, Ontario, Canada). Cells were 

allowed to adhere during 3 h at 37°C, 5% CO2. Adult adherent and magnetically sorted 

cord-blood CD34+ cells were cultured for 7 days in cRPMI with 50 ng ml−1 of human GM-

CSF and 10 ng ml−1 of IL-4 (Peprotech). Blood collection was approved by the University 

of Maryland Institutional Review Board.

DC stimulation and flow cytometry

CD11c+ DC from adult and newborn mice were cultured for 24 h in the presence of GEM 

particles (1:150 DC:GEM), E. coli LPS (5 ng ml−1, Sigma-Aldrich, St. Louis, MO) as 

positive control or cRPMI (mock-treated). Following incubation, the cells were washed and 

stained with FITC-, PE- or allophycocyanin-labeled monoclonal antibodies (mAbs) specific 

for CD40, CD80, MHC II, CD86 and CD11c in PBA (PBS containing 0.1% BSA and 0.01% 
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NaN3)34. Fc-Block (anti-mouse CD16/32) was used to reduce background staining. In 

studies of in vivo DC activation, mononuclear cells from nasal and lung tissues were 

collected from 15 days-old mice that had been immunized with GEM particles (or mock 

immunized) and stained as described above. Human DC were cultured for 24 h with GEMs 

(1:150), human TNF-α (5 ng ml−1, PeproTech) or cRPMI (mock-treated). Cells were stained 

with FITC-, PE-, allophycocyanin or PerCP Cy5.5-labeled mAbs specific for CD1a, CD80, 

CD83, CD86, CD11c and HLA-DR (BD Pharmingen). FcγR-binding inhibitor (eBioscience, 

San Diego, CA) was used to reduce background straining. Stained cells were fixed with 4% 

paraformaldehyde and run on a DakoCytomation MoFlo flow cytometer (Carpinteria, CA). 

Data were collected from 10,000 to 30,000 cells and were analyzed using WinList 6.0 3D 

software (Verity Software House, Topsham, ME).

DC cytokine production

Cytokines were measured in 24 h culture supernatants from GEM-and control-treated DC 

using Cytometric Bead Array (CBA) mouse and human pro-inflammatory cytokine kits (BD 

Pharmingen). Samples were run on a Beckman Coulter Epics Elite flow cytometer. Cytokine 

concentrations were determined using standard reference curves using CBA software (BD 

Pharmingen).

FITC dextran uptake

Mouse and human CD11c+ cells treated with GEMs or mock-treated were incubated with 1 

mg ml−1 FITC-dextran (Sigma-Aldrich, St. Louis, MO) for 1 h at 37°C or 4°C. Cells were 

washed with cold PBA buffer and analyzed by flow cytometry. Dextran uptake was 

measured as the increase in the number of FITC-positive cells incubated at 37°C vs. 4°C.

TLR signaling

TLR stimulation was assessed in HEK293 cells expressing human TLR2, 3, 4, 5, 7, 8 or 9 or 

expressing mouse TLR7 or TLR9 (one TLR at a time). The activity of alkaline phosphatase, 

which was under the control of an NF-κB inducible promoter, was measured as a readout for 

TLR activation. The assays were performed at InvivoGen (San Diego, CA). Briefly, cells 

were incubated for 16–20 h with 20 μl of GEMs (~5×108 particles) or positive control 

ligands as follows: hTLR2, heat-killed Listeria monocytogenes (108 cells ml−1); hTLR3, 

Poly(I:C) (1 μg ml−1); hTLR4, E. coli K12 LPS (100 ng ml−1); hTLR5, Salmonella 

typhimurium flagellin (100 ng ml−1); hTLR7, gardiquimod (1 μg ml−1); hTLR8, CL075 (1 

μg ml−1); hTLR9, CpG ODN 2006 (100 ng ml−1); mTLR7, gardiquimod (1 μg ml−1); and 

mTLR9, CpG ODN 1826 (1 μg ml−1). Cells incubated with TNF-α (100 ng ml−1) were 

included as a positive control for NF-κB activation. Absorbance at 650 nm was measured in 

an ELISA reader.

TLR2 neutralization

Newborn or adult mouse BM-derived magnetically sorted CD11c+ DC were pre-incubated 

with 20 μg ml−1 of anti-human and mouse TLR2 mAb (eBioscience) or isotype control (1 h 

at room temperature) and were then cultured for 24 h with GEM particles (1:150) or cRPMI 
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(mock-treated). IL-6 released to the culture supernatants was measured by ELISA 

(eBioscience).

Vaccines

Lactococcal GEM-LcrV particles were prepared as follows: the lcrV gene from Y. 

pseudotuberculosis (identical to the LcrV gene of Y. pestis strain KIM5, nt 481–1461 of 

Genbank entry #M26405) was subcloned by PCR from plasmid pSEC91-LcrV, and the 

amplified lcrV gene fragment was cloned into plasmid pPA335. The correct insertion of the 

gene was verified by DNA sequencing. The resulting plasmid, pPA281, was electroporated 

into L. lactis PA1001 for expression and secretion of the recombinant LcrV-PGN anchor 

domain fusion protein, as previously described9. The lactococcal PGN binding domain 

enables strong non-covalent binding of the vaccine antigen to GEM particles8. GEM 

particles prepared by heat-acid treatment of L. lactis were mixed with LcrV-PGN binding 

domain fusions for 30 min at room temperature8,9. One vaccine dose for GEM and GEM-

LcrV contained 2.5×109 particles. The amount of LcrV bound to the GEM particles was 

determined by densitometry analysis; 2.5×109 particles contained 20 μg of LcrV-PGN 

fusion protein. The LcrV fragment represents about 60% of the fusion protein, meaning that 

12 μg LcrV was present in each vaccine dose. The particles were centrifuged and 

resuspended in enough sterile PBS to obtain the desired GEM-LcrV concentration prior to 

immunization. Recombinant full length Y. pestis LcrV (without the PGN binding domain) 

purified from E. coli was used as subunit vaccine for nasal and parenteral immunization. 

Residual LPS was removed using Detoxi-Gel columns (Thermo Scientific, Rockford, IL) 

and endotoxin levels (<0.19 EU mg−1) monitored by chromogenic LAL test (Lonza, 

Allendale, NJ ).

Fluorescence microscopy

GEM-LcrV and GEM particles were stained with mouse anti-LcrV mAb (AbCam, 

Cambridge, MA) or an isotype control in PBA for 1 h at room temperature, followed by 

staining with FITC-labeled anti-mouse IgG (Invitrogen, Carlsbad, CA) for 30 min. The 

particles were washed, mounted in Prolong Gold (Invitrogen) and visualized using a Nikon 

Eclipse 2000-E UV fluorescence microscope (Melville, NY). Images were acquired using 

MetaVue software, version 6.1 (Universal ImagingCorp, Downingtown, PA).

In vitro antigen presentation

Negatively sorted CD11c+ DC from newborn mice were cultured for 24 h with GEMs alone, 

GEM-LcrV (1:100), LcrV (1.8 μg ml−1) or cRPMI (mock-stimulated). Cells were washed, 

irradiated and co-cultured with CD4+ and CD8+ T cells (90–95% purity) obtained from the 

spleen of naïve and LcrV-immune adult mice by magnetic sorting (Dynal Biotech, Oslo 

Norway). This last group had been immunized twice with 2 μg of LcrV-alum via i.m., 14 

days apart, and spleens were harvested 3 weeks after the last immunization. Increasing 

numbers of purified CD11c+ DC were co-cultured with 1×105 naïve or LcrV-specific CD4+ 

and CD8+ T cells. As readouts of T cell stimulation, we measured lymphocyte proliferation 

by [3H]thymidine incorporation and the frequency of IFN-γ-secreting cells by ELISPOT, as 

previously described34. CD4+ and CD8+ T cells alone, CD11c+ DC alone and CD11c+ DC 
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cultured with naïve CD4+ and CD8+ T cells were included as negative controls and their 

responses were subtracted from experimental wells. ConA (2 μg ml−1, Sigma) or LcrV (5 μg 

ml−1) served as positive controls.

Mice and immunization

BALB/c mice (8–10 weeks old, Charles River Laboratories, Wilmington, MA) were bred 

and housed under specific pathogen-free conditions as previously described36. Experimental 

groups contained 3–5 litters (~6 pups per litter). Newborn mice were immunized i.n. on day 

7, 15 and 21 after birth with 1 dose (2.5×109 particles) of GEM-LcrV (12 μg LcrV), with 

GEMs alone or with 20 μg of recombinant LcrV (~5 μl, 2.5 μl per nare). A group immunized 

i.m. on days 7, 15 and 21 after birth with 2 μg of LcrV adsorbed to 0.5% alhydrogel 

(Brenntag Biosector, Frederikssund, Denmark) was included as a positive control. Blood 

samples were obtained at different time points, as previously described34. Studies were 

approved by the University of Maryland Institutional Animal Care and Use Committee.

LcrV-specific antibodies

LcrV-specific serum IgG, IgM and IgA levels were measured by ELISA. Immulon II plates 

were coated with endotoxin-free LcrV at 1 μg ml−1 in carbonate buffer (pH 9.6) for 3 h at 

37°C and blocked overnight with 10% dry milk (Nestle USA, Solon, OH) in PBS. Sera were 

tested in serial dilutions in PBS containing Tween 20 and 10% dry milk. Antibodies were 

detected with HRP-labeled antibodies specific for mouse IgG, IgG1, IgG2a (Roche, 

Indianapolis, IN), IgM (Kirkegaard & Perry Laboratories, KPL, Gaithersburg, MD) and IgA 

(Zymed Laboratories, San Francisco, CA) followed by the TMB substrate (KPL). After 15 

min of incubation, the reaction was stopped with 1 M H3PO4. Endpoint titers were 

calculated through a linear regression as the reciprocal of the serum dilution that produced 

an Absorbance 450 nm value of 0.2 above the blank and reported in ELISA units (EU) ml−1.

IgG and IgA ASC

Single cell suspensions from the spleen, BM and NALT collected on days 15, 21 and 56 

after birth, as previously described34, were incubated overnight at 37°C, 5% CO2 in plates 

previously coated with LcrV (5 μg ml−1) and blocked with cRPMI. HRP-labeled goat anti-

mouse IgG or IgA (Zymed) diluted in PBS with 1% BSA were used as conjugates in agarose 

overlay. True Blue was used as the substrate (KPL). Spots were counted in a 

stereomicroscope, and the results were expressed as the mean number of IgG ASC per 106 

cells from quadruplicate wells. Spots from control wells were subtracted from experimental 

wells. A positive response was defined as ≥4 spots per 106 cells.

Cytokines in mucosal tissues

NALT and lung mononuclear cells were obtained on day 21 after birth from naïve, GEM- 

and GEM-LcrV-immunized newborn mice, as previously described36. Cells were stimulated 

in vitro for 48 h with LcrV (2.5 μg ml−1) or cRPMI (mock-stimulated), and cytokine levels 

in the culture supernatants were measured using multiplex Meso ScaleDiscovery (MSD, 

Gaithersburg, MD) kits, as recommended by the manufacturer. Plates were read using the 

MSD Sector Imager 2400.
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T cell proliferation

Single cell suspensions from spleens were incubated with 2.5 μg ml−1 of LcrV, cRPMI or 

ConA (5 μg ml−1, positive control) for 3–7 days at 37°C, 5% CO2. Cell proliferation was 

measured by incorporation of [3H]thymidine, as previously described34,36.

Y. pestis challenge

Mice were challenged i.v. with ~ 30 MLD50 (3.36×103 CFU) of Y. pestis EV76 in 0.2 ml of 

sterile PBS. FeCl2 (40 μg per mouse) was administered intraperitoneally immediately before 

challenge to enhance bacterial virulence. Health status, weight loss and survival were 

monitored daily for 14 days34. All survivors were humanely euthanized at the end of the 

monitoring period.

Laser confocal microscopy

GEM particles (25×109 particles) were incubated with 0.01g FITC (Sigma) in 0.1 M boric 

acid, pH 9.0, for 60 min at room temperature in a shaker. Cord blood-derived CD11c+DC 

were cultured with FITC-GEMs (1:100), washed, blocked with human FcγR- binding 

inhibitor and stained with a monoclonal anti-human CD11c antibody (BD Pharmingen) in 

PBA for 1 h at room temperature, followed by staining with Alexa Fluor 546-labeled anti-

mouse IgG (Invitrogen). To visualize the nuclei, cells were incubated with 4′,6′-

diamidino-2-phenylindole dihydrochloride (DAPI, Invitrogen) in PBA buffer and were 

mounted in Prolong Gold (Invitrogen). Stained DC were visualized using a Zeiss LSM510 

META laser scanning confocal microscope (Gottingen, Germany). Images show the 

individual and Z-stack projections collected at 0.41 μm intervals, analyzed with Zeiss LSM 

Examiner version 4.2 software.

Mixed lymphocyte reaction

Magnetically sorted adult human CD3+ T cells obtained from peripheral blood were cultured 

for 5 days with irradiated cord blood- or adult-derived CD11c+ DC pre-treated with GEMs, 

human TNF-α, or cRPMI (mock-treated). Negative controls included T cells and DC alone. 

T cell proliferation was measured by [3H]thymidine incorporation.

Statistical analysis

Immune responses were compared using the Student’s t-test or the Mann-Whitney U test. 

Differences with P<0.05 were considered significant. Statistical analysis was performed 

using SigmaStat 3.1 (SigmaStat software, Erkrath, Germany).
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Figure 1. 
L. lactis GEM particles enhanced maturation and cytokine production of neonatal and adult 

mouse DC. (a) Expression of activation and maturation cell surface markers CD80, CD86, 

CD40 and MHC class II on neonatal and adult mouse BM-derived CD11c+ DC treated with 

GEM particles (shaded area) or mock-treated (solid line); the dashed line indicates isotype 

control staining. The mean fluorescence intensity (MFI) on CD11c+ gated cells is indicated. 

(b) Cytokines produced by neonatal and adult mouse BM-derived CD11c+ DC stimulated 

with GEM particles or mock-stimulated, measured in culture supernatants. Data is 

representative of three independent experiments. (c) FITC-dextran uptake by neonatal and 

adult CD11c+ DC exposed to GEM or E. coli LPS (positive control), or mock-treated DC, 

measured by flow cytometry; data represents MFI±s.d. from three independent experiments. 

Significant differences (P<0.001) compared with mock-stimulated cells are denoted by an 

asterisk (*). (d) Activation and maturation of neonatal DC exposed to GEM particles in 

vivo. Mice were immunized with GEMs or PBS (mock) on day 7 after birth and NALT and 

lungs were harvested on day 15. The number in each quadrant indicates the percentage of 

CD11c+ DC expressing activation and maturation cell surface markers CD40, CD80, CD86 

and MHC class II. GEM, L. lactis Gram-positive Enhancer Matrix; BM, bone marrow; DC, 

dendritic cell; LPS, E. coli lipopolysaccharide; NALT, nasal associated lymphoid tissue.
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Figure 2. 
L. lactis GEM particles activate neonatal and adult mouse DC and evoke IL-6 production 

through TLR2 activation. (a) GEM interaction with human (h) and mouse (m) TLRs 

individually expressed on HEK93 cells, as measured by NF-κB activation using a 

phosphatase alkaline reporter gene. Data represents relative units for OD 650 nm±s.d. from 

duplicate screening experiments. (b) Inhibition of IL-6 production by GEM-stimulated 

neonatal and adult mouse CD11c+ DC in the presence of TLR2-blocking monoclonal 

antibody. TLR2 inhibition curve shows relative cytokine levels (expressed as a percentage 

of the max. IL-6 production by GEM-stimulated DC in the absence of TLR blocking) 

measured by ELISA in culture supernatants; data are representative of two independent 

experiments. GEM, Gram-positive Enhancer Matrix; TLR, toll like receptor; ELISA, 

enzyme-linked immunosorbent assay; DC, dendritic cell.
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Figure 3. 
Schematic representation illustrating the preparation of L. lactis GEM particles displaying Y. 

pestis LcrV. (a) GEM particles are obtained by heat-acid treatment of L. lactis followed by 

extensive washing. The resulting bacterial “shell” (GEM) particles have an appearance and 

dimensions similar to those of the living organism. L. lactis contains an extracellular cell-

wall degrading enzyme (hydrolase AcmA), which in its natural form allows separation of 

daughter cells by cleaving the PGN wall during bacterial division. This enzyme is naturally 

exported and attaches (from the outside) to the bacterial cell wall though a C-terminal 

binding domain that has high affinity for the L. lactis PGN. The use of this PGN binding 

domain allows for a strong non-covalent binding of the fusion proteins to GEM particles. (b) 

The AcmA locus, containing the enzyme active site next to the PGN binding domain and 

preceded by a signal peptide (SP), was cloned into an expression plasmid (pPA3). LcrV was 

inserted in lieu of the AcmA active site on pPA3 so that the LcrV sequence is in tandem 

with the PGN binding domain. The resulting plasmid, pPA281, was introduced into live L. 

lactis, which then produced the LcrV-PGN binding domain fusion as a recombinant protein 

and released it into the culture medium. The producer cells were removed by centrifugation, 

and the antigen was concentrated and used for particle coating (no additional purification is 

needed). (c) GEM particles and LcrV-PGN binding domain fusion protein were mixed, 

resulting in immediate non-covalent binding of LcrV to the PGN layer. (d) Fluorescence 

microscopy showing GEM particles displaying LcrV using an LcrV-specific monoclonal 

antibody; no staining was observed with GEM alone (shown on a light microscopy image). 

GEM, Gram-positive Enhancer Matrix; PGN, peptidoglycan; PA, PGN protein anchor 

domain.
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Figure 4. 
L. lactis GEM-LcrV enhanced antigen presentation by neonatal mouse DC and stimulation 

of LcrV-specific T cells. (a) Stimulation of LcrV-specific CD4+ and CD8+ T cells by 

CD11c+ neonatal DC previously exposed to GEM-LcrV or LcrV, or mock-treated DC 

(DC:T cell ratio 1:2). Cell proliferation was measured by [3H] thymidine incorporation; data 

represent mean stimulation index±s.e.m. from replicate cultures. (b) Frequency of IFN-γ 

secreting CD4+ T cells stimulated with GEM-LcrV-, LcrV- or mock-treated CD11c+ 

neonatal DC (at increasing DC:T cell ratios) measured by ELISPOT. Data show mean IFN-γ 

spot forming cells (SFC)±s.e.m. from replicate cultures. Significant differences compared 

with the mock-treated (*P<0.002) and LcrV-treated-DC (**P<0.01) are indicated. GEM, 

Gram-positive Enhancer Matrix; ELISPOT, enzyme linked immunospot assay; IFN, 

interferon; DC, dendritic cell.
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Figure 5. 
Intranasal immunization of newborn mice with L. lactis GEM-LcrV elicited potent systemic 

and mucosal immune responses. (a) Timeline for immunization and analysis of immune 

responses. Newborn mice (1-week-old, n=21 pups per group) were immunized i.n. with 

GEM-LcrV (carrying ~12 μg of LcrV), GEMs alone or recombinant LcrV (20 μg) on days 7, 

15 and 21 after birth (arrows). A positive control group received 2 μg of LcrV-alum i.m. (b) 

Kinetics of LcrV-specific serum IgG levels. (c) IgG subclass distribution (IgG1 and IgG2a 

titers) and IgG2a/IgG1 ratio. (d) Kinetics of LcrV-specific IgM and (e) IgA production. (b–
e) Data represent median titers and ratios±one quartile. (f) LcrV-specific IgG ASC in the 

spleen and BM measured on days 21 and 56 after birth, respectively. (g) IgG and IgA ASC 

measured in the NALT 21 days after birth. Results shown are the mean ASC frequency per 

1×106 cells±s.e.m. of replicate wells. (h) Proliferation of LcrV-specific T cells measured by 

[3H] thymidine incorporation. Results are expressed as stimulation index±s.e.m. from 

replicate wells. (b–h) Significant differences compared with newborn mice that received 

GEM alone (*P <0.002) or LcrV-alum i.m. (**P<0.01) are indicated. (i) Cytokine profile in 

the NALT and lungs measured on day 21 after birth. Cells were restimulated in vitro with 

LcrV. Data represent mean cytokine levels±s.d. from triplicate cultures. Significant 
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differences compared with GEMs alone (*P<0.001) and naïve mice (**P<0.005) are 

indicated. GEM, Gram-positive Enhancer Matrix; ASC, antibody secreting cell; BM, bone 

marrow; NALT, nasal associated lymphoid tissue.
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Figure 6. 
Protection against systemic lethal plague infection. Newborn mice (n=5–6 pups per group) 

were immunized as described above. Eight weeks after the last immunization they were 

challenged i.v. with Y. pestis EV76 (~30 MLD50) in the presence of FeCl2. Data show 

percent survival during the monitoring period. GEM, Gram-positive Enhancer Matrix.
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Figure 7. 
GEM particles enhanced the maturation of neonatal and adult human DC and the stimulation 

of T cells in a MLR. (a) Expression of cell surface markers CD80, CD86, CD83 and HLA-

DR on human CD11c+ neonatal and adult DC stimulated with GEM particles (shaded area) 

or mock- treated (solid line); the dashed line indicates the isotype control. The MFI on 

CD11c+ gated cells is indicated. (b) Individual (i–v) and Z-stack projection (vi) confocal 

laser microscopy images showing CD11c+ DC from human newborns harboring FITC-

labeled GEM particles (arrows). CD11c+ cell-surface expression is shown in red, and nuclei 

are shown by blue fluorescent staining. Scale bars, 2 μm. (c) Cytokines produced by human 

neonatal CD34+- and adult derived DC stimulated with GEM particles or mock-stimulated 

and measured in culture supernatants. Data represent mean cytokine concentration±s.e.m. 

from two independent experiments. (d) FITC-dextran uptake by neonatal CD11c+ and adult 

human DC exposed to GEM or TNF-α (positive control), or mock-treated DC, measured by 

flow cytometry; data represents MFI±s.e.m. from three independent experiments. (e) 

Allogeneic stimulation of adult CD3+ T cells in the presence of neonatal and adult human 

DC stimulated with GEM particles or TNF-α, or mock-stimulated DC. Data show mean cpm

±s.e.m. from one of two independent experiments. (c–e) Significant differences (*P<0.05) 

compared with mock-stimulated cells. GEM, Gram-positive Enhancer Matrix; MLR, mixed 

lymphocyte reaction, DC, dendritic cell; TNF, tumor necrosis factor; MFI, mean 

fluorescence intensity; HLA, human histocompatibility leukocyte antigen.
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