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ABSTRACT

The Hu RNA-binding protein family consists of four
members: HUR/A, HuB, HuC and HuD. HuR expres-
sion is widespread. The other three neuron-specific
Hu proteins play an important role in neuronal dif-
ferentiation through modulating multiple processes
of RNA metabolism. In the splicing events examined
previously, Hu proteins promote skipping of the
alternative exons. Here, we report the first
example where Hu proteins promote inclusion of
an alternative exon, exon 6 of the HuD pre-mRNA.
Sequence alignment analysis indicates the presence
of several conserved AU-rich sequences both
upstream and downstream to this alternatively
spliced exon. We generated a human HuD exon 6
mini-gene reporter construct that includes these
conserved sequences. Hu protein over-expression
led to significantly increased exon 6 inclusion from
this reporter and endogenous HuD. Studies using
truncated and mutant HuD exon 6 reporters demon-
strate that two AU-rich sequences located down-
stream of exon 6 are important. RNAi knockdown
of Hu proteins decreased exon 6 inclusion. An
in vitro splicing assay indicates that Hu proteins
promote HuD exon 6 inclusion directly at the level
of splicing. Our studies demonstrate that Hu
proteins can function as splicing enhancers and
expand the functional role of Hu proteins as
splicing regulators.

INTRODUCTION

Alternative splicing is a process in which multiple mes-
senger RNAs (mRNAs) are generated from one
pre-messenger RNA (pre-mRNA) molecule and, as a

result, multiple proteins are produced with potentially
diverse functions. Similar to transcription, alternative
pre-mRNA splicing provides an important mechanism
of gene expression regulation. An analysis of high-
throughput transcriptome sequencing indicates that
92-94% of human genes undergo alternative splicing
(1,2). The most extensive alternative splicing occurs in
brain tissues (3). Alternative splicing plays a key role in
supporting the complex functions of the nervous system.
However, our understanding of the regulatory mecha-
nisms that control brain-specific alternative splicing
remains very limited. A small number of brain-specific
RNA-binding proteins have been identified that regulate
alternative splicing (4).

Hu proteins have recently been identified as RNA pro-
cessing regulators (5). Research carried out by our labo-
ratory and others demonstrates that Hu proteins bind
to intronic AU-rich elements to regulate alternative
RNA processing. Three Hu-protein-regulated alternative
splicing events have been characterized including the alter-
native splicing of neurofibromatosis type 1 (NF1) (6),
apoptosis receptor Fas (7) and Ikaros (8). In all three
examples, Hu proteins function as splicing repressors.
Using the human calcitonin/calcitonin  gene-related
peptide (CGRP) system, we showed that Hu proteins
could also suppress polyadenylation (9).

Hu proteins were originally cloned as the autoimmune
antigens in patients with paraneoplastic encephalomyeli-
tis, a neurodegenerative disorder (10). The Hu protein
family consists of four members, HuR/A, HuB/Hel-N1,
HuC and HuD (11). HuA (HuR) is widely expressed,
while HuB, HuC and HuD are exclusively expressed in
neuronal tissue. Every mammalian neuron is known to
express at least one of the latter three Hu proteins
(10,11). The neuron-specific Hu proteins have been
shown to play important roles in neuronal differentiation
(12-14) and function (15). The widely expressed family
member, HuR, plays roles in muscle differentiation,
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adipogenesis, suppression of the inflammatory response
and modulation of gene expression in response
to chronic ethanol exposure and amino acid starvation
(16-23).

The biological functions of Hu proteins are carried out
through their ability to bind to specific target mRNAs and
affect their expression. Each Hu protein consists of three
RNA-recognition motifs (RRMs) and a hinge domain
between RRM2 and the C-terminal RRM3 (11). Hu
proteins, through their first two RRMs, recognize and
bind to AU-rich RNA sequences with an empirical pref-
erence for U-rich sequences (24). By binding to RNA,
Hu proteins are involved in a wide range of
post-transcriptional regulation of gene expression both
in the nucleus and cytoplasm (5). The RRM domains
are highly homologous between different Hu proteins
(11). In contrast, the hinge domain, which is encoded by
the region of pre-mRNA that undergoes alternative
splicing, retains the highest variability. As shown in
Figure 1A and B, within the hinge region, which is
encoded by exons 5, 6 and part of 7 of the Hu
pre-mRNA, only one isoform is generated for HuR,
while multiple isoforms are generated for HuB, HuC
and HuD as a result of the alternative splicing (11). The
function of the hinge domain as well as the differential
function of the Hu protein splice variants is poorly under-
stood although persistence of each isoform through evo-
lution supports functional differences (11).

To further investigate the function of Hu proteins as
splicing regulators, we carried out a search for additional
Hu-binding targets. Our search revealed several blocks of
AU-rich sequences located in the introns surrounding the
alternatively spliced HuD exon 6 and suggested that
the HuD pre-mRNA itself is a potential target of
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Figure 1. Hu splice variants (sv) and alternative splicing of HuD in rat
brain and CA77 cells. (A) Schematic diagram of the Hu exon-intron
structure. The RRM1 domain is located in exon 2 and part of exon 3.
The RRM2 domain is located in part of exon 3, exon 4 and part of
exon 5. The hinge domain is located in part of exon 5, exon 6 and part
of exon 7. RRM3 is located on exon 7. (B) Splice variants of Hu
proteins. Schematic diagram showing different splice variants of Hu
protein family members. (C) RT-PCR analysis of HuD alternative
splicing using RNA isolated from rat brain and CA77 cells. The
HuD splice variants are indicated on the right.
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Hu-mediated splicing regulation. We hypothesized that
these AU-rich sequences may be important for the
regulated HuD exon 6 splicing event. We generated a
human HuD exon 6 mini-gene reporter construct that
includes these AU-rich sequences. Hu protein over-
expression in cells with low Hu protein expression led to
significantly increased but varying levels of exon 6 inclu-
sion from these reporters. Studies using truncated and
mutated HuD exon 6 reporters demonstrated that two
AU-rich sequences located downstream of exon 6 are
required for the Hu-mediated regulation of exon 6 inclu-
sion. Furthermore, we carried out an RNAI1 knockdown
experiment in a cell line where Hu proteins are abundantly
expressed and found that exon 6 inclusion decreased with
reduced level of endogenously expressed Hu proteins. An
RNA gel-shift analysis demonstrated that an RNA con-
taining the wild type but not mutated AU-rich sequence
can bind Hu proteins. Finally, an in vitro splicing assay
provided the definitive evidence that Hu proteins promote
HuD exon 6 inclusion directly at the level of splicing.

MATERIALS AND METHODS

Bioinformatic analysis of the genomic sequence
of HuD exon 6

The method we used to search for potential binding sites
of Hu proteins was previously described (6). Exon 6 of
HuD was one of the potential targets. The alignment of
the DNA sequences surrounding exon 6 (500 nt upstream
and downstream) of human, mouse and rat was per-
formed with MegAlign of DNASTAR (DNASTAR Inc.,
Madison, WI, USA) using the clustal W method. Only the
highly conserved sequences flanking exon 6 are shown in
Figure 2 (200 nt upstream and 233 nt downstream).

Plasmids

The human HuD exon 6 reporter constructs used in
transfection experiments consist of HuD exon 6 with
part of the flanking introns inserted into the first intron
of the human metallothionein 2A (HMT) gene. To
generate the HMT-HuD exon 6 (E6) reporter, the
human HuD sequence was polymerase chain reaction
(PCR)-amplified from HeLa cell genomic DNA using
primers HuD1 5 and HuD1 3. The PCR products were
digested with Bglll and BamHI and cloned into the
RSV-HMT reporter linearized with Bglll (Figure 3A).
Primers HuD1 and HuD2-7 were used to generate the
truncated HuD exon 6 reporter constructs (E6-T1-6)
shown in Figure 4A. Primers HuD8 and HuD6 were
used to generate the truncated HuD exon 6 reporter con-
structs E6-T7 shown in Figure 4D. The reporters contain-
ing mutated AU-rich sequences (Figure 5A) were
generated by a PCR-mediated mutagenesis procedure
using primers HuD9-11. The constructs used to generate
RNA splicing substrates for experiments, shown in
Figure 8A, were generated by PCR-mediated cloning
using E6-TS or Mut3 reporter as template and HuD12
5 and HuD12 3" as primers. The PCR products were
restriction digested with HindIIl and Xbal and cloned
into the pGEM-3Zf(—) vector (Promega) digested with
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Figure 2. Genomic sequences surrounding exon 6 of HuD are conserved across species. The HuD genomic sequence from Homo sapiens (AL592182),
Mus musculus (AL627425) and Rattus norvegicus (NW_047718) were aligned and compared. Conserved sequences are shaded in black. The bold lines

under the sequence represent the conserved AU-rich sequences. The nucleotides of exon 6 are indicated in capital letters.

Table 1. List of oligonucleotides used in this study

Oligonucleotide Sequence Restriction site
HuD1 ¥ ACAGATCTAGTGGGGAAAGTTGTT Bglll
HuD1 ¥ ACGGATCCGGAGCCATTCAAAGGACCAGA BamHI
HuD2 ACGGATCCGCACCTGAACCATAGGAG BamHI
HuD3 ACGGATCCCACACAAATACATTTTGTG BamHI
HuD4 ACGGATCCCTGAGGTCCGAAATTAAAATTAAG BamHI
HuD5 ACGGATCCCATGCTGGTGGAAGAAAAAGG BamHI
HuD6 ACGGATCCTCTTTTAAAGTAAAGTTAGTG BamHI
HuD7 ACGGATCCCTGTGCCAACATGGACATCTG BamHI
HuD8 ACAGATCTGTTCCATTGAGCGATCTTGCCATC Bglll
HuD9 ACGGATCCTCGAGTACTGCAGTGTCAGTGAATTAAAAAAAAAAAATTCTAG BamHI
HuD10 ACGGATCCTCTTTTAAAGTAAAGTTAGTGAATTCAGATAAGACAATTCTAGCC BamHI
HuDI1 ACGGATCCTCGAGTACTGCAGTGTCAGTGAATTCAGATAAGACAATCTAGCC BamHI
HuDI12 ¥ ACAAGCTTCATGGATCCCAACTG HindIII
HuD12 3’ AGTCTAGACTGGAGGACAGGGAAGGGTAGAG Xbal
DS8 TTGACCATTCACCACATTGGTGTGC

HMT3 ATCTGGGAGCGGGGCTGT

HuD endo-splicing-5 TTGCCAACAACCCCAGCCAGAAGTCCAG

HuD endo-splicing-3’ GTTATAGACGAAGATGCACCAGCCTG

HuB endo-5 TGAGCTCTTGTCCTCAGTCCA

HuB endo-3’ GTACCTCTTGTCCATATTCAA

HuC endo-5 AGCAGGCAGACCCATACACCT

HuC endo-3' GGCCTGAGTAGGGCACCATTG

HuD endo-% TTAGTGGCCTTCCCAAGACCATG

HuD endo-3 TCTGTAGCACCGCTGGGCTTCTG

B-actin 5 TGGGCGACGAGGCCCAGAGCA

B-actin 3’ GTCAGGTCCCGGCCAGCCAGG

HindIII and Xbal. All of the plasmids were sequenced and
the DNA primer sequences are shown in Table 1.
The mammalian expression plasmids and GST fusion

HuD mammalian expression plasmid pcHuD was a gift
from Dr. Nora Perrone-Bizzozero at University of New
Mexico, School of Medicine. Expression plasmids of HuD

protein production plasmids for HuB and HuC protein splicing variants, svl and sv4, were generated by

isoforms were generated as described previously (9). The

PCR-mediated cloning using pcHuD as template.
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Figure 3. Hu proteins promote HuD exon 6 inclusion. (A) A schematic
diagram of the HuD splicing reporter construct E6. The two potential
splicing products are indicated. (B) E6 reporter was co-transfected into
HeLa cells with pCDNA3.1 vector, TIAR, or different Hu protein
isoforms. Splicing of the reporter was analyzed by RT-PCR on total
RNA isolated from the transfected cells (top). The percentage of exon 6
inclusion is indicated below the RT-PCR gel. Expression of
co-transfected proteins was analyzed by western blot assay (bottom).
v-Tubulin was used as a loading control. The molecular markers for
DNA or protein size are indicated on the left of the gels. (C) Graphic
representation of RT-PCR results for exon 6 inclusion of the E6
reporter shown in (B), with error bars indicating standard deviations.
(D) F9 cells were transfected with pCDNA3.1 vector or HuC protein.
Splicing of the endogenous HuD was analyzed by RT-PCR on total
RNA isolated from the transfected cells (top). The percentage of HuD
sv4 production is indicated below the RT-PCR gel. Expression of the
over-expressed protein was analyzed by western blot (bottom).
v-tubulin was used as a loading control.

The RNAI target sequences for HuB, HuC and HuD in
CAT77 cells were chosen using the siRNA designing tool
from the siDESIGN® Center (www.dharmacon.com). The
target sequences for HuB and HuC, both located on their
exon 2, are GTCCTGTAAGCTTGTAAGA (HuB-1), A
GCAAGACCAACCTAATAG (HuB-2) and TGAATCC
TGCAAGTTGGTT (HuC-1), AGGACGAGTTCAAGA
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Figure 4. Minimal sequences required for Hu-mediated inclusion of
exon 6. (A) Schematic diagrams depicting the six truncated E6 reporters
that contain varying lengths of sequence downstream of exon 6.
(B) The pcDNA3.1 or HuC sv2 expression vector was co-transfected
with the truncated reporters into HeLa cells. Splicing was analyzed
using RT-PCR shown in the top panel. Expression of HuC sv2 was
analyzed by western blot assay shown in the bottom panel. (C) Graphic
representation of the RT-PCR results shown in (B). (D) Schematic
diagram of the truncated E6 reporter E6-T7. Splicing of this reporter
in HeLa cells in the absence or presence of HuC sv2 over-expression
was analyzed using RT-PCR shown in the right panel. Expression of
HuC sv2 was analyzed by western blot assay shown in the bottom
panel.

GTCT (HuC-2). The target sequence for HuD, located
on its exon 4, is CACGCATCCTGGTTGATCA. The
shRNA expression plasmids containing these target
sequences were generated by oligonucleotide-mediated
ligation into the vector pU6P [a gift from Dr. Guangbin
Luo at Case Western Reserve University (25)]. The target
sequence for eGFP GCCACCTACGGCAAGCTG was
cloned into the vector pUGP as a control.

Cell culture and cell transfection

The HeLa and F9 cells were maintained according to the
instructions from American Type Culture Collection
(ATCC). CA77, a cell line derived from rat medullary
thyroid carcinoma (a gift from Drs. Alison Hall at Case
Western Reserve University, Cleveland, OH, and Andrew
Russo at University of Towa, lowa City, IA, USA), were
cultured in DMEM/F-12 media (Invitrogen) supple-
mented with 10% fetal bovine serum (Invitrogen) and
1% Pen/Strep (Invitrogen) (9). Transfection of HeLa
cells were performed as described previously (6,26).
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In co-transfection experiments, 1pg of the HuD exon 6
reporter plasmid and 0.5 pg of either Hu or TIAR expres-
sion plasmid were used. The over-expression of HuC in F9
cells was carried out using the Nucleofector Kit V with the
Nucleofector II device (Lonza, formerly Amaxa). The
transfection was performed with the standard protocol
using 1.0pg of the HuC sv2 expression vector and
program D-023. The cells were grown for 48h after
transfection before harvest. The RNAi-mediated knock-
down of Hu proteins in CA77 cells was carried out using
the Nucleofector Kit V with the Nucleofector II device
(Lonza). The transfection was performed with the
standard protocol using 0.5pg of the Hu expression
plasmid or 1.5 pg of the HuD exon 6 truncated reporter
5 (E6-T5) with 4 g of the various Hu shRNA plasmids
and program T-030. The cells were grown for 72h after
transfection before protein or RNA harvest.

RNA and protein analysis

Procedures for total RNA and protein isolation and
semi-quantitative  reverse  transcription (RT)-PCR
analysis were described previously (26). Primers DS8
and HMT?3 located on HMT exon 1 and exon 3 were
used to analyze the HuD E6 reporter RNA. Low PCR
cycle numbers were used to analyze reporter RNA
isolated from HeLa (18-20 cycles) and CA77 (20-23
cycles) cells, respectively. Endogenous HuD alternative

splicing in F9 cells that were transfected with HuC was
analyzed using 24 PCR cycles with primers HuD
endo-splicing-5 and HuD endo-splicing-3’ as listed in
Table 1. Endogenous Hu expression in CA77 cells
treated with shRNAs was analyzed using 27-29 PCR
cycles with primers HuB endo-5 and HuB endo-3’, HuC
endo-5 and HuC endo-3’, or HuD endo-5 and HuD
endo-3’, as listed in Table 1. Quantification of HuD
exon 6 inclusion was determined by phosphorimager
analysis using a Typhoon Trio (GE Healthcare). The
results shown are representative of at least three indepen-
dent transfections for each experiment. The effect of Hu
proteins on splicing of the reporter pre-mRNA was
calculated as a percentage of HuD exon 6 inclusion [exon
6 inclusion/(exon 6 inclusion + exon 6 exclusion)]. The
effect of HuC protein on splicing of the endogenous HuD
pre-mRNA was calculated as a percentage of HuD sv4 pro-
duction [(HuD sv4)/(HuD svl + sv2 + sv4)]. Western blot
analysis using proteins isolated from the transfected cells
was carried out with anti-Xpress (Invitrogen), anti-Myc
(Invitrogen) or anti-HA  antibodies (Covance).
Anti-y-tubulin (Sigma) and Anti-U1-70K antibody was
used as a loading control in western blot analysis.

RNA gel mobility shift assay

A gel mobility shift assay was performed using
recombinant GST or GST-HuC sv4 prepared from
bacteria and wild type or mutant RNA oligonucleotides
obtained from Thermo Fisher Scientific Inc. (Figure 7).
The oligonucleotides were **P-labeled at the 5'-end using
T4 polynucleotide kinase (Invitrogen). The gel mobility
shift assay was carried out in a volume of 25 ul containing
20 mM creatine phosphate, 2mM adenosine triphosphate
(ATP), lpg/pl bovine serum albumin (BSA), 2pg/ul
heparin and 80 fmol 32P_labeled RNA oligonucleotides
in the absence or presence of 2, 10 and 50ng of GST or
GST-HuC sv4 protein. Reaction mixtures were incubated
at 30°C for 30 min, then the mixture was separated on an
8% mnon-denaturing polyacrylamide gel in 1x TG buffer
(0.05M Tris and 0.05M glycine).

In vitro splicing assay

HeLa cell nuclear extracts were prepared using S3 suspen-
sion culture and standard procedure (26). The plasmid
used as template for in vitro transcription was digested
with Xbal and RNA transcription was carried out as
described previously (26). The full-length RNA substrates
were excised from a wurea polyacrylamide gel
electrophoresis (PAGE) gel under ultraviolet (UV) light
and recovered by eluting with buffer X [0.5M NH,Ac,
0.5% sodium dodecyl sulfate (SDS) and 5mM
ethylenediaminetetraacetic acid (EDTA)] followed by
ethanol precipitation.

The in vitro splicing assay was carried out in a volume of
25 ul containing 44% (vol/vol) HeLa cell nuclear extract,
20mM creatine phosphate, 2mM ATP, 0.mM MgCI2,
1.5% polyethylene glycol, 0.15mM dithiothreitol and
50 fmol RNA substrates in the absence or presence of 1
or 2pg of GST or GST-HuC sv4 protein. Reaction
mixtures were incubated at 30°C for 60min, then the



RNA was recovered from the reactions by phenol/chloro-
form extraction and ethanol precipitation. The resulting
RNA was analyzed by semi-quantitive RT-PCR (16
cycles) as reported in a previous study (27) using the
primers HuDI12 5 and HuDI12 3 (Table 1).
Quantification of HuD exon 6 inclusion was determined
using a Typhoon Trio (GE Healthcare). The results shown
are representative of three independent splicing assays.
The splicing products were cloned into a TA cloning
vector pGEM-T (Promega) and confirmed by DNA
sequencing.

RESULTS

Conserved AU-rich sequences are located near exon 6
in the HuD pre-mRNA

Previous studies have demonstrated that Hu proteins can
function as splicing repressors to block exon inclusion by
binding to AU-rich sequences (6). A computational
analysis to search for additional Hu-binding targets
identified more than 20 potential targets (6). The
alternatively spliced HuD exon 6 is one of the potential
targets. Analysis of the genomic sequences surrounding
exon 6 in the HuD gene in human, mouse and rat
revealed several conserved AU-rich sequences (Figure 2).
The most conserved sequences are located within 140 nt
upstream and 271nt downstream of exon 6. In this
conserved region, two and four blocks of AU-rich
sequences are located upstream and downstream of exon
6, respectively, and a small block of AU-rich sequence is
located in exon 6 (Figure 2). We hypothesized that these
AU-rich sequences were targets of Hu proteins and there-
fore were important for the regulated HuD exon 6 splicing
event.

Hu proteins promote HuD exon 6 inclusion

Recently, Hu proteins have been demonstrated to regulate
alternative splicing by binding to intronic AU-rich
elements (6-9,28). In all cases, interestingly, Hu proteins
block inclusion of affected alternative exons (6-9,28). In
the case of exon 6 of HuD, we postulated that Hu proteins
may promote inclusion of this exon because in
differentiated neurons, where Hu proteins are abundantly
expressed, this exon is predominantly included
(Figure 1C) (11). To determine if Hu proteins affect inclu-
sion of this exon, we co-transfected HeLa cells, where
none of the neuronal Hu proteins are expressed (6), with
a mini-gene reporter (E6) containing HuD exon 6 with its
flanking intronic sequences and individual members of the
Hu protein family. The reporter contains exon 6, 119 nt of
upstream, and 293 nt of downstream intronic sequences
that include the conserved AU-rich sequences. The HuD
sequence was inserted into the first intron of the human
MT?2A gene. Transcription of the reporter is directed by a
Rous sarcoma virus (RSV) promoter (Figure 3A).

The mammalian Hu protein family consists of four
members, HuA/HuR, HuB (HeIN1), HuC and HuD.
Except for HuR, which has only one protein isoform,
each of the Hu proteins has different isoforms generated
through alternative splicing in the coding region (Figure 1)
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(11). The major alternative splicing events that generate
different isoforms of Hu proteins occur at the hinge region
between the second and third RRMs. The naturally
occurring alternative splicing events lead to production
of the different Hu protein isoforms. Thus, an interesting
question is whether these different Hu family members
and their different isoforms have redundant functions in
regulating splicing. In order to address this question, we
either obtained or cloned all of the different isoforms of all
of the Hu proteins (HuR, two mouse HuB splicing
variants, four mouse HuC splicing variants and three
human HuD splicing variants) and tested them in HeLa
cells by transfecting each individually together with the E6
reporter.

An RT-PCR assay was carried out to analyze the
splicing pattern of exon 6 (Figure 3B, top) and western
blot analysis was used to show the protein expression level
of transfected Hu ¢cDNA plasmid (Figure 3B, bottom).
It is clear from the results that every Hu protein
member is capable of promoting inclusion of exon 6.
However, different Hu members exhibit different potency
in this splicing regulation. Overall, HuC protein isoforms
are most potent as splicing promoters, followed by HuD,
HuR and HuB (Figure 3B). Note that some of the Hu
proteins, such as the HuB protein isoforms, are
over-expressed at lower levels than others, which may
explain the weaker splicing regulatory activity for these
proteins. However, HuR is expressed at a similar level as
HuC protein isoforms, yet is not as potent as HuC in
promoting exon 6 inclusion. As a negative control,
TIAR has no effect on the inclusion of HuD exon 6
(Figure 3B and C). To test the effect of over-expression
of Hu proteins on alternative splicing of the endogenous
HuD pre-mRNA, we transfected F9 cells, a mouse
teratocarcinoma cell line in which HuD is endogenously
expressed. In F9 cells, a significant amount of HuD sv4
isoform (38% of total HuD mRNA), which results from
exon 6 exclusion, is produced (Figure 3D). HuC sv2 is
used in this and the following experiments because of its
consistent expression level and strong ability to promote
exon 6 inclusion. The production of the HuD sv4 isoform
is decreased to 22% upon HuC over-expression
(Figure 3D). These experiments demonstrate that Hu
proteins are capable of promoting HuD exon 6 inclusion
from either the endogenous or the reporter HuD
pre-mRNA.

Minimal sequences required for Hu-mediated
inclusion of exon 6

Several blocks of AU-rich sequences are located surround-
ing HuD exon 6 (Figure 2). To test the importance of these
AU-rich sequences on Hu-mediated exon 6 inclusion, we
generated six truncated reporters that contain 119nt
upstream of exon 6 and varying lengths of sequences
downstream of exon 6 (Figure 4A). These reporters were
co-transfected into HeLa cells with the HuC sv2 expres-
sion plasmid. As shown in Figure 4B and C, HuC sv2
promotes exon 6 inclusion from the truncated reporters
E6-T1, E6-T2, E6-T3, E6-T4 and E6-TS at similar levels
as from the parental reporter E6. However, when only
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44nt of the downstream sequence was included in the
reporter E6-T6, the reporter did not respond to HuC sv2
(Figure 4B and C). To investigate the role of upstream
AU-rich of exon 6, we generated a truncated reporter
E6-T7 that contains 63 nt upstream of exon 6 and 94 nt
downstream of exon 6 (Figure 4D). The only difference
between this reporter and E6-T5 is that the AU-rich
sequences upstream of exon 6 are deleted in E6-T7.
Interestingly, although the baseline inclusion of exon 6 is
decreased from the 23% with E6-T5 to 9% with E6-T7,
addition of HuC sv2 resulted in a similar fold of increase
of exon 6 inclusion from E6-T7 as E6-T5 (2.8-fold versus
2.5-fold) (Figure 4D). These results suggest that the
upstream AU-rich sequences plays a minor, if any, role
in Hu-medicated exon 6 inclusion and that the sequence
between 44 and 94nt downstream of exon 6 contains
important elements required for Hu-mediated exon 6
inclusion.

Identification of two AU-rich elements important for
Hu-mediated exon 6 inclusion

Two blocks of AU-rich sequences are located between 44
and 94 nt downstream of exon 6 (Figure 5A). Importantly,
these AU-rich sequences are highly conserved in human,
mouse and rat (Figure 2). To determine if these sequences
are necessary for Hu-mediated inclusion of exon 6, we
carried out mutational analysis. We mutated the two
AU-rich sequences either individually or in combination
using E6-TS as a parental reporter, which contains the
shortest sequence, 94nt downstream of exon 6, which
still responds to over-expression of Hu protein (Figure
5A). We generated three mutant reporters, mutant
reporter 1 (Mut 1) with point mutations in the down-
stream AU-rich sequence, mutant reporter 2 (Mut 2)
with mutations in the upstream AU-rich sequence and
mutant reporter 1+ 2 (Mut 1+ 2) with mutations
in both AU-rich sequences. The reporters were
co-transfected into HeLa cells with the HuC sv2 expres-
sion plasmid. Compared to the wild-type E6-T5 reporter
pre-mRNA that is processed to include exon 6 at 58%
upon HuC sv2 over-expression, the Mut 1, Mut 2 and
Mut 1 + 2 reporters showed significantly reduced exon 6
inclusion upon HuC sv2 over-expression (40%, 33% and
36%, respectively) (Figure 5C). These results indicate that
the AU-rich elements located between nucleotides 44 and
94 downstream of exon 6 are important for Hu-mediated
HuD exon 6 inclusion in HeLa cells.

Decreased exon 6 inclusion in CA77 cells with reduced
level of Hu proteins

To determine if Hu proteins are required for inclusion of
exon 6 in cells that endogenously express Hu proteins, we
carried out an RNAi knockdown experiment in CA77
cells. In these cells, exon 6 of HuD is predominantly
included (Figure 1C) and all of the Hu protein family
members are expressed (9). We generated shRNA con-
structs that target HuB, HuC or HuD coding sequence.
In CA77 cells, the pre-mRNA of the E6-T5 reporter was
spliced to predominantly include exon 6 (59%, Figure 6A)
when co-transfected with eGFP shRNA plasmid.
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Figure 6. Decreased inclusion of HuD exon 6 in CA77 cells with
reduced level of Hu proteins. E6-T5 reporter was co-transfected with
shRNA plasmid of eGFP, HuB-1, HuB-2, HuC-1, HuC-2 or HuD into
CAT77 cells. (A) Splicing of the reporter was analyzed by RT-PCR.
(B) RT-PCR analysis of endogenous HuB, HuC and HuD expression
in CA77 cells transfected with shRNA plasmids. The B-actin in the
shRNA-treated cells used as a control. (C) To test the knockdown
efficiency of the shRNA plasmids, they were co-transfected with Hu
expression plasmid into CA77 cells. Expression of the over-expressed
Hu with eGFP or Hu shRNA plasmids are shown in the western blot
analysis.
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However, when the reporter was co-transfected with the
shRNA plasmid targeting HuB, HuC or HuD, exon 6
inclusion was consistently reduced to 41% (HuB-1),
45% (HuB-2), 39% (HuC-1), 45% (HuC-2) and 44%
(HuD), respectively (Figure 6A). Due to the lack of Hu
member-specific antibodies, we used an RT-PCR assay to
analyze the mRNA expression level of endogenous Hu
proteins in CA77 cells treated with the shRNAs
(Figure 6B). Different Hu shRNAs exhibit different
potency in reduction of Hu expression. The shRNA for
HuC-1 appeared to be the most potent, followed by
HuB-2 and HuB-1 (Figure 6B). To further test the Hu
knockdown efficiency, we also co-transfected the
epitope-tagged Hu expression vector with the various
shRNA constructs in CA77 cells. As shown in
Figure 6C, the level of the transfected Hu proteins was
significantly reduced after co-transfection with shRNA
expression vector, which is indicative of efficient knock-
down. These experiments demonstrate that reduction of
endogenous Hu proteins can decrease inclusion of HuD
exon 6.

HuC binds the AU-rich elements in the downstream
intron sequence of HuD exon 6

Hu proteins have been shown to have strong affinity for
AU-rich sequences (9,24). To determine if the AU-rich
sequences downstream of the HuD exon 6 are targets
for Hu proteins, we carried out RNA gel mobility shift
assays using a wild type or mutant RNA oligonucleotide
and a recombinant GST-HuC fusion protein. As shown in
Figure 7, we detected two slow-moving complexes that
formed on the wild-type RNA, which is indicative of
binding of HuC protein to the RNA. Importantly, the
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oligonucleotides are shown. (B) RNA gel mobility shift analysis. The
wild type (lanes 1-7) or mutant (lanes 8-14) RNA was incubated with
no protein (lanes 1 and 8), increasing amounts (2, 10 and 50 ng) of GST
protein alone (lanes 2-4 and 9-11) or GST-HuC sv4 (lanes 5-7 and
12-14).

mutant RNA in which the two AU-rich blocks were dis-
rupted did not support formation of these complexes
(Figure 7). Formation of two RNA-protein complexes
at higher concentrations of HuC protein suggests that
more than one HuC protein may associate with the
RNA simultaneously.

HuC promotes the inclusion of HuD exon 6 in an
in vitro splicing assay

The experiments discussed above demonstrate that Hu
proteins promote HuD exon 6 inclusion in HelLa and
CAT77 cells and that two AU-rich elements are important
for this regulation. To provide definitive evidence that Hu
proteins promote HuD exon 6 inclusion directly at the
level of splicing, we carried out in vitro splicing analysis
using Hela cell nuclear extract. The splicing substrate
used in this experiment is shown in Figure 8A and was
generated from the reporter used in the cell transfection
assay. Both a wild-type substrate and a mutant one in
which the AU-rich elements were disrupted were
generated. We first carried out the classical in vitro
splicing analysis using uniformly **P-labeled RNA con-
taining the HuD exon 6, 94nt of downstream intronic
sequence and exon 2 of the HMT gene. However, the
splicing efficiency of this substrate was exceedingly low
and no splicing products were observed (data not
shown). This result is not surprising as alternative exons
usually associate with suboptimal splicing signals. In the
case of HuD exon 6, the polypyrimidine tract of its
3’ splice site has very short U-runs and the +5 position
of its 5 splice site is a uridine instead of the canonical
guanidine (Figure 2). Thus, in order to examine in vitro
splicing activity of this particular splicing event, we used
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Figure 8. HuC promotes the inclusion of HuD exon 6 in an in vitro
splicing assay. (A) A schematic diagram of the construct used to
generate the RNA splicing substrate for the in vitro splicing assay.
The black arrows below the diagram indicate the position of primers
used for RT-PCR analysis. (B) Lanes 1-5 indicate the splicing activity
of the wild-type transcript in the presence of buffer alone, increasing
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sv4. Lanes 6-10 indicate the splicing activity of the Mut 1 + 2 tran-
script under the same conditions. (C) Graphic representation of the
RT-PCR results shown in (B).

RT-PCR to detect the splicing products, as pioneered in
previous studies (27). As shown in Figure 8B and C,
increasing amounts of GST-HuC, but not of GST
protein, increased production of spliced RNA that
contains exon 6 with the wild-type substrate (lanes 1-5).
Importantly, little change was observed with the mutant
substrate (lanes 6-10). These results demonstrate that Hu
proteins directly affect splicing to promote inclusion of
HuD exon 6.

DISCUSSION

A novel enhancer function of Hu proteins in splicing
regulation

Hu proteins are known to bind specifically to AU-rich
sequences. Previous studies in our laboratory and others
demonstrate that Hu proteins function as repressors, neg-
atively regulating splicing and polyadenylation (6,7,9,28).
Here, we report the first example where Hu proteins
function as splicing enhancer proteins, promoting inclu-
sion of HuD exon 6. The ability of a splicing regulator to
function as both an enhancer and a repressor is consistent
with an important theme in splicing regulators.
Well-studied examples that follow this theme include
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Nova-1 (29-32), SR proteins (33,34), CELF proteins (35)
and Fox-1/Fox-2 (36-39).

In this study, we showed that Hu proteins promote
inclusion of exon 6 of the HuD pre-mRNA by binding
to evolutionarily conserved AU-rich intronic sequences.
Since members of the Hu family proteins show similar
exon—intron structure, it is possible that exon 6 in the
pre-mRNA of the other three Hu members undergoes
similar regulation. Of the four Hu protein transcripts,
inclusion of exon 6 has never been observed with HuR/
HuA pre-mRNA. Inclusion of exon 6 of the HuB
pre-mRNA appears to undergo neuron-specific regula-
tion. This exon is preferentially included in neurons and
shows cell-type specific splicing pattern in cell lines
(40,41). Exon 6 of the HuC pre-mRNA appears to be
alternatively included, but no cell-specificity has been
reported (11).

When we compared intronic sequences surrounding
exon 6 in the HuB/C/D genes among human, mouse and
rat, we found a good correlation between the presence of
conserved AU-rich sequences and regulated inclusion of
exon 6. For example, several conserved sequences are
located around exon 6 in the HuB and HuD
pre-mRNA, while no significant AU-rich blocks were
found in the HuC sequence (data not shown). Based on
this observation, we speculate that Hu proteins may also
regulate inclusion of exon 6 of the HuB pre-mRNA in a
similar way to that of the HuD pre-mRNA. However, the
function of Hu proteins on alternative splicing of HuB
exon 6 remains to be investigated experimentally.

Biological function of alternative inclusion of HuD exon 6

Hu proteins are involved in diverse biological processes.
The neuronal Hu proteins, HuB, HuC and HuD, play an
important role in neuronal development. Over-expression
of HuD accelerates neurite outgrowth in E19 rat cortical
neurons, PC12 cells, and retinoic acid-induced embryonic
stem cells (42-44).

During mouse development, inclusion of exon 6 appears
to be regulated. The HuB sv4 isoform, which does not
include exon 6, is expressed early in mouse embryonic
development at Day E10 and its expression is attenuated
by Day E19. Expression of HuB sv2, the longer isoform
that includes exon 6, is dramatically increased in
differentiating embryonic neurons and is moderately
expressed in adult neurons (13).

The splicing pattern involving HuD exon 6 is changed
when it is ectopically expressed in small-cell lung cancers.
In these cancer cells, exon 6 inclusion is significantly
decreased (45). The HuB splicing pattern was also
reported to change in human brain tumor medullob-
lastoma cells in which expression HuB sv2 is
downregulated and HuB sv4 is upregulated (41). The bio-
logical significance of these changes is not clear.

Auto-regulation is very common in splicing regulators.
In most cases, such regulation serves to tightly control the
expression of these splicing regulators. For example,
Nova-1 has been shown to repress its exon 4 inclusion
by binding to exon 4 (46). HnRNP Al binds to RNA
elements surrounding exon 7b that leads to increased

skipping of this exon (47). Exon 11 of the PTB
pre-mRNA is repressed by PTB in an auto-regulating
feedback loop that leads to degradation (48). In these
examples, nonsense-mediated decay is usually triggered
by the alternative splicing, which leads to reduced expres-
sion of these splicing regulators. In the case of HuD, since
exon 6 contains 39 nt, change of the splicing pattern does
not cause a reading-frame shift. In order to understand the
biological function of the regulated splicing of HuD, it is
important to determine the differential function of these
isoforms. A previous study suggests that exon 6 encodes
for part of the nuclear export signal (NES) in the hinge
region. Therefore, isoforms that contain exon 6 may have
different localization than isoforms that do not (44).

At the molecular level, all of the Hu protein isoforms
are capable of promoting HuD exon 6 inclusion.
However, differences do exist in the ability of each
protein isoform to regulate alternative splicing. Within
the same Hu protein (e.g. HuD), the shortest isoform
(sv4) that lacked exon 6 promoted the highest level of
exon 6 inclusion (Figure 3). Note that these differences
were observed using splicing reporters. Thus, it remains
to be determined if Hu protein isoforms affect splicing of
the endogenously expressed pre-mRNAs differentially.

Potential mechanisms of Hu-mediated HuD
exon 6 inclusion

How do Hu proteins promote inclusion of HuD exon 6 by
binding to two AU-rich sequences downstream of the
exon? We envision at least two potential mechanisms.
First, Hu proteins may bind to specific AU-rich elements
in the intron and recruit Ul snRNP to the 5 splice site
downstream of exon 6. In our previous study, we found
that when Hu proteins bind to an AU-rich sequence 15nt
downstream of exon 23a of the NFI pre-mRNA, they
antagonize the function of TIA-1/TIAR to block interac-
tion between Ul and U6 snRNP and the 5 splice site (6).
Recent studies have demonstrated that the same element
can have opposite splicing regulatory effect to inhibit or
enhance exon inclusion when located in different positions
relative to the alternative exon. Two well-studied examples
are Nova and Fox proteins. Nova-1 binding to an exonic
YCAY cluster changes the protein complexes assembled
on pre-mRNA, blocking Ul binding and exon inclusion,
whereas Nova-1 binding to an intronic YCAY cluster
enhances spliceosome assembly and exon inclusion (32).
The position of the binding sites determines either activa-
tion or repression of exon recognition by Fox-1/2 (36). It
appears that a simple rule based on the location of
AU-rich sequences relative to the regulated exon does
not apply to Hu proteins. For example, our previous
study showed that Hu proteins negatively regulate inclu-
sion of exon 23a of the NF1 pre-mRNA. In that case, the
major AU-rich sequence is also located downstream of the
exon (6). However, it is possible that the distance of
AU-rich sequences to the regulated exon is important in
their regulatory role. The AU-rich sequence is 56 and 13 nt
downstream of Hu exon 6 and NF1 exon 23a, respectively.
Future studies will be carried out to address if and how
this potential position-dependent effect is achieved.



Second, Hu proteins may increase exon 6 inclusion by
competing with splicing repressors. The results of the
truncated and mutant HuD exon 6 reporters showing dif-
ferent levels of exon 6 inclusion in cells suggest that very
complex regulatory mechanisms may control the splicing
of HuD exon 6. Exon 6 inclusion levels change with dif-
ferent truncated or mutant reporters in HelLa cells
(Figures 4 and 5). The result that the E6-T6 reporter
shows a higher exon 6 inclusion than the E6-T5 reporter
suggests that some splicing silencer motifs exist in this
minimal sequence required for Hu-mediated inclusion of
exon 6. By searching the Human Splicing Finder
(http://www.umd.be/HSF/), we found several putative
splicing silencer motifs located in this region. In the
future, more detailed analysis of the mechanism of
Hu-mediated HuD exon 6 inclusion will be carried out
to address these issues.
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