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Abstract

Objective: Monitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking.
However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction
model to retrospectively detect drain-related meningitis (DRM), a frequently occurring nosocomial infection, using routinely
collected data from a clinical data warehouse.

Methods: As part of the hospital infection control program, all patients receiving an external ventricular (EVD) or lumbar
drain (ELD) (2004 to 2009; n = 742) had been evaluated for the development of DRM through chart review and standardized
diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying ,24 hours after drain
insertion or with ,1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were
excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed
using multiple imputation. Bootstrapping was applied to increase generalizability.

Results: 537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk).
The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive
protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric
antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97). The model achieved
98.8% sensitivity (95% CI 88.0% to 99.9%) and specificity of 87.9% (84.6% to 90.8%). Positive and negative predictive values
were 56.9% (50.8% to 67.9%) and 99.9% (98.6% to 99.9%), respectively. Predicted yearly infection rates concurred with
observed infection rates.

Conclusion: A prediction model based on multi-source data stored in a clinical data warehouse could accurately quantify
rates of DRM. Automated detection using this statistical approach is feasible and could be applied to other nosocomial
infections.
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Introduction

Healthcare-associated infections (HAI) pose a great burden on

current medical care and are increasingly viewed as preventable

complications. HAI refers to the entire scope of infections

associated with medical care and also includes nosocomial

infections. The European burden of HAI has been estimated at

4.5 million infections contributing to 148,000 deaths [1]. Hospitals

are encouraged to report HAI rates through surveillance

organizations such as the National Healthcare Safety Network

(NHSN) from the Centers for Disease Control and Prevention

(CDC) in the United States [2] and the PREZIES network in the

Netherlands [1,3]. Efficient registration and feedback of infection

rates to healthcare workers are considered essential elements to

reduce infection rates and surveillance of infection rates is

increasingly demanded by policy makers and the public [4].

However, manual registration of HAI rates is time-consuming and

susceptible to error due to subjective interpretation of definitions

and manual data handling [5,6].

Therefore, there is an urgent need for more efficient and

reliable surveillance methods. Automated classification algorithms

using data stored in electronic medical records (i.e. clinical data
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warehouses [7]) have been developed both at the hospital-wide

and procedure-specific level with varying success, in particular for

surgical site infections and (catheter-related) bloodstream infec-

tions [8–18]. Most models use a classification approach based on

the presence of (one or more) indicators of infection, such as

positive microbiology results, antibiotic use, and discharge coding.

Another, less used, method is development of a multivariable

model with associated cut-off values to classify patients [11,13].

Such (automated) models are of relatively low cost, time-saving,

and facilitate standardized interpretation of infection criteria [10].

However, when case-finding is based on microbiological cultures,

such classification algorithms have low sensitivity for culture-

negative infections and specificity of these algorithms decreases

when extending case-finding criteria. Furthermore, suboptimal

positive predictive values still make manual confirmation of

infection necessary. Given these potential drawbacks, most

healthcare centers still use manual chart review as their primary

method of surveillance.

The aim of this study was to develop a prediction model for

HAI using data routinely stored in a clinical data warehouse (i.e.

the Utrecht patient-oriented database, UPOD [19]) to retrospec-

tively identify the presence of infection. In order to increase

sensitivity for culture-negative infections while maintaining

specificity and enable surveillance without the need for manual

confirmation, an alternative approach to the classification

algorithm was sought and data sources were extended to include

not only microbiology results and antibiotic use but also results of

clinical chemistry analysis. In clinical practice, such a model could

eliminate or significantly reduce the workload of manual chart

review and increase resources available for development and

implementation of infection control measures. Drain-related

meningitis (DRM) was selected as an example to investigate this

general approach to automated evaluation of infection rates. This

nosocomial infection, related to external cerebrospinal fluid (CSF)

drainage through external ventricular (EVD) or lumbar drains

(ELD), is sometimes also termed ventriculitis or meningoventricu-

litis and is one of the procedure-specific infections that has since

2004 been monitored by the department of hospital hygiene and

infection control through labor-intensive manual chart review.

The developed model achieved good discriminatory power at the

level of the individual patient and group-level estimates

of infection rates could be generated without any manual

confirmation.

Methods

Ethics statement
The use of anonymous data through the UPOD has been

exempted from review by the Institutional Review Board of the

University Medical Center Utrecht as described previously [19].

Study design and outcome measure
Data collected as part of the hospital hygiene surveillance

program were used to develop the prediction model for DRM.

Results of routinely performed incidence surveys were considered

as reference standard. Two infection control professionals assessed

each patient for the development of DRM by chart review using

modified NHSN/CDC criteria for healthcare-associated menin-

gitis (figure 1) [20,21]; in case of disagreement adjudication was

performed through review. A surveillance episode was defined to

start the day of drain placement up to seven days after drain

removal of the last drain or up to discharge, whichever occurred

first.

Study population
All patients registered by the surveillance program to have

received an external cerebrospinal fluid drain at the University

Medical Centre Utrecht, a 1042-bed tertiary healthcare centre,

were included in this study. Registration comprises all patients

who received an EVD between January 1st 2004 and December

31st 2009 (with the exception of May–July 2004), and all patients

receiving and ELD in 2004 to 2006. From January 2007 to

December 2009 surveillance for ELD was only performed in

patients who received the drain in operating theatres. Several

infection control measures were implemented during the study

period as described previously [20]. All EVDs are placed in

operating theatres or, sometimes, under sterile conditions in the

intensive care unit (ICU) by a neurosurgeon or trained resident.

ELDs are either inserted in the operating theatre or in sterile

conditions on the neurology ward. EVDs are tunneled five

centimeters under the skin. All patients receive perioperative

antibiotic prophylaxis. Drains are not exchanged on a prophylactic

basis and CSF samples are collected for culture and biochemical

analysis only when infection is clinically suspected; at this time

empiric antibiotic therapy is initiated according to local protocol.

Throughout the study period, 742 patients received one or more

drains. The following exclusion criteria were applied: death within

Figure 1. NHSN/CDC definition of healthcare-associated meningitis for patients .1 year of age [20,21].
doi:10.1371/journal.pone.0022846.g001
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one day after drain placement (40 patients), age under 18 years

(n = 110), pre-existing central nervous system infection (n = 29),

more than one simultaneous drain (n = 8), drain placement in a

different centre (n = 4), admission duration less than one day

(n = 3), second admission more than 30 days after discharge from a

first drainage episode within the study (n = 7), and admission to the

military hospital (n = 2). After application of exclusion criteria, 537

patients were available for analysis.

Table 1. Baseline characteristics of the patient population after multiple imputation of missing values and univariate association
between variables and the risk of drain-related meningitis.

Overall No DRM DRM p-value*

Median (IQR) or n (%) n = 537 n = 455 n = 82

Demographics

Age (years) 58.5 (47.2–69.6) 59.3 (46.8–69.4) 56.0 (47.5–65.6) 0.49

Sex (% female) 290 (54.0) 247 (54.3) 43 (52.4) 0.78

In-hospital death (%) 90 (16.8) 79 (17.4) 11 (13.4) 0.38

Duration of admission (days) 21.0 (12.0–37.5) 19.0 (11.0–30.0) 40.0 (28.5–59.3) ,0.001

Admission on ICU (%) 312 (58.1) 253 (55.6) 59 (72.0) 0.006

Duration of ICU stay 2 (0.0–7.0) 2 (0.0–5.0) 4.5 (0.0–12.3) ,0.001

Indication for first drain (%) ,0.001

- SAH/IVH 249 (46.4) 205 (42.0) 58 (70.7)

- Infarction 14 (2.6) 14 (3.1) 0 (0)

- CSF leakage 85 (15.8) 77 (16.9) 8 (9.8)

- Perioperative 86 (16.0) 84 (18.5) 2 (2.4)

- Trauma 14 (2.6) 11 (2.4) 3 (3.7)

- Tumor 37 (6.9) 30 (6.6) 7 (8.5)

- Other 52 (9.7) 48 (10.5) 4 (4.9)

Drain characteristics

Drain type (% EVD) 337 (62.8) 266 (58.5) 71 (86.6) ,0.001

Total drain duration (days) 9.0 (6.0–17.0) 8.0 (5.0–13.0) 20.0 (15.0–29.8) ,0.001

Number of drains placed 1 (1 - 1) 1 (1 - 1) 2 (1–2) ,0.001

Laboratory measures (blood)

CRP (mg/L) 96 (39–173) 85 (32–165) 141 (95–190) ,0.001

Leukocytes (6109/L) 15.7 (11.8–20.1) 14.8 (11.3–19.0) 20.1 (16.3–23.6) ,0.001

Haemoglobin (mmol/L) 6.6 (5.7–7.5) 6.8 (5.8–7.6) 6.0 (5.2–6.8) ,0.001

Thrombocytes (6109/L) 351 (262–495) 329 (252–452) 540 (381–714) ,0.001

Laboratory measures (CSF)

Leukocytes (6100/uL) 1.9 (0.3–5.7) 1.4 (0.2–4.3) 10.4 (2.5–53.1) ,0.001

Erythrocytes (610000/uL) 1.6 (0.2–7.4) 1.2 (0.2–6.9) 2.4 (0.8–10.6) 0.006

Binary leukocytes (%) 152 (28.3) 91 (20.0) 61 (74.4) ,0.001

Percentage neutrophils 51.7 (33.1–74.0) 47.8 (31.3–66.0) 85.0 (70.0–91.5) ,0.001

Neutrophil count (6100/uL) 0.8 (0.1–4.9) 0.4 (0.0–2.3) 6.3 (0.6–38.0) ,0.001

Glucose (mmol/L) 3.4 (2.7–4.1) 3.5 (2.9–4.2) 2.3 (1.1–3.3) ,0.001

Total protein (g/L) 1.7 (0.8–2.8) 1.7 (0.8–2.7) 1.8 (1.1–3.3) 0.027

Culture results

CSF and/or drain culture (%) 106 (19.7) 45 (9.9) 61 (74.4) ,0.001

Antibiotic use

Any antibiotics started .4 days (%) 271 (50.5) 193 (42.4) 78 (95.1) ,0.001

Any empiric antibiotic therapy (%) 123 (22.9) 61 (13.4) 62 (75.6) ,0.001

Number of antibiotic started 1.0 (0–3) 1 (0–2) 4 (3–6) ,0.001

*: p-value using x2, student’s t or Mann-Whitney U test where appropriate.
Abbreviations: DRM – drain-related meningitis; IQR –interquartile range; ICU – intensive care unit; CSF - cerebrospinal fluid; EVD – external ventricular drain; HAI –
Healthcare-associated infection; SAH – subarachnoid hemorrhage; IVH – intraventricular hemorrhage.
Number of missing values prior to imputation: Other HAI – 37.2%; CRP – 11.2%; Leukocytes (blood) – 8.4%; Hemoglobin – 6.1%; Thrombocytes – 11.2%; CSF leukocytes –
29.2%; CSF erythrocytes 29.1%; CSF glucose 30.7%; CSF protein 29.2%; Culture (CSF and/or drain) – 19.9%. All others: no missing values.
doi:10.1371/journal.pone.0022846.t001
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Data collection
The department of hospital hygiene provided outcome data

along with the drain characteristics for each patient (drain type,

duration, indication for placement). Prediction data was obtained

through the Utrecht Patient Oriented Database (UPOD), a

clinical data warehouse launched in 2004 for research purposes.

The UPOD links results from laboratory analysis (clinical

chemistry and hematology), microbiological cultures, and phar-

macy dispensing data to information from the hospital admission

and discharge system at the patient level [19]. Medication

prescription data were obtained both from the UPOD as well as

directly from the intensive care unit. Data were adapted to a

standardized format and checked for inconsistencies. When

necessary, original data sources were cross-referenced to exclude

errors.

Predictor selection
Predictors were selected both on theoretical grounds and to best

match the modified NHSN/CDC criteria. Duration of drainage,

drain manipulation, subarachnoid hemorrhage, cerebrospinal

fluid leakage, and other concomitant infections have been

described as possible risk factors for meningitis previously [22].

Besides microbiological analysis of CSF and drains (after removal),

biochemical markers of meningitis such as CSF leukocyte count,

neutrophil count, glucose level, total protein level, and CSF/blood

glucose ratio have been applied to the neurosurgical population

with moderate success [23,24] and were therefore considered as

predictors. Unfortunately, Gram-stain results were not yet

available and the UPOD does not contain information on drain

manipulation and the occurrence of concomitant infections. If

patients received both an EVD and an ELD, the EVD took

priority in determining drain type. Culture results have been

corrected for contamination by categorizing cultures growing

coagulase-negative staphylococci as negative if no antibiotic

therapy was initiated one day prior through three days after

culture. Empiric antibiotic therapy was defined as the simulta-

neous use of vancomycine and ceftazidime (started four or more

days after admission) or ceftriaxone and flucloxacillin (initiated

within four days of admission) according to local protocol. The

number of systemic antibiotics started throughout the surveillance

episode was included as a surrogate marker for the presence of

other concomitant infections.

Statistical analysis
Since the objective was to predict whether a patient had

developed DRM during hospital stay, the value that was most

indicative of infection measured throughout each patient’s

surveillance episode was taken for each predictor. Missing data

were imputed using multiple imputation (ten imputations). For C-

reactive protein (CRP), squared and cubic terms were included in

the prediction model along with the linear term. The number of

leukocytes in CSF was log-transformed prior to analyses.

Variables were selected for multivariate analysis based on

theoretical considerations (as previously described) and results of

univariate analysis (p,0.05 in the mean dataset). Using logistic

regression analysis, a prediction model was then developed by

means of manual backward selection (p,0.05). Although it is

recommended to use higher p-values for selection of predictors in

prediction research [25], this more stringent criterion was used

due to the limited number of events (higher p-values would have

resulted in too few events per predictor). Regression coefficients

and standard errors were determined on each imputation set and

pooled using Rubin’s rule [26]. Subsequently, bootstrapping (100

samples per imputation set) was applied to correct for optimism.

Discrimination and calibration were determined for the final

model. Discrimination refers to the ability to distinguish between

patients with and without DRM; this was assessed by the area

under the ROC curve. Calibration refers to the concordance

between the predicted and observed probabilities of infection,

which was assessed using a calibration plot. For clinical

application, cut-off values for a predicted probability associated

with high sensitivity and acceptable specificity were determined

and associated sensitivity, specificity and predictive values were

reported. Confidence intervals were determined using exact

binomial methods. Finally, the summed predicted probabilities

were used to investigate infection rates at the group level. All

Figure 2. Prediction rule for the development of drain-related meningitis. Abbreviations: P(DRM) – probability of drain-related meningitis;
LP – linear predictor; EVD – external ventricular drain; CRP – C-reactive protein; CSF – cerebrospinal fluid.
doi:10.1371/journal.pone.0022846.g002

Table 2. Outcome of backward stepwise logistic regression
predicting the risk of drain-related meningitis.

Predictor OR 95% CI p-value

Drain type (EVD) 5.26 1.57–17.60 0.003

Number of drains placed 2.04 1.22–3.41 0.005

CRP 1.02 0.99–1.05 0.245

(CRP/10)2 0.99 0.97–1.00 0.048

(CRP/100)3 1.26 0.99–1.60 0.044

Leukocytes (blood) 1.08 1.01–1.16 0.018

Leukocytes (CSF) 1.42 1.15–1.75 ,0.001

Pos culture (drain and/or CSF) 13.70 5.58–33.62 ,0.001

Any empiric antibiotics started 1.32 1.04–1.68 0.021

Number of antibiotics started 4.33 1.79–10.5 ,0.001

Outcome of backward stepwise logistic regression, cut-off for exclusion p,0.05.
Odd’s ratio and confidence intervals are after bootstrapping, p-values and
predictor selection are prior to bootstrapping and shrinkage. Predictors not
retained in model: indication for drain placement, duration of admission, total
drainage duration, number of days in intensive care unit, CSF glucose, CSF total
protein.
Abbreviations: CI – confidence interval, CRP – C-reactive protein, CSF –
cerebrospinal fluid, EVD – external ventricular drain, OR – Odd’s ratio.
doi:10.1371/journal.pone.0022846.t002
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analyses were done using SPSSH 17 (SPSS Inc, Chicago IL) and R

version 2.11.1 (www.r-project.org).

Results

A total of 691 drains were placed in 537 patients. DRM

occurred in 82 patients (15.3%), or 13.5 infections per 1000

drainage days at risk. The most common causative micro-

organisms were coagulase-negative staphylococci (33.8%), fol-

lowed by Staphylococcus aureus (14.6%) and enterobacteriacaea

(13.4%). Seventeen infections were culture negative (20.7%).

Baseline characteristics are described in table 1. Median age of

the included patients was 58.5 years, half (n = 263) received a CSF

drainage system to treat secondary hydrocephalus following

subarachnoid hemorrhage, intraventricular hemorrhage or (cere-

bellar) infarction and almost 60% (n = 312) of patients were

admitted to the ICU during part of their stay. Patients were

admitted for a median of 21 days (including readmissions within

30 days).

Based on the results of the univariate analysis, the following

variables were selected for multivariate analysis: indication for

drain placement, duration of admission, number of drains placed,

total drainage duration, duration of ICU admission, CRP, blood

leukocytes, CSF leukocytes, CSF glucose, CSF protein, culture

result (CSF and/or drain), total number of antibiotics started

during admission, and whether empiric antibiotic therapy for

drain-related meningitis was initiated.

Table 2 shows the predictors retained in the model and their

associated p-values. Despite its high p-value (p = 0.230), the linear

CRP term was kept in the model in order to allow the significant

high-power terms to be included. The prediction rule can be used

to calculate the probability of meningitis for each patient

(figure 2). Discriminatory power of the model as determined by

the area under the ROC curve was 0.970 (95% CI: 0.954–0.986).

Calibration of the final model was good (figure 3).

A cut-off in predicted probability of 0.107 resulted in 98.8%

sensitivity, specificity of 87.9% and positive and negative

predictive values of respectively 59.6% and 99.8% (table 3).

The only missed infection was an infection with a coagulase-

negative staphylococcus for which no antibiotics were started

during admission and of which the patient recovered spontane-

ously. Selecting a cut-off probability of 0.175 missed three

additional infections (sensitivity 95.1%), but only slightly improved

specificity (91.0%) and positive predictive value (65.5%).

If a definite diagnosis is necessary at the patient level, application

of the model reduced the number of charts to review manually to

25.3% (from 537 to 136 charts) while still identifying 98.8% of

infections (81 out of 82). When interested in infection rates at the

group level, the summed predicted probabilities reflect total

infection percentages with good concordance (figure 4) and thus

allow for surveillance without the need for manual confirmation.

Discussion

The results of this study show that information stored in clinical

data warehouses can successfully be used to predict rates of DRM

in patients receiving an external ventricular or lumbar drain. The

combination of drain characteristics, microbiology and clinical

chemistry results and antibiotic use achieved 98.8% sensitivity and

87.5% specificity in detecting drain-related meningitis when

applying a predicted probability cut-off of 0.107. Negative and

positive predictive values were 99.8% and 56.9% respectively.

Performing chart review only for those patients identified by the

model to have DRM would reduce the number of manual chart

reviews by 74.7%. Monitoring of longitudinal infection rates at the

Table 3. Two-by-two contingency table for predicted probability (P(DRM)) in relation to drain-related meningitis.

DRM Sensitivity Specificity PPV NPV

Predicted probability Yes No Total (%) (%) (%) (%)

P(DRM).0.107 81 55 136 98.8 87.9 59.6 99.8

P(DRM)#0.107 1 400 401 (93.4–99.9) (84.6–90.8) (50.8–67.9) (98.6–99.9)

P(DRM).0.175 78 41 119 95.1 91.0 66.5 99.0

P(DRM)#0.175 4 414 418 (88.0–98.7) (88.0–93.5) (56.3–74.0) (97.6–99.7)

Total 82 455 537

Two-by-two contingency table for predicted probability cut-offs 0.107 and 0.175 in determining the presence of drain-related meningitis with associated sensitivity,
specificity, positive and negative predictive values and 95% confidence intervals.
Abbreviations: NPV – negative predictive value, PPV – positive predictive value, P(DRM): predicted probability of drain-related meningitis.
doi:10.1371/journal.pone.0022846.t003

Figure 3. Calibration plot of the model predicting drain-related
meningitis. The diagonal dashed line represents ideal prediction by
the model, the pointed line predicted probabilities. Calibration, or the
concordance between predicted and observed probability of infection,
is adequate.
doi:10.1371/journal.pone.0022846.g003
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group level, however, can be performed without manual

confirmation, thereby providing an efficient surveillance tool.

This study can be viewed as proof-of-concept for use of regression

model-based systems to perform surveillance of nosocomial

infections at the group level.

As opposed to most detection models described previously, the

model presented here uses data from a multitude of sources in a

multivariable model, and case-finding is based on the weighted

combination of predictors from each source. As opposed to

classification algorithms with case-finding based on broadly

selected indicators, this weighted combination of predictors leads

to high sensitivity for both culture-positive and culture-negative

infections while maintaining acceptable positive predictive value.

To the best of our knowledge, this is the first model also

incorporating results of clinical chemistry and hematology analysis

as predictors of healthcare-associated infections.

In comparison to conventional manual surveillance, this model

reduces the time needed to perform surveillance, is less prone to

error and less vulnerable to inter-rater variation. Furthermore,

calculation of summed predicted probabilities for the at-risk

population is an efficient surveillance tool to monitor changes in

infection rates and determine when to perform in-depth analysis.

Several studies have shown that although automated models using

simplified and objective criteria may not always correctly predict

absolute infection rates, such models may achieve reliable ranking

of hospitals and accentuate differences between hospitals

[12,27,28].

The large patient population included in this study allowed for

the application of statistical methods as opposed to classification

algorithms. Although the rule-of-thumb of ten events per predictor

was violated, this does not necessarily lead to unreliable results

[29]. Furthermore, the selected reference standard, the CDC/

NHSN definition of healthcare-associated meningitis, has been

measured consistently over time for purposes other than this

research. Several other definitions of DRM have been used in

literature [22,30–32], however they mostly require positive culture

results and therefore have low sensitivity for culture-negative

infections which occurred in twenty percent of cases in this

population. Even though the CDC/NHSN definition is only

partially applicable to neurosurgical patients who are comatose or

sedated, the other definitions of DRM will also face this problem

as many require the presence of clinical symptoms to confirm the

diagnosis. Although it can be argued that healthcare-associated

meningitis is a different clinical entity than meningitis secondary to

cerebrospinal fluid drainage, the selected reference standard has

been measured consistently and reliably over the six-year period

and contains many similarities to other definitions proposed for

drain-related meningitis. Imputation of missing values was used to

prevent the introduction of bias in deriving the model. Since it is

not possible to impute missing values for individual patients, a

probability of infection can not be computed for future patients

with missing data. Out of the patients with an infection, only one

had missing data for one predictor (CSF leukocyte count), thereby

making underestimation of infection rates unlikely. Furthermore,

predictors were only included if commonly determined in clinical

practice. For this reason, parameters that have been described

previously such as CSF lactate levels [33,34], CSF cytokine levels

[23,35], and procalcitonin levels [36,37] were not considered for

inclusion. The calculation of the cell-index was considered as a

tool to correct for blood-contaminated CSF [38]; however, since

this measure could not be calculated in 65.3% of patients due to

missing data, it was not included in the analyses. Finally, this

model does not investigate infections occurring after discharge

unless the patient is readmitted. However, contrary to surgical site

infections, post-discharge surveillance is not as relevant since

patients often remain in the hospital for a number of days after

removal of the drain and it is customary for patients to return to

their primary hospital when complications occur. These patients

are then re-included in surveillance if readmission occurs within 30

days of discharge.

In summary, the model developed can accurately quantify rates

of drain-related meningitis using multi-source data. The proposed

model was developed using only retrospective data and although

measures have been taken to prevent excessive optimism,

prospective validation both within our centre and on a larger

scale is necessary to assure applicability to other patient

populations. This multivariable model-based approach can be

applied to other types of nosocomial infections in the future. Also

the development of methods to determine device utilization rates

using data available through electronic healthcare records will

further improve efficiency and reliability of surveillance.
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Figure 4. Comparison of observed and predicted overall yearly infection rates. Observed and predicted infection rates at the patient level
(panel A) and expressed per 1000 drainage days at risk (panel B), including 95% confidence intervals. Predicted yearly infection rates are determined
by the summed predicted probabilities and show good concordance with observed rates.
doi:10.1371/journal.pone.0022846.g004
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