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A quantitative method to 
decompose SWE differences 
between regional climate models 
and reanalysis datasets
Yun Xu *, Andrew Jones  & Alan Rhoades   

The simulation of snow water equivalent (SWE) remains difficult for regional climate models. 
Accurate SWE simulation depends on complex interacting climate processes such as the intensity and 
distribution of precipitation, rain-snow partitioning, and radiative fluxes. To identify the driving forces 
behind SWE difference between model and reanalysis datasets, and guide model improvement, we 
design a framework to quantitatively decompose the SWE difference contributed from precipitation 
distribution and magnitude, ablation, temperature and topography biases in regional climate models. 
We apply this framework within the California Sierra Nevada to four regional climate models from 
the North American Coordinated Regional Downscaling Experiment (NA-CORDEX) run at three 
spatial resolutions. Models generally predict less SWE compared to Landsat-Era Sierra Nevada Snow 
Reanalysis (SNSR) dataset. Unresolved topography associated with model resolution contribute to 
dry and warm biases in models. Refining resolution from 0.44° to 0.11° improves SWE simulation 
by 35%. To varying degrees across models, additional difference arises from spatial and elevational 
distribution of precipitation, cold biases revealed by topographic correction, uncertainties in the rain-
snow partitioning threshold, and high ablation biases. This work reveals both positive and negative 
contributions to snow bias in climate models and provides guidance for future model development to 
enhance SWE simulation.

Snowpack is a key component of the Earth’s climate. It affects the earth’s energy balance through high albedo and 
low heat conductivity, and in the mountains acts as a natural reservoir to store water in winter and slowly release 
meltwater in summer. More than one-sixth of the world’s population relies on seasonal snow for water1. Rising air 
temperatures reduce snowfall and enhance snow melt in spring and summer, resulting in a decline in the volume 
and duration of mountain snowpack, earlier peak snow mass timing, and therefore a deficit of summer water sup-
ply1–3. Observations have revealed a declining mountain snowpack in the western US over the last half-century 
due to climate warming4–6. The depletion of snowpack increases fire potential7, alters natural ecosystem8, and 
affects the Earth’s energy budget9.

Numerical models offer promise to predict future changes in snowpack and to inform the interactions 
between snowpack and other climate components. The accurate simulation of seasonal snow dynamics in moun-
tainous regions requires that models correctly represent a number of interacting processes including storm track 
location, landfall and timing, orographic uplift of storms and accurate dispersal of precipitation over the moun-
tain. Moreover, radiation, temperature and moisture fluxes at the snow surface must be accurate to ensure that the 
residence time of snowpack is correct. Therefore, snow simulations can serve as a crucial litmus test for climate 
model performance since their accuracy requires so many processes to be represented with fidelity. However, the 
evaluation of snowpack in regional climate models has not received as much attention as other variables such as 
temperature, precipitation, and radiation.

Climate model evaluations related to snow have often focused on total precipitation with no rain-snow dis-
tinction, or on snow cover for which accurate measurements exist for evaluation10,11. The snow water equivalent 
(SWE), the measure of water volume contained within the snowpack, has received less attention in part because 
of the lack of reliable observational datasets for comparison with models. In-situ observations suffer from large 
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uncertainties from interpolation when comparing with gridded model outputs, and re-analysis or remote sens-
ing datasets highly disagree from one another12. A few studies that managed to evaluate SWE simulations have 
discovered significant SWE bias in climate models13–15. The poor performance of SWE simulations highlights the 
need to investigate the cause of SWE bias to assist model development.

The complex drivers of snow dynamics mean that biases could cancel one another out and mask the true 
drivers of model uncertainty. Quantitative methods for decomposing the drivers of snowpack simulation perfor-
mance are needed to disentangle interacting biases and identify critical areas for model improvement. However 
current studies on SWE simulation diagnosis are mostly limited to empirical qualitative estimates14,16 or sen-
sitivity experiments confined within standalone land surface models17. Traditional quantitative estimation of 
uncertainty contribution is to run sensitivity experiments repeatedly, which is not computationally affordable for 
complex regional climate models especially when there are multiple potential causal variables to test.

Here we develop a framework to quantitatively diagnose which factors and processes contribute to the differ-
ent estimates of SWE between reanalysis and regional climate models. We decompose the difference associated 
with temperature, precipitation, and ablation dynamics through the cascade of atmosphere-land processes. We 
apply this framework to decompose SWE difference from reanalysis in North American Coordinated Regional 
Downscaling Experiment (NA-CORDEX) simulations18, which provide a rich dataset to examine given that it 
contains multiple regional climate models (RCMs) at multiple resolutions. We focus on the California Sierra 
Nevada where the Landsat-Era Sierra Nevada Snow Reanalysis (SNSR) dataset19 provides highly accurate and 
high resolution SWE data for reference, with a particular focus on 10 watershed regions (Fig. 1) that directly feed 
into 10 major reservoirs of the State15,20. Since the observation-based datasets used as reference quantities are 
themselves imperfect descriptions of reality, we further quantify the uncertainty in our quantitative decomposi-
tion framework that results from published uncertainty estimates for the reference datasets.

Results
As shown in Fig. 2, the annual cycle of SWE is shaped by snow accumulation (A) and snow ablation (M). Snow 
ablation is shaped by both snow melt and sublimation. Snow accumulation is the amount of snowfall (S) that 
depends on precipitation (P) and temperature (T): P that occurs below a rain-snow threshold temperature (Th) is 
snow. The interplay between precipitation and temperature are influenced by many factors such as the model’s 
parameterizations, topography, and model resolution. To investigate these factors, P is further decomposed into 
its mean (P ) and the distribution ( ′P ), and T is further partitioned into topography-related (T ) and the 
topography-corrected ( ″T ) components. Topography-related T  is computed by taking the reference T and modi-
fying it to include model topography misrepresentation, and topography-corrected ″T  is calculated by correcting 
modeled T using the reference topography. These climate variables are compared between reference datasets and 
nine reanalysis driven NA-CORDEX simulations including four RCMs running at three spatial resolutions of 
0.44°, 0.22° and 0.11°. The four RCMs are: Canadian Centre for Climate Modelling and Analysis Regional Climate 
Model21 (CanRCM4), the fifth-generation of the Canadian Regional Climate Model version 522–24 (CRCM5), 
Regional Climate Model version 425 (RegCM4), and Weather Research and Forecasting model (WRF)26. Metrics 
are designed to quantitatively decompose the total model-reanalysis difference (ε) in representing peak SWE to 

Figure 1.  Map of the study area in the western United States. The colored map shows the topography elevation 
from a digital elevation model (DEM) from the Global 30 Arc-Second Elevation (GTOPO30)57. The 10 
California headwater regions that are evaluated in this study are outlined in blue. The red line that transects the 
Sierra Nevada mountain range is used to compare the reference and model results in Supplementary Fig. S1.
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the relative contribution from each of the causal variables. The SWE difference contributed from a causal variable, 
denoted as εX with X standing for any of the causal variables mentioned above, is calculated as the percentage 
change in peak SWE when X is changed from the reference to model values. Uncertainties in reference T, P, SWE 
and rain-snow partitioning influence how certain we are about εX, as such we add 95% confidence intervals to 
each value in Fig. 3 to evaluate if the contribution from each causal variable is significantly different from 0.

Figure 4 compared the climatological mean of P, T, S and SWE over 20 water years spanning October 1989 to 
September 2009, averaged over the 10 watershed regions. Most models, except RegCM4–22, underestimate the 
peak SWE value, SWE. Because the climatological peak SWE date occurs around March 1st in both the reference 
and simulation datasets, we use March 1st as the nominal peak SWE date for all datasets, and therefore SWE is the 
SWE on March 1st hereafter. Reference SWE is 190 ± 6 mm (Supplementary Table S1). RegCM4–22 overestimates 
SWE by + 33%, and all other models underestimate SWE by −87% to −38%, with 1–5% uncertainty due to the 
reference SWE. The percentage bias in SWE defines the model total bias in SWE (ε), and the values are shown in 
Fig. 3. Running at the same spatial resolution, RegCM4 predicts the highest values of SWE, CanRCM4 predicts 
the lowest, and CRCM5 and WRF show similar values in between. All four RCMs predict higher SWE values with 
finer spatial resolution. Compared to the reference dataset a systemically shorter snow season duration and 
abrupt snow melt is found across all RCMs which is corroborated and discussed in more detail in previous 
studies15,20.

The cumulative S from October 1st to March 1st (Ŝ) is 294 mm in the reference dataset (Fig. 4b). The simulation 
of S contains large bias, and the percentage bias in Ŝ equals the accumulation induced SWE difference (εA) as 
derived in the Methods section. Even though large uncertainties exist, we find overestimation of Ŝ in RegCM4 and 
underestimation in other models (Fig. 3). Underestimation is most significant in CanRCM4, followed by CRCM5 
and then WRF. In agreement with SWE, predicted S increases with finer model resolution.

The ablation rate (M), defined as the percentage of Ŝ lost before March 1st, is 35% in the reference data with 
±22% uncertainty resulted from the uncertainties in SWE and in S (Supplementary Table S1). CanRCM4, 
RegCM4 and WRF significantly overestimate snow ablation, which results in underestimation of S (Fig. 3, row 
εM). CRCM5 performs better than other models with insignificant overestimation of ablation. In general, simu-
lated ablation improves with finer model resolution.

All of the models are able to represent the seasonal variation of T (Fig. 4c), but tend to underestimate winter T 
by −2.7 to −0.2 °C and overestimate summer T by + 0.5 to + 3.4 °C (Fig. 4e). Models run at finer resolution tend 
to generate lower T. Across all models, the RegCM4 model produces the highest bias in both winter and summer 
T compared to other models. Uncertainties in reference T27 lead to large uncertainties when evaluating the T 
induced SWE difference (εT). Nevertheless, we find the cold bias in winter T in RegCM4 led to an insignificant 
overestimation of SWE by 18% to 32%, whereas in other models εT of −10% to 19% is found (Fig. 3). The model 
bias in topography leads to a warm bias (Supplementary Fig. S1) and therefore the underestimation of SWE by 
−20% to −3% in all resolutions (Fig. 3, row ε

T). The ε
T  decreases with increased refinement of model resolution 

as topography is better represented. All models run at the same resolution have similar values of ε
T , indicating the 

accuracy of topography is highly related to model resolution. After correction for topography, ″T  contributes to 
an overestimation of SWE by 6% to 33% (Fig. 3, row ε

″T ). The value of ε
″T  is insensitive to the change of resolu-

tion, but varies between models.
The simulation of P is similar in character to S (Fig. 4d). The reference dataset suggests that cumulative P from 

October 1st to March 1st is 636 mm. RegCM4–22 overestimates this value by 34%, and all other simulations under-
estimate the value by up to −42%. Simulated P increases with resolution. High resolution simulations by CRCM5 
and WRF converge cumulative P to the reference. The cumulative P is the spatial average of the surveyed regions, 

Figure 2.  Climate variables that impact snow water equivalent (SWE). SWE is determined by the amount of 
snowfall, or accumulation, and the amount of snow melt and sublimation, or ablation. Snowfall results from 
non-linear combination of temperature (T) and precipitation (P). These non-linear interactions can be further 
partitioned into mean P (P̄) plus the distribution ( ′P ) and the topographic influence on T (~T ) and the residual 
topography corrected ( ′′T ).
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and the difference in cumulative P equals the P  induced SWE difference as shown in Fig. 3, row εP . To calculate 
the total SWE difference introduced by P (εP), we find an overestimation of SWE in RegCM4–22, and significant 
underestimation in other models except WRF-22 and RegCM4–44 (Fig. 3, row εp). After correction for mean P, 
the residual ′P  still contributes to significant underestimation of SWE, except in WRF simulations (Fig. 3, row ε ′p ).

The spatial distribution of the multi-year mean P illustrates how simulated ′P  leads to SWE underestimation 
(Fig. 5). The ′P  represents the spatial and temporal distribution of P, but because the temporal pattern of ′P  shows 
no obvious trend in winter months (Fig. 4 f ), ′P  mainly indicates the spatial distribution of P. Most of the 
NA-CORDEX models either underestimate P at high-elevation or overestimate it at mid-elevation or both. The 
accuracy of P is improved at high resolution (except RegCM4), but a common tendency for models to simulate a 
dry bias at the mountain crest and wet bias at mid-elevation remains even in the highest resolution simulation 
(e.g., CRCM5–11). Moving some P from the relatively colder mountain crest to relatively warm mid-elevation did 
not favor the formation of S which results in less SWE accumulation.

RegCM4 assumes precipitation occurs below a rain-snow threshold temperature (Th) of 2.2 °C is all snow, and 
other models assume Th is 0 °C. To better account for observed rain-snow partitioning in the Sierra Nevada, the 
reference data is assumed to have a linear change of snow percentage from 0–3 °C28,29. The difference in Th intro-
duces an additional −27% underestimation in SWE in CRCM5, CanRCM4 and WRF, and 13% overestimation in 
SWE in RegCM4 (Fig. 3, row εTh).

Discussion
We have shown that all the surveyed numerical models show large SWE difference from reference dataset in 
the California Sierra Nevada. While all the models overestimate snow ablation, different models perform dif-
ferently in simulating snow accumulation processes. RegCM4 displays a wetter and colder climate compared to 
other models, and allows snow formation in a warmer atmosphere, and therefore predicts much more snowfall 
than other models. CanRCM4 shows the biggest dry bias compared to other models. CRCM5 performs better 
than CanRCM4 in all aspects including precipitation, temperature and ablation. Mean precipitation in CRCM5 
converges to the reference at 0.11° resolution. The lowest ablation difference from reference is found in CRCM5, 
potentially due to the improved treatment of snow processes in the land surface model (LSM) such as improved 
treatment of snow albedo, liquid water retention and vertical temperature gradient30,31. WRF outperforms other 

Figure 3.  Quantitative decomposition of the model-reference difference in climatological March 1 SWE 
across reanalysis driven RCM simulations from NA-CORDEX. Colour bars indicate the percentage bias in 
SWE contributed from each source, and the ticks indicate 95% confidence intervals associated with each of 
the estimated percentage biases. The vertical thickness of each bar reflects its order within the hierarchy of 
quantitative decomposition, with successive layers of decomposition corresponding to thinner bars. Simulations 
are named in the format of RCM-resolution. The four RCMs include CRCM5, CanRCM4, RegCM4 and WRF. 
Resolution labeled as 44, 22 and 11 means horizontal grid spacing of 0.44°, 0.22° and 0.11°.
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models in snow accumulation processes, especially the mean and spatial distribution of precipitation, but not 
on snow ablation, likely due to known biases in the Noah LSM14,32–34. Though there have been many studies to 
evaluate temperature and precipitation simulations over North America35,36, our work reveals more details in 
California’s mountain regions with particular interest in the climate processes related to snowpack formation.

With increasing spatial resolution, the models show a wetter and colder state. Low spatial resolution is unable 
to resolve complex topography in the California Sierra Nevada, and the mountain elevation could be up to 1 km 
too low, corresponding to a 5 °C warm bias at particular locations as shown in Supplementary Fig. S1. The lower 
mountains also limit the condensation of water vapor and therefore the amount of precipitation. Conversely, 
increasing resolution resolves more small-scale features and further increases precipitation37,38. As a result, 
increasing model resolution from 0.44° to 0.11° improves the simulated SWE by 35% through the improvement 
of mean precipitation and topography-related temperature.

However, our analysis reveals that significant biases remain even at high resolution. Many studies have found 
that precipitation does not converge with high resolution39–41. Our analysis also shows that increasing spatial 
resolution from 0.44° to 0.11° brings the temperature induced model-reanalysis SWE difference from negative to 
positive rather than converging to the reference. By decomposing the temperature, we find a topography-related 
warm bias that does converge toward zero with higher resolution (Fig. 3, row “From Topo-T”). This in turn 
reveals an underlying cold bias that is unrelated to resolution (Fig. 3, row “From residual-T”). The temperature 

Figure 4.  Climatological mean of (a) SWE, (b) cumulative snowfall (Cum. S), (c) daily mean temperature (T), 
(d) cumulative precipitation (Cum. P), (e) bias of daily mean T (T bias) and (f) bias of daily P (P bias) averaged 
over 10 headwater regions for both NA-CORDEX simulations and reference datasets (REF). T bias is the 
absolute difference in °C between model and reference, while P bias is the percentage difference. Cumulative P 
(S) are defined as the cumulative sum of daily P (S) from October 1st.
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induced SWE bias contains large uncertainties due to the uncertainty in the reference T (see Supplementary Note 
for details). However, if the reference T is cold biased as discovered in the leeward side of Sierra Nevada27, this 
further demonstrates the cold bias in ″T  and the resultant overestimation of SWE. This analysis demonstrates the 
value of our decomposition framework for assessing how positive and negative biases can mask one another and 
lead to false positives in model skill.

Cold bias in ″T  is consistent in all the models. This seems to be related to the model’s underestimation of win-
ter temperature. Although the colder winters simulated by the models increase the probability that S can occur, it 
appears that the large ablation biases led to the underestimation of SWE and was further enhanced by a warmer 
spring and summer leading to abrupt snow melt and a shortened snow season15. The seasonal temperature biases 
in the regional climate models can be introduced by the input boundary conditions from the reanalysis dataset. 
However, the same seasonality of temperature bias is also found in the RCMs forced by different boundary con-
ditions from global climate models (Supplementary Fig. S2) and in many other LSMs with various atmospheric 
forcings13. Other possible reasons for the seasonality of temperature bias could be the regional climate model’s 
inherent structural and/or parameter bias or more specifically biases associated with the snow albedo feedback. 
For example, Noah LSM assumes 100% snow cover when SWE exceeds a certain threshold, which would result in 
overestimated snow cover and hence cold bias in winter42; using average albedo in each grid cell leads to lower 
snow surface albedo when snow cover is less than 100%, and hence extra absorption of insolation and warm bias 
in spring13.

We have shown that even after correcting for the mean precipitation, there is still an underestimation of SWE 
in CRCM5, CanRCM4 and RegCM4 models, resulting from the biased spatial distribution of precipitation. In 
particular, precipitation at cold mountain tops is underestimated in favor of relatively warm mid-elevation. One 
possible mechanism for the biased precipitation distribution is the microphysics scheme41. The models may not 
represent horizontal transport of rain droplets and/or snowflakes with wind appropriately, which can produce too 
much precipitation at particular elevation bands. Another possible explanation could be the hydrostatic assump-
tion in the models, which limits development of convection over mountain regions43. Supporting this explanation 
is the fact that the sole non-hydrostatic model we considered (WRF) has a P-distribution induced 
model-reanalysis SWE difference (ε ′p ) that is one order of magnitude smaller than other models. However, there 

Figure 5.  The model bias in multi-year mean winter cumulative precipitation (mm) from October 1st to March 
1st compared with reference. Root-mean-square of the model-reference difference in each simulation is labeled 
σ in each subplot. Topography is shown by gray contours with 500 m interval. The boundary of the 10 headwater 
regions are shown by black outlines.
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are many other differences in the model configuration between WRF and the other models in NA-CORDEX 
project, so we cannot eliminate other possible causes for the biased precipitation distribution.

Jennings et al.44 suggest a highly variable rain-snow partitioning over the Northern Hemisphere dependent 
on humidity, topography and climate type. Rain-snow thresholds in most LSMs are solely temperature based, 
yet humidity is an important factor in maintaining snow from the cloud to the surface. This is explained by 
the hydrometeor energy balance theory where low ambient relative humidity promotes evaporative cooling via 
exchanges in latent heat which enables snowflakes to remain frozen in above freezing environments. Our refer-
ence rain-snow partitioning schema assumes a linear change in snowfall percentage between 0°C and 3°C, based 
on observations made in the Sierra Nevada28,29, and therefore might not be applicable to other regions. However, 
the simplified rain-snow threshold across models led to a significant bias in SWE for the Sierra Nevada and 
should be noted for model simulations in the future.

Our results reveal large bias in modeled snow ablation, which is consistent with an earlier study15 that also 
revealed significant overestimation of snow ablation in spring and summer. Even though the cold bias in winter 
tends to underestimate snow ablation, the overestimation of snow ablation could result from many factors45, such 
as overestimated downwelling longwave and shortwave irradiance46,47, overestimated downward sensible and 
latent heat flux resulting in high snow sublimation48, biased snow-albedo decay, liquid water refreeze schema, 
the selection of area snow depletion thresholds30,33, misrepresentation of wind redistribution and turbulent mix-
ing above the snowpack49 and/or the uncertainty in rain-snow partitioning44. To investigate the potential causal 
mechanisms of ablation biases in the context of the present study would require an examination of the simulated 
surface energy balance across models but these variables are unavailable from NA-CORDEX.

Conclusions
In this paper, we present a new method to quantitatively decompose simulated snowpack biases into contribut-
ing sources from upstream processes and phenomena. We apply this method to an ensemble of NA-CORDEX 
regional climate model simulations in the California Sierra Nevada and reveal that many of these models largely 
underestimate California SWE due to a combination of model-reference differences in snow accumulation and 
ablation, uncertainties in precipitation phase, and unresolved topography. In some cases, positive and nega-
tive contributions to SWE biases mask one another. Our method reveals the contribution from each individual 
source to model-reanalysis SWE difference, and uncovers compensating contributions that would otherwise not 
be apparent. In this way, the analysis identifies major sources of model-reanalysis difference that need to be 
improved in order to more accurately represent SWE dynamics. We note that our decomposition of SWE dif-
ference between climate models and reference datasets is only as good as our reference datasets used. Therefore, 
this decomposition framework could be periodically used in future studies as more accurate observational and/
or reanalysis datasets are made available.

Methods
Decomposing SWE difference between model and reference datasets.  In this paper, we design a 
framework to quantitatively decompose the model total bias in representing peak SWE to the contribution from 
each of the causal variables as shown in Fig. 2. Total bias in the modeled peak SWE value (ε) is defined as the 
percentage difference compared with reference:

ε =
−

= −
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1
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where SWE stands for the peak SWE value on March 1st, the nominal peak SWE date. Subscript “cdx” and “ref ” 
indicate variables from NA-CORDEX simulations and reference datasets respectively.

The contribution from a certain climate variable X to the bias in SWE (εX) is calculated as percentage change 
from reference SWE if variable Xref is substituted by Xcdx and all other variables remain the same:
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where SWEXcdx
 is the SWE calculated using variable X from the NA-CORDEX simulation and all other variables 

from the reference datasets. Below we give specific examples.
We first decompose model-reanalysis difference in SWE (ε) into accumulation induced εA and ablation 

induced εM difference. Because snow ablation data was unavailable from NA-CORDEX simulations, we cannot 
directly compare snow ablation between the reference and NA-CORDEX. Instead, we define the ablation rate M 
as the percentage of S that is lost before peak SWE date (March 1st):

= −  ˆM SWE S1 / (3)

where Ŝ is the cumulative S from October 1st to March 1st. The above equation can be rewritten as a function of 
SWE:

= −
ˆSWE S M(1 ) (4)

SWE difference contributed from snow accumulation equals percentage difference in cumulative S:
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By substituting Eqs. (4–6) into Eq. (1), we can rewrite ε as a function of εA and εM:
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We then decompose εA by P, T, and Th. The contribution of P to SWE difference (εP) is
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where ŜPcdx
 is the Ŝ calculated using P from NA-CORDEX, and all other variables (e.g., T) from the reference. 

Similarly, T contribution to SWE difference εT is
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We further derive the SWE difference from P , ′P , T  and ″T  in a similar way using the equation:

ε = −
ˆ

ˆ
S

S
1

(11)
X

X

ref

cdx

where X could be P , ′P , T  and ″T . While P  is the mean P, ′P  is the distribution, or P corrected for the mean 
value. Therefore ŜPcdx

 is calculated using Pref scaled by P P/cdx ref , by which we keep the ′P  as in reference, but P  as in 
NA-CORDEX. ′ŜP cdx

 is calculated using Pcdf scaled by P P/ref cdx to keep ′P  as in NA-CORDEX and P  as in reference. 
To derive the SWE difference contributed from topography-related T  and topography-corrected ″T , we calculate 


ŜTcdx
 using Tref but modified to the NA-CORDEX topography and lapse rate, so that the only difference between 



ŜTcdx
 and Ŝref  is the temperature difference resultant from the misrepresentation of topography in the model. Ŝ

”
is 

calculated using Tcdx but corrected to the reference topography using the same lapse rate. The lapse rate in the 
windward side of the Sierra Nevada has been shown to vary between 3.5 and 5.0 °C/km50. We use the mean value 
4.3 °C/km in our calculation, but consider corresponding uncertainties.

Data.  We examine nine NA-CORDEX simulations driven by atmospheric reanalysis data from the European 
Centre for Medium‐range Weather Forecasts (ECMWF) known as ERA-interim. These simulations were car-
ried out by four RCMs: CanRCM4, CRCM5, RegCM4 and WRF. The models were run over a North American 
domain at three different spatial resolutions of 0.44°, 0.22° and 0.11°. CanRCM4 and CRCM5 assume hydro-
static equilibrium and use the Canadian land surface scheme version 2.7 and 3.5 (CLASS 2.7 and CLASS 3.5)51,52 
respectively as the Land Surface Model (LSM). RegCM4 also assumes hydrostatic equilibrium and uses the 
Biosphere-Atmosphere Transfer Scheme (BATS)53 as LSM. WRF implements non-hydrostatic dynamics and uses 
Noah LSM54. S in these models is determined by the rain-snow threshold temperature (Th), which is 2.2 °C in 
RegCM4 and 0 °C in the other models. Further details of the RCM characteristics can be found at NA-CORDEX 
website18.

We download daily variables of SWE, T, P and topography from NA-CORDEX simulations, and calculate S 
from T, P and Th. These variables should be compared with ground truth in order to derive model bias contribu-
tion from various sources using our decomposition method. However, there is no ground truth available for the 
comparison. In-situ observations represent the status of certain points, while model variables represent the mean 
status of each grid cell. Remote sensing data suffers from satellite retrieval uncertainty, re-analysis data contains 
model bias, and gridded data based on in-situ data has uncertainty from interpolation. In this paper, we try to 
select reference datasets to best represent the ground truth, but also acknowledge the associated uncertainties.

The Landsat-Era Sierra Nevada Snow Reanalysis (SNSR) dataset19 is chosen as the reference SWE dataset. 
The SNSR dataset covers the California Sierra Nevada from year 1985 to present day at daily temporal frequency 
and 0.001° spatial resolution. SNSR uses the Simplified Simple Biosphere model to produce a prior estimate of 
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SWE and then updates that prior using Landsat satellite snow cover estimates and a Bayesian geospatial statistical 
model. We chose to use SNSR because it is spatially continuous, observationally constrained, available at daily 
temporal resolution, and compared well to in-situ observations, with a mean uncertainty less than 3 cm compared 
with snow pillows and snow course.

The Parameter-elevation Relationships on Independent Slopes Model (PRISM) dataset55,56 is chosen as the 
reference T and P dataset. PRISM uses 10,000 + meteorological station observations to statistically interpolate 
to a 4-km resolution grid of the continental US (and a proprietary 800-m grid). Therefore, PRISM uses no phys-
ical models in its geospatial interpolation, instead it relies on geospatial statistical relationships between station 
derived climate variables and geospatial information such as atmospheric vertical layer location, coastal proxim-
ity, elevation, geographic location, orographic effectiveness, and topographic orientation. We use PRISM daily 
total P and daily mean T at 4 km resolution for our study. The daily mean T in PRISM is calculated from the aver-
age of the daily maximum and minimum T. To ensure consistency between model and reference, we also derive 
NA-CORDEX daily mean T using the average of maximum and minimum T.

Observational campaigns in the Sierra Nevada have shown that snowfall can occur between 0 and 3 °C28,29, 
with 90% of precipitation falling as snow at 0 °C, 50% at 1.5 °C, and 10% at 3 °C. Therefore, we derive reference S 
from PRISM daily P and T and assume that 100% of precipitation falls as snowfall below −0.375 °C with a linear 
increase in rainfall of 10% every + 0.375 °C up to 3.375 °C where 100% of precipitation falls as rainfall. We use the 
digital elevation model (DEM) data from Global 30 Arc-Second Elevation (GTOPO30)57 developed by the U.S. 
Geological Survey’s Center for Earth Resources Observation and Science as the reference topography, which is 
used to derive the elevation-modified T.

All reference data are first coarsened to 0.125° resolution, and then variables from model and reference are 
interpolated to a common 0.125°×0.125° grid. The model-reference comparison and the decomposition of the 
difference focus on 10 watershed regions in the California Sierra Nevada (Fig. 1) over 20 water years spanning 
OCT 1989 to SEP 2009.

Uncertainties in quantitative decomposition.  The uncertainties contained in the reference datasets 
and in our method lead to uncertainties in the resultant quantitative decomposition of SWE difference between 
model and reference datasets. We quantify reference data uncertainties using documented confidence intervals 
derived from the literature on each reference dataset. We propagate these uncertainties through the quantitative 
decomposition framework to provide the confidence intervals on each decomposed contribution found in Fig. 3. 
See the Supplementary Information for a detailed discussion of these uncertainties.

Data availability
The datasets analyzed during the current study are publicly available at their source repositories or via the 
Department of Energy National Energy Research Scientific Computing Center at http://portal.nersc.gov/archive/
home/a/arhoades/Shared/www/XU_2019.
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