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Novel myeloma patient-derived
xenograft models unveil
the potency of anlotinib
to overcome bortezomib
resistance
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Multiple myeloma (MM) remains a common hematologic malignancy with a

10-year survival rate below 50%, which is largely due to disease relapse and

resistance. The lack of a simple and practical approach to establish myeloma

patient-derived xenograft (PDX) hampers translational myeloma research.

Here, we successfully developed myeloma PDXs by subcutaneous

inoculation of primary mononuclear cells from MM patients following series

tumor tissue transplantations. Newly established myeloma PDXs retained

essential cellular features of MM and recapitulated their original drug

sensitivities as seen in the clinic. Notably, anlotinib therapy significantly

suppressed the growth of myeloma PDXs even in bortezomib-resistant

model. Anlotinib treatments polarized tumor-associated macrophages from

an M2- to an M1-like phenotype, decreased tumor vascular function, and

accelerated cell apoptosis in myeloma PDXs. Our preclinical work not only

unveiled the potency of anlotinib to overcome bortezomib resistance, but also

provided a more practical way to establish MM PDX to facilitate

myeloma research.
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tumor-associated macrophages
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Introduction

Multiple myeloma (MM) is a plasma cell malignancy of the

hematopoietic system (1). The advents of novel treatments have

changed the management of myeloma and extended overall

survival (2–7). Again, chimeric antigen receptor T-cell (CAR-

T) therapy is recently emerging as a promising treatment option

for relapsed and resistant MM (7). However, MM is still

accompanied by repeated relapse and resistance with a 10-year

survival rate below 50% (8, 9). Therefore, new strategies to

overcome myeloma recurrence and resistance remain

much anticipated.

Patient-derived xenografts (PDXs) have appeared as an

important platform to develop new treatment strategies and to

identify new biomarkers in oncology. Primary myeloma cells

from the majority of patients do not propagate in severe

combined immunodeficiency (SCID) mice. Previous studies

revealed that mobilized blood mononuclear cells or CD34-

enriched cells from patients with advanced disease could

develop myeloma in irradiated nonobese diabetic/SCID (NOD/

SCID) mice by intracardiac injection (10–12). The intracardiac

injection in mice is technically difficult, which limits its wide

applications. Subsequently, another study developed an in vivo

system for primary human myeloma by rabbit bone

implantation (13). Although this model can mimic typical

manifestations of clinical myeloma, this modeling process is

very complicated and expensive. Nowadays, PDXs of MM are

mainly established by intravenous or intra-osseous injection

with primary myeloma cells (10, 13–15), but the success rates

are very low. Thus, simple and practical approaches to develop

myeloma PDX are urgently needed to conduct translational and

mechanistic studies of MM.

MM is initiated in the bone marrow (BM) microenvironment

and increased angiogenesis facilitates MM progression. Important

proangiogenic factors, produced by BM stromal cells and plasma

cells, stimulate angiogenesis (16, 17). An enhanced vascular

formation has been considered as an essential feature of MM

(18). Therefore, antiangiogenic therapy targeting these

proangiogenic signaling pathways could be used to control MM.

Anlotinib is a novel multi-targeted receptor tyrosine kinase

inhibitor that targets vascular endothelial growth factor receptor

(VEGFR) 1-3, c-Kit, platelet-derived growth factor receptor

(PDGFR)-a/b, and fibroblast growth factor receptor (FGFR) 1-4.

Moreover, anlotinib exhibits anti-MM activity in NCI-H929

myeloma cell line-derived xenografts (19). Hence, we aimed to

test the efficacy of anlotinib in myeloma PDXs.

In this study, we developed a simple and feasible way to

establish myeloma PDX and successfully set up four myeloma

PDXs, one of which was bortezomib-resistant. The

morphological, phenotypic and drug-sensitive characteristics

of bortezomib-resistant myeloma PDX recapitulated the

properties of the MM patient. Furthermore, our data showed
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that anlotinib treatments significantly inhibited tumor growth of

bortezomib-resistant myeloma and induced cell apoptosis.

Anlotinib treatments reduced tumor vascular function,

increased tumor-associated macrophages (TAMs), and

polarized M2- to M1-like phenotype in MM PDXs. These

results suggest that subcutaneous myeloma PDX could be a

feasible and practical strategy to explore novel therapies for MM,

and anlotinib is a promising therapy for relapsed and

resistant MM.
Methods

Cell line and patient samples

Human MM cell line MM.1S was obtained from the

American Type Culture Collection (Manassas, VA, USA).

Cells were cultured in RPMI 1640 medium supplemented with

100 IU ml-1 penicillin, 100 mg ml-1 streptomycin, and 10% fetal

bovine serum (Hyclone) at 37°C in 5% CO2 atmosphere in a

humidified chamber. BM cells and pleural effusion cells from

MM patients were collected after written informed consent and

the institutional ethics committee approval by The Third

Affiliated Hospital of Soochow University. According to the

International Myeloma Working Group, diagnosis and relapse

of MM were defined (20, 21). A total of fifteen patient BM

samples were used in this study. Nine of them were newly

diagnosed with MM, while six patients were relapsed. Another

one extramedullary myeloma pleural effusion sample came from

one patient with relapsed and resistant MM. Mononuclear cells

(MNCs) were isolated from BM and pleural effusion samples

using Ficoll-Hypaque (Sigma-Aldrich).
Patient-derived xenograft models

NOD.CB17-Prkdcscid Il2rgtm1/Bcgen (B-NDG) female mice

(6-weeks old) were purchased from BIOCYTOGEN (Beijing,

China). All animal experiments were approved by the Animal

Research Committee of The Third Affiliated Hospital of

Soochow University. Mice were kept in the specific pathogen-

free gnotobiotic animal facility at Soochow University. MM.1S

cells (2 × 106 cells) or MNCs (≥2 × 106 cells, according to sample

size) from MM patients were mixed with 50% Matrigel (BD

Biosciences) and then inoculated subcutaneously into the flanks

of NDG mice. Four PDXs were established, one of them is

bortezomib-resistant. Table S1 showed the characteristics of the

four patients. Tumor fragments from PDXs were transplanted

into other NDG mice in less than six generations. When tumors

reached 6-8 mm in diameter, tumor tissues were isolated and

prepared for single-cell suspension, hematoxylin-eosin (HE) and

immunohistochemical (IHC) analysis . In treatment
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experiments, when tumor diameter reached 4-6 mm, mice were

randomly assigned to treatment or control groups. In the

treatment groups, mice were administered with different doses

of anlotinib orally daily, 0.5 mg/kg bortezomib intraperitoneally

twice a week, 25 mg/kg lenalidomide orally five times a week or 1

mg/kg dexamethasone intraperitoneally daily for about two

weeks. The sizes of tumors were measured every 3 days, and

the tumor volume was estimated by the formula [(long axis) ×

(short axis)2/2]. When mice were euthanized, tumor tissues were

isolated, weighed and prepared for flow cytometric analysis and

tissue vessel analysis. Meanwhile, the colon tissues were also

isolated and prepared for tissue vessel analysis.

Anlotinib, bortezomib, lenalidomide, and dexamethasone

were gifts from Jiangsu Chia-Tai Tianqing Pharmaceutical Co,

Ltd (Nanjing, China). Anlotinib, lenalidomide, and

dexamethasone were dissolved with double distilled water

(ddH2O), 0.5% methyl cellulose, and phosphate-buffered saline

(PBS), respectively. Bortezomib was firstly dissolved in Dimethyl

Sulfoxide (Sigma-Aldrich), then the stock solution of

bortezomib was diluted by ddH2O.
HE and IHC staining

The isolated tumors were fixed and prepared to perform HE

and IHC analysis. After antigen retrieval, IHC staining was

conducted using primary antibodies [mouse anti-human

CD138 (MAB-0200, MI15), mouse anti-human CD38 (MAB-

0755, MX044), mouse anti-human Ki-67 (MAB-0672, MX006)]

from MXB Biotechnologies (Fuzhou, China), and the secondary

antibody goat anti-mouse IgG with an alkaline phosphatase-

linker antibody conjugate system (SAP-9100) from Beijing

Zhong Shan Golden Bridge Biological Technology (Beijing,

China). Two investigators independently evaluated HE and

IHC staining.
Single-cell suspension preparation

The isolated tumor tissues were minced and digested at 37°C

for 45 min with cell detach solution. The digested mixtures were

ground and filtered with 70-mm cell strainers. The whole process

of single-cell preparation was carried out under sterile

conditions. The culture conditions of single-cell were the same

as that of MM.1S. CD138+ myeloma cells were enriched from

the single-cell suspension of PDXs by Human CD138

MicroBeads (Miltenyi Biotech).
Flow cytometric analysis

Single-cell suspension was prepared in cold flow buffer (1%

bovine serum albumin, 0.1% NaN3 in PBS). Samples were
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examined by a Gallios flow cytometer (Beckman) and data

were analyzed with Kaluza software (version1.3). Anti-mouse

monoclonal antibodies [CD45-BV421 (103134, 30-F11), CD45-

PE (12-0451-83, 30-F11), CD11b-BV510 (101263, M1/70), Ly-

6G-FITC (551460, 1A8), Gr1-APC-Cy7(47-5931-82, RB6-8C5),

F4/80-PE (12-4801-82, BM8), CD11c-PE-Cy7 (25-0114-82,

N418), CD206-APC (141708, C068C2), CD86-FITC (11-0862-

81, GL-1)] and anti-human monoclonal antibodies [CD138-

BV421 (562935, MI15), CD38-PE-Cy7 (25-0389-41, HIT2),

kappa-FITC (643773, TB28-2), and lambda-PE (642919, 1-

155-2)] were used.
Cell viability assay

Myeloma cells were seeded in 96-well plates and treated with

anlotinib at the indicated concentrations. According to the

manufacturer’s instructions, cell viability was assessed by a

Cell Counting Kit-8 (CCK-8, Beyotime Biotechnology). Cell

viability was calculated by [cell viability rate (%) =

(administration group value - negative control group value)/

(non-administration group value – Negative control group

value) × 100%].
Western blotting

Cells were harvested, washed, and lysed for total protein

extraction. Equal quantities of protein extract were injected into

sodium dodecyl sulfate–polyacrylamide gel and transferred to

polyvinylidene difluoride (PVDF) membranes. After blocking

with 5% non-fat milk, the membranes were incubated with

primary antibodies overnight at 4°C, followed by incubation with

alkaline phosphatase-conjugated secondary IgG antibody. The

bands were incubated with a DAB kit and analyzed with an

imaging system. Antibodies against b-actin (#AC026) and c-Myc

(#A19032) were purchased from ABclonal (Wuhan, China).
Tumor vessel perfusion analysis

Tumor blood vessel analysis was performed as previously

described (22–24). Briefly, 5 minutes after intravenous injection

of Hoechst 33342 (Ho33342, 10 mg/kg in 200 ml PBS, Sigma-

Aldrich), tumor tissues were isolated and prepared to incubate

with the primary antibody (anti-CD31, 550274, MEC13.3, BD

Biosciences) at 4°C and the secondary antibody (Alexa Fluor 647

goat anti-Armenian Hamster, 127–605-160, Jackson

ImmunoResearch) at room temperature for 2 h. Cell nuclei

staining (Sytox Green, S7020, Molecular Probes) was applied to

counterstain the slides. Fluorescent images of tumors were

collected using an Olympus FV3000 confocal laser-scanning

microscope. A 20× objective collected 640 × 640 mm tiles, and an
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automated stage scanned through the entire cross section of

tumor tissue. The imaged tiles were stitched into a final mosaic

image by an Olympus FV3000 software. Five photographic

areas, excluding the tumor periphery, were randomly taken

from every tumor tissue (640 × 640 mm2). Mean fluorescence

intensity (MFI) of CD31 positivity and Ho33342 stained areas

were quantified by Image-Pro Plus software (version 6.0). The

vascular function of colon tissues was analyzed as the above.
Cell cycle by flow cytometry and
TUNEL staining

For cell cycle distribution, single-cell suspension was

incubated with DNA Staining solution and permeabilization

solution (MultiSciences) for 30 min at room temperature, and

then examined through flow cytometry. Tumor tissue slices were

permeabilized with 0.5% Triton X-100 and incubated with

TUNEL detection solution (Beyotime Biotechnology) for

60 min and then DAPI for 5 min at 37°C. Five photographic

areas of every slice were randomly taken by an Olympus FV3000

confocal laser-scanning microscope. The MFI of TUNEL

positivity was calculated by Image-Pro Plus software

(version 6.0).
Statistics

Statistical analysis was conducted using Prism software

(version 7, GraphPad). The quantitative data are presented as

the mean ± standard deviation (SD). The differences between

two groups were analyzed using two-tailed Student’s t-test. The

half-maximal inhibitory concentration (IC50) was calculated

using the dose-response curve using SPSS version 23 software

(IBM Corporation, Chicago). P<0.05 was considered as

statistically significant.
Results

The morphological and phenotypic
features of tumor cells from
myeloma PDX

MM is a hematologic malignancy with a high risk of

resistance and relapse. Currently, myeloma PDX is generally

developed in immunodeficient mice using rabbit bone graft, and

then primary myeloma cells were injected into rabbit bone cavity

(13). The procedure is complicated and difficult with a low

success rate (25). To explore a more practical approach to

develop myeloma PDX, we subcutaneously inoculated MNCs

from BM or pleural effusion of MM patients into NDG mice.

When primarily inoculated tumors grew to 6-8 mm in diameter,
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tumor tissues were removed and cut into small pieces. The small

tumor tissue pieces were subcutaneously transplanted into new

NDG mice. After 3-4 times of transplantations, MM PDX

tumors grew at a steady rate and can be used for the following

experiments (Figure 1A).

To characterize the features of newly established myeloma PDX,

we collected tumor tissues from one PDX and obtained single-cell

suspension to perform Giemsa, HE, and IHC staining. The Giemsa

and HE staining showed that most tumor cells from this PDX had a

malformed plasma cell morphology with eccentric nuclei,

amphophilic cytoplasm and a perinuclear halo of clearer cytoplasm,

which were comparable with those ofMM.1S, a commonly usedMM

cell line (Figures 1B, C). MM cells from patients commonly express

CD138, CD38, and restrictively express light chains of kappa or

lambda (26). Thus, we carried out IHC staining to analyze the

expression of CD138, CD38, and Ki-67 in the PDX and MM.1S

tumors. MM.1S cells positively expressed CD138 and CD38 and

about 90% of them were Ki-67+ (Figure 1C). Similarly, tumor cells

from the myeloma PDX expressed both CD138 and CD38 and 70%

of them were Ki-67+ (Figure 1C). Therefore, the PDX exhibited the

phenotype of CD138+ malignant plasma cells. To confirm the

phenotypic characteristics, we performed flow cytometric analysis

of MM.1S cells and tumor cells from the PDX. Most of MM.1S cells

expressed CD138 andCD38, and themajority of tumor cells from the

PDX were also CD138+ CD38+ (Figure 1D). As to the light chains,

tumor cells from the myeloma PDX restrictively expressed lambda

without the expression of kappa (Figure 1D). Collectively, the

phenotypic features of tumor cells from the PDX were

CD138+CD38+lambda+kappa-. Therefore, tumor cells from our

established PDX possess the essential morphological and

phenotypic features of MM cells.
The proliferation characteristics of
myeloma PDX

To characterize the proliferation features of our myeloma

PDX, we recorded the time it took for the tumor to grow from

the inoculation to the diameter of 6-8 mm. The latency period of

tumor growth in our myeloma PDX in the generation 0 was

significantly longer than that of MM.1S (Figure 2A). The growth

rate of the MM PDX gradually increased from the generation 0

to 3, which usually reached a steady growth rate after three

generations (Figure 2A). We also analyzed the cell cycle of

myeloma cells. The results showed that there were more PDX

tumor cells in the G0/G1 phase while fewer in the G2/M phase

than that of MM.1S cells (Figure 2B). It is well known that

oncogene c-Myc has a critical role in the pathophysiology of

MM, which promotes the cell cycle progression and cell growth

(27–29). So, we examined the levels of c-Myc protein in MM.1S

and PDX tumor cells, and the result showed that PDX tumor

cells expressed a lower level of c-Myc protein compared with

MM.1S cells (Figure 2C). The data suggest that tumor cells from
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the PDX are more quiescent and less proliferative than

MM.1S cells.
Myeloma PDXs preserve their original
drug sensitivities as seen in the clinic

To test whether the PDXs could recapitulate their drug

response features as seen in the clinic, we randomly selected one
Frontiers in Oncology 05
PDX, named PDX1, to verify its therapeutic sensitivity to VRD

(bortezomib + lenalidomide + dexamethasone) regimen, the first-

line therapy of MM. PDX1 was derived from a newly diagnosed

patient (No. 1) who achieved complete remission after four-cycle

treatment of VRD (Table S1). We treated PDX1 with the VRD

regimen, and the data showed that VRD therapy significantly

inhibited the tumor growth of PDX1 (Figures 3A, B). Then we

chose another myeloma PDX, named PDX2, which was derived

from a MM patient resistant to bortezomib therapy in the clinic
A B

D

C

FIGURE 1

Morphological and phenotypic features of tumor cells from newly established myeloma PDX. MM.1S cells and mononuclear cells isolated from BM and
pleural effusion samples of MM patient were inoculated subcutaneously in NDG mice. When tumors reached 6-8 mm in diameter, tumors were
removed and prepared for HE staining, IHC staining, and single-cell suspensions. (A) Representative image of myeloma MM.1S and PDX models. (B) The
morphology of tumor cells from myeloma MM.1S and PDX models by Giemsa staining. Scale bar: 5 mm. (C) Representative IHC stainings of tumor
tissues. Scale bar: 100 mm. (D) The single-cell suspensions were analyzed by flow cytometry. The doublet or aggregated events were gated out
according to side scatter area (SSC-A) and side scatter width (SSC-W). 7-AAD staining was used to gate out dead cells. The expression levels of CD138,
CD38, kappa, and lambda were analyzed in mouse CD45- cells. Myeloma cell line MM.1S was used as a positive myeloma cell control. The left panels of
flow charts were isotype controls. PDX, patient-derived xenograft; HE, hematoxylin-eosin; IHC, immunohistochemical.
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(Table S1). Bortezomib was intraperitoneally administered with a

dose of 0.5 mg/kg twice a week in our PDX2 according to previous

studies (30, 31). After 5 doses of bortezomib treatments, there was

no significant difference of the tumor growth of PDX2 betweent

bortezomib and vehicle control group (Figures 3A, C). The data

suggest that PDX2 retains its original drug resistance. The similar

drug sensitivity between the patients and their derived PDXs

suggests the feasibility to use these established PDX models to

conduct translational myeloma research.
Anlotinib treatments suppress tumor
growth of myeloma PDXs and induce
cell apoptosis even in the bortezomib-
resistant model

Previous studies of our research team have reported the anti-

MM activity of anlotinib in vitro and in vivo (19), thus we would
Frontiers in Oncology 06
like to assess the efficacy of anlotinib therapy in our newly

established MM PDXs. Firstly, we treated PDX1 and PDX2

tumor cells with different concentrations of anlotinib (0-20 mM)

in vitro. Anlotinib induced dose- and time-dependent

cytotoxicity in PDX1 and MM.1S tumor cells with IC50 values

of 2.49 and 2.12 mM at 48 h, while in PDX2 tumor cells, anlotinib

only exerted slight dose-dependent cytotoxicity at 48 h with a

higher IC50 value 39.95 mM (Figure 4A). Therefore, PDX1

tumor cells are much more sensitive than bortezomib-resistant

PDX2 tumor cells to anlotinib treatments in vitro.

Considering the differential cytotoxicities of anlotinib in

PDX1 and PDX2 tumor cells in vitro, we next evaluated the in

vivo effects of anlotinib treatments in PDX1 and PDX2. Firstly,

we detected the dose effects of anlotinib treatments in MM.1S

myeloma. The MM.1S tumor-bearing NDG mice were treated

with 1.5, 3.0, or 6.0 mg/kg anlotinib for four doses (Figure S1A).

Anlotinib treatments at 3.0 mg/kg and 6.0 mg/kg showed similar

tumor growth inhibition (Figure S1B). Thus, we chose 3.0 mg/kg
A

B

C

FIGURE 2

Myeloma PDX tumors grew slower than MM.1S-derived tumors. The first generation of myeloma PDX was established in NDG mice as described
in Figure 1. When the PDX tumor reached 6-8 mm in diameter, tumor tissues were removed and tumor fragments were transplanted to new
NDG mice. The single-cell suspension for cell cycle analysis was acquired from removed tumors. MM.1S cells (2×106 cells) were inoculated
subcutaneously into the flank of NDG mice. (A) The time (days) from the inoculation to tumor diameter reaching 6-8 mm in MM.1S and PDX
myeloma mouse models. (B) Cell cycle of MM.1S cells and tumor cells from myeloma PDX was analyzed by flow cytometry. (C) MM.1S and PDX
whole cell lysates were subjected to western blotting using antibodies against c-Myc and b-actin. PDX: patient-derived xenograft. Significance
was determined by unpaired two-tailed Student’s t-test. Each experiment was performed in triplicate and repeated at least three times. All data
were presented as means ± SD. NS, no significance, *P < 0.05, **P < 0.01.
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as the treatment dosage of anlotinib. After exposed to either 3.0

mg/kg anlotinib or vehicle control for 12 or15 days in PDX1 or

PDX2, respectively, the rates of tumor growth inhibition (TGI)

upon anlotinib treatments were 77.78% in PDX1and 55.39% in

PDX2 (Figures 4B, C). These data show that anlotinib exhibits

potent anti-MM activity even in bortezomib-resistant PDX

in vivo.

Furthermore, we analyzed the influence of anlotinib

treatments on cell apoptosis in MM PDXs. The TUNEL

stainings showed that the amount of apoptotic cells was

significantly increased in anlotinib-treated PDX tumors

compared with vehicle control groups (Figures 4D, E).

Moreover, the anlotinib group had 8.56 times as many

apoptotic cells as the control group in PDX1, while it was only

3.20 times in PDX2 (Figures 4D, E).
Anlotinib treatments suppress tumor
angiogenesis in myeloma PDXs

As a novel multi-targeted receptor tyrosine kinase inhibitor

that inhibits pro-angiogenic signaling pathways, the anti-tumor
Frontiers in Oncology 07
effects of anlotinib in solid tumors are largely attributed to the

suppression of tumor angiogenesis (32–35). To determine the

effect of anlotinib treatments on myeloma angiogenesis, we

evaluated tumor vessel density and tumor vessel perfusion in

myeloma PDXs. In the PDX1 and PDX2 models, both tumor

blood vessel density and perfusion were decreased in the

anlotinib-treated group compared with the vehicle control

group, suggesting that anlotinib treatments suppressed tumor

vascular function (Figures 5A, B). Considering the high

heterogeneity of tumor microenvironment (TME) and the

uneven distribution of tumor blood vessels (36, 37), we next

took the whole images of the cross-sections of tumor tissues in

the PDX2 model. Consistent with the previous results, tumor

vascular function of myeloma PDX2 was also significantly

decreased after anlotinib treatments (Figure 5C). To determine

whether anlotinib treatment influences the vascular function of

normal tissues, we examined blood vessels in colon tissues and

found that vascular function in colon tissues was not affected by

anlotinib treatments (Figure S2). These results demonstrated

that anlotinib treatments suppressed tumor angiogenesis

without the effect on normal tissue vascular function in

myeloma PDXs.
A

B C

FIGURE 3

Newly established myeloma PDXs retained their original drug sensitivity and resistance as seen in the clinic. (A) Experimental design: NDG mice
were subcutaneously implanted with tumor pieces (1-2 mm3) of PDXs on the flank. When tumors reached 4-6 mm in diameter, mice were
randomly divided into two groups. PDX1 models were treated with the VRD regimen or vehicle control. VRD regimen therapy: tumor-bearing
mice (n=4-5 every group) received bortezomib (0.5 mg/kg) intraperitoneally every Monday and Thursday, lenalidomide (25 mg/kg) by
intragastric administration every Monday to Friday, and dexamethasone (1 mg/kg) intraperitoneally every day for twelve days, and control group
was intragastrically administrated with 0.5% methyl cellulose and phosphate-buffered saline (PBS) intraperitoneally. PDX2 models were treated
with bortezomib or vehicle control. Bortezomib therapy: tumor-bearing mice (n=3-4 every group) received bortezomib (0.5 mg/kg)
intraperitoneally every Monday and Thursday for a total of 5 doses, and the control group was treated with PBS. (B, C) Tumor size was
measured every 3 days, and tumor weight was measured at the end of the treatment. Ctr, the control group; VRD, VRD treatment group; BTZ,
bortezomib treatment group; PDX, patient-derived xenograft; NS, no statistically significance. Data were from one experiment representative of
two independent experiments with similar results. Data were shown as mean ± SD. Significance was determined by unpaired two-tailed
Student’s t-test. NS, no significance, *P < 0.05.
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Anlotinib treatments in myeloma PDXs
increase the proportion of tumor-
associated macrophages and
polarize TAMs from an M2- to an
M1-like phenotype

Tumor angiogenesis and tumor immunity are two hallmarks

of TME. Moreover, the immune-vascular crosstalk in TME plays a
Frontiers in Oncology 08
critical role for tumor angiogenesis (38). To investigate how

anlotinib treatments exert the anti-agiogenesis effect, we

analyzed the impacts of anlotinib on the tumor immunity of

PDXs. The flow cytometric analysis showed that anlotinib

t r e a tmen t s i n c r e a s ed th e p ropo r t i on s o f TAMs

(CD45+CD11b+Gr1- F4/80+) compared with that of control

groups in both PDX1 and PDX2 models (Figures 6A, B). TAMs

are very plastic with a continuum of phenotypes, of which M1-
A

B

D E

C

FIGURE 4

Anlotinib therapy significantly suppressed the growth of myeloma PDXs and induce cell apoptosis even in the bortezomib-resistant model. (A) Single-
cell suspensions of tumor tissues from PDX1 and PDX2 were prepared. CD138+ myeloma cells were purified from the single-cell suspension of PDXs by
Human CD138 MicroBeads. MM.1S and CD138+ myeloma cells from PDX1 and PDX2 were treated with anlotinib (0-20 mM) for 48 h, and the cell
viability was analyzed by CCK8 assays. Each experiment was performed in triplicate. The IC50 was calculated based on the dose-response curve using
SPSS version 23 software. (B) Experimental design: NDG mice were subcutaneously implanted with tumor pieces (1-2 mm3) of PDXs on the flank. When
tumors reached 4-6 mm in diameter, mice were randomly divided into two groups.The anlotinib group (n=5-6 every group) was administered
intragastrically with anlotinib (3 mg/kg) daily for 12 or 15 days, and the control group was treated with double distilled H2O (dd H2O). (C) Tumor size was
measured every 3 days, and tumor weight was measured at the end of the treatment. (D) Tumors were isolated and stained with TUNEL and DAPI.
Representative images showed apoptotic cells. Scale bar: 100 mm. The TUNEL positivity (green) indicated apoptotic cells. (E) Quantification of TUNEL-
positive cells. PDX, patient-derived xenograft; Ctr, control group; Anlo, anlotinib treatment group; MFI, mean fluorescence intensity. Data were shown as
mean ± SD. Significance was determined by unpaired two-tailed Student’s t-test. *P < 0.05, **P < 0.01.
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and M2-like TAMs represent two extreme phenotypes exhibiting

antitumoral or protumoral effects, respectively. CD11c and

CD206 are markers commonly used to identify M1- vs. M2-like

TAMs (39, 40). Further analysis of the subpopulations of TAMs

showed that the rates of M1-like (CD45+CD11b+Gr1-F4/

80+CD11c+CD206-) TAMs were elevated while the rates of M2-

like (CD45+CD11b+Gr1-F4/80+CD11c-CD206+) TAMs were

reduced in anlotinib-treated groups, compared with vehicle

control groups in both PDX1 and PDX2 models (Figure 6B).
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CD86 is another acknowledged maker of M1-like TAMs (41, 42),

we further confirmed the rise of M1-like TAMs and the decline of

M2-like TAMs by CD86 after anlotinib treatments in PDX1 and

PDX2 (Figures 6C, D). Therefore, these data show that anlotinib

treatments promote the accumulation of antitumoral M1-like

TAMs in MM PDXs. Altogether, our data suggest that anlotinib

treatments inhibit tumor angiogenesis, facilitate the polarization

of TAMs from an M2- to an M1-like phenotype, and induce cell

apoptosis to inhibit the growth of myeloma PDXs (Figure 7).
A B

C

FIGURE 5

Anlotinib therapy suppressed tumor angiogenesis in MM PDXs. Tumor-bearing NDG mice were prepared and treated as described in Figure 4.
Mice were intravenously injected with 200 mg Ho33342 five minutes before tumor harvest. Tumor tissues were sectioned and stained with anti-
CD31 antibody. (A) Representative images indicated tumor vessel density (red) and tumor vessel perfusion (blue) in myeloma PDX1 and PDX2.
Scale bar: 100 mm. (B) Quantification of tumor vessel density and tumor vessel perfusion. (C) Representative images of whole tumor tissues
showed CD31 staining and Ho33342 perfusion in PDX2. Scale bar: 1000 mm. PDX, patient-derived xenograft; Ctr, control group; Anlo, anlotinib
treatment group; MFI, mean fluorescence intensity; CD31, an endothelial cell marker. Sytox green (green): cell nuclei. The intensity of Ho33342
perfusion reflects tumor vascular function. Data were from one experiment representative of two independent experiments with similar results.
Data were shown as mean ± SD. Significance was determined by unpaired two-tailed Student’s t-test. **P < 0.01.
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Discussion

Currently, MM remains an incurable malignant disease with

a high risk of relapse and resistance. To explore novel

therapeutic strategies to overcome drug resistance and

improve the efficacy of myeloma treatments, we established a

novel and more practical myeloma PDX, including bortezomib-

resistant PDX. Our newly established MM PDXs not only

preserved the essential cellular features of MM cells, but also

recapitulated their original drug sensitivities as seen in the clinic.

By using these MM PDX models, we found that anlotinib

treatments significantly suppressed the growth of MM in both

newly diagnosed and bortezomib-resistant PDXs. Anlotinib

could facilitate the polarization of TAMs from an M2- to an

M1-like phenotype, inhibit tumor angiogenesis, and promote

cell apoptosis in PDX tumors. These findings suggest that

anlotinib is a promising drug to treat MM and may overcome

bortezomib resistance. This study also suggests that
Frontiers in Oncology 10
subcutaneous myeloma cell inoculation following series

transplantation in NDG mice is a feasible and practical way to

develop myeloma PDX for myeloma study.

In this study, we successfully established myeloma PDXs

through subcutaneous inoculation of primary mononuclear cells

from MM patients in NDG mice. These primary mononuclear

cells took a couple of months to adjust to the subcutaneous

microenvironment and then started to grow stably in NDGmice.

But not all primary mononuclear cells from MM patients are

able to develop tumors by subcutaneous inoculation in NDG

mice. Three of our PDXs are from BM samples, and another one

is from the pleural effusion sample of relapsed and resistant MM

patient. Extramedullary plasmacytoma in MM patients is

generally developed at the relapse and refractory stage, which

become more aggressive and independent of the BM

microenvironment, infiltrate other organs or circulate in the

peripheral blood (43). Thus, the capability of myeloma cells to

grow outside of the BM microenvironment possibly indicates
A B

D

C

FIGURE 6

Anlotinib treatments promoted the polarization of tumor associated macrophages (TAMs) from an M2- to an M1-like phenotype in myeloma PDXs.
Tumor-bearing NDG mice were prepared and treated with anlotinib or vehicle control as described in Figure 4. Tumors at the end of treatments were
excised and the single cell suspensions were prepared for flow cytometry. The aggregated events and dead cells were gated out. (A, B) Representative
images and the quantification of tumor-associated macrophages (TAMs) in myeloma PDX1 and PDX2. (C, D) Representative images and the
quantification of TAM subsets in myeloma PDX1 and PDX2. TAMs: CD45+CD11b+Gr1-F4/80+, CD11c+CD206-: CD45+CD11b+Gr1-F4/80+CD11c+CD206-,
CD11c-CD206+: CD45+CD11b+Gr1-F4/80+CD11c-CD206+, CD86+CD206-: CD45+CD11b+Gr1-F4/80+CD86+CD206-, CD86-CD206+:
CD45+CD11b+Gr1-F4/80+CD86-CD206+. PDXs, patient-derived xenografts; Ctr, control group; Anlo, anlotinib treatment group. Significance was
determined by unpaired two-tailed Student’s t-test. Data were from one experiment representative of two independent experiments with similar results.
All data were presented as means ± SD. * P < 0.05, ** P < 0.01.
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their aggressiveness. Lourdes Farre et al. reported a patient-

derived orthotopic xenograft generated from an extramedullary

myeloma patient with a cutaneous lesion by subcutaneously

implanting tumor tissue (44). From this perspective,

subcutaneous myeloma PDX might allow more aggressive

myeloma clones to grow up, paving a new avenue to

investigate the mechanisms underlying the drug-resistance and

explore novel treatment regimens.

Tumor cells from our myeloma PDX expressed CD138 and

CD38 with a mature plasma-like morphology and atypic nucleus.

Importantly, light chain lambda was restrictively expressed on most

tumor cells, which suggested that these tumor cells probably

originated from the same clonogenic population. The cell

proliferative activity of our myeloma PDX was relatively poorer

than that of MM.1S cells, which might because that MM.1S cells

have been cultured on plastic over decades and obtained a

reproductive advantage. However, these tumor cells from PDXs

have distinctive advantages compared to immortalized myeloma

cell lines. Owing to that immortalized cell lines are limited in

number and diversity, they cannot imitate the complexity of human

tumors and only provide explicit insights into human disease (45).

Tumor PDXs can more closely reproduce patient tumor behavior

and maintain clonal diversity than other models based on the

injection of cell lines (46). Recent studies have reported that

zebrafish is an available model to establish MM PDX, which

permits rapid growth of human MM cells and can be used to

investigate the cytotoxicity of compounds (47–49). However, the

MM PDX zebrafish model is not suitable for studying tumor blood

vessels. Although our myeloma PDX model didn’t completely

mimic typical myeloma manifestations, such as osteolysis,

hypercalcemia, anemia and renal function damage, it retained

primary drug sensitivity as seen in the clinic and is suitable to

study tumor blood vessels. What’s more, our PDXs can be passaged
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and amplified by a series of tumor tissue transplantations. Hence,

subcutaneous myeloma PDX can be an important preclinical PDX

model to explore new therapeutic strategies.

Our study discovered that PDX1 and bortezomib-resistant

PDX2 tumors in different states show distinct sensitivity to

anlotinib therapy. In vitro, PDX1 tumor cells could be

markedly suppressed by anlotinib. The directly cytotoxic

mechanism of anlotinib on MM deserves further study. Cao Y

et al. found that C-Myc as a direct target contributes to the anti-

MM effect of anlotinib (19). Gangyang Wang et al. found that

anlotinib suppresses the phosphorylation of MET and the

downstream signaling pathway activation in osteosarcoma

(34). While bortezomib-resistant PDX2 tumor cells only show

mild response to the direct cytotoxicity of anlotinib in vitro. The

difference in drug sensitivity may be due to the origin of PDX2

tumor cells, which is generated from a patient with relapsed,

resistant, and extramedullary MM.

Previous reseaches have found that anlotinib suppress the

growth of tumors by reducing tumor angiogenesis via targeting

VEGFR, PDGFR and FGFR related signaling pathways (32, 33).

Interestingly, our study demonstrates that anlotinib treatment

increases the percentages of TAMs and polarizes TAMs from an

M2- to an M1-like phenotype. M2-like macrophages express

more pro-angiogenic factors than the M1-like subset (50). In

addition, pro-angiogenic macrophages resemble an M2-like

phenotype in the tumor microenvironment (51–53). Hence,

anlotinib treatment may reduce tumor angiogenesis by TAM

polarization in myeloma, the underlying mechanism needs to be

further studied.

Anlotinib therapy may exert anti-MM activities via direct

cytotoxicity and/or suppressing tumor angiogenesis. In vitro,

anlotinib exhibits direct cytotoxicity against tumor cells. Whereas

in vivo, anlotinib could exert anti-MM effect through direct
FIGURE 7

A model diagram of anlotinib therapy in MM. Anlotinib may exert anti-MM effects by inhibiting tumor angiogenesis and polarizing TAMs from an
M2-like to an M1-like phenotype to induce cell apoptosis.
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cytotoxicity and anti-angiogenesis. Considering the differential

responses of resistant PDX2 tumors in vitro and in vivo, the

growth of PDX2 tumors could be suppressed mainly by the anti-

angiogenesis activity of anlotinib. Indeed, the apoptosis rate of

anlotinib in PDX1 is higher than that in PDX2. It indicates that in

PDX1, the apoptosis might result from the direct cytotoxic and anti-

angiogenesis effect of anlotinib, while in resistant PDX2, the

apoptosis merely result from anti-angiogenesis effect. Therefore,

when myeloma cells are in the BM microenvironment or have

infiltrated other organs, we speculate that anlotinib could suppress

myeloma through direct cytotoxicity and anti-angiogenesis activity.

However, anlotinib could only exert direct cytotoxicity against

myeloma cells when they diffuse into the peripheral blood.

Therefore, the anti-MM efficacy of anlotinib may be stronger in

the BM and other organs than in the peripheral blood.
Conclusions

In summary, myeloma PDX can be successfully established

by subcutaneous inoculation in NDG mice following series

tumor tissue transplantations. Tumor cells from myeloma

PDX retain the essential cellular characteristics of MM and

preserve their original therapeutic sensitivities as seen in the

clinic. Strikingly, anlotinib therapy suppresses the growth of

resistant MM. Furthermore, anlotinib treatments suppress

tumor angiogenesis, promote the M1-polarization of TAMs,

and induce cell apoptosis in MM PDXs. Taken together,

subcutaneous myeloma PDX is a practical preclinical model to

explore novel therapies for MM, and anlotinib could be served as

a novel promising agent for relapsed and resistant MM.
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