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ABSTRACT

The budgerigar (Melopsittacus undulatus) is one of the most widely studied parrot
species, serving as an excellent animal model for behavior and neuroscience research.
Until recently, it was unknown how sexual differences in the behavior, physiol-
ogy, and development of organisms are regulated by differential gene expression.
MicroRNAs (miRNAs) are endogenous short non-coding RNA molecules that can
post-transcriptionally regulate gene expression and play a critical role in gonadal
differentiation as well as early development of animals. However, very little is known
about the role gonadal miRNAs play in the early development of birds. Research on
the sex-biased expression of miRNAs in avian gonads are limited, and little is known
about M. undulatus. In the current study, we sequenced two small non-coding RNA
libraries made from the gonads of adult male and female budgerigars using Illumina
paired-end sequencing technology. We obtained 254 known and 141 novel miRNAs,
and randomly validated five miRNAs. Of these, three miRNAs were differentially
expressed miRNAs and 18 miRNAs involved in sexual differentiation as determined
by functional analysis with GO annotation and KEGG pathway analysis. In conclusion,
this work is the first report of sex-biased miRNAs expression in the budgerigar, and
provides additional sequences to the avian miRNAome database which will foster
further functional genomic research.

Subjects Biochemistry, Bioinformatics, Genomics, Molecular Biology, Zoology
Keywords Gonads, Sex-biased, miRNA, Adult, Melopsittacus undulatus

INTRODUCTION

MicroRNAs (miRNAs) are all non-coding RNAs that play vital role in post-transcriptional
regulation of various animals and plants (Bartel, 2009). Almost thirty thousand entries

have been released in the latest miRBase database (v21) (Kozomara ¢ Griffiths-Jones, 2014)
where each miRNA can target hundreds of messenger RNAs (mRNAs) in diverse binding
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Table 1 Previous studies on the avian miRNAs.

No. miRNAs samples Reference

1 Identified 84 miRNAs in 0.5-5-day-old chicken embryos Darnell et al. (2006)

2 Discovered 449 new miRNAs in chicken embryos Glazov et al. (2008)

3 Detected 160 miRNAs (14 novel) in the embryonic chicken Hicks, Tembhurne & Liu (2008)

4 Found 663 miRNAs in breeder cock testes Wu et al. (2016)

5 Suggested that the MIR202* of chicken might play a critical Bannister et al. (2009)
role in regulating testicular development

6 Observed that miR-101, miR-31 and miR-202-5p of Cutting et al. (2012)
chicken had roles in testicular and ovarian development

7 Found 55 differentially expressed miRNAs between the Yu et al. (2013)
ovaries of laying and non-laying ducks

8 Detected 353 differentially expressed miRNAs between the Xuetal. (2014)
ovaries of laying and broody geese

9 Identified 93 differentially expressed miRNAs between the Kang et al. (2013)

ovaries of mature and immature chickens

sites, resulting in the enhancement or suppression of gene expression (Lin et al., 2005). The
importance of miRNA is evident from their evolutionary conservation and by the various
biological processes in which they are involved, including development and physiology
(Friedman ¢ Burge, 20145 Skalsky et al., 2014). Animal miRNA are involved in neuronal
cell fate, cell proliferation and differentiation, metabolism, aging, apoptosis and organ
morphogenesis, suggest that miRNAs are particularly critical in the development, health,
and aging of animals (Ameres & Zamore, 2013).

Sexual dimorphism is a universal trait among animals where morphological and
behavioral differences between genders play an important role in their sexual selection.
Gonads are the principal reproductive organs that are involved in sexual differentiation
wherein they are involved in the production of sex hormones and gametes. Although
sexual dimorphism is most visual in birds (example peacock and peahen, hummingbirds,
songbirds, paradise fly-catcher), the miRNAs involved in gender differentiation among
Psittaciformes are not known. Most recently, few miRNAs that are involved in gender
differentiation have been reported in many non-avian species, including human (A/i et al.,
2016), fruit flies (Marco, 2014), sheep (Torley et al., 2011), pigs (Mai et al., 2016), marine
bivalves (Rosani, Pallavicini ¢» Venier, 2016), Schistosoma mansoni (Marco et al., 2013) and
the yellow catfish (Jing et al., 2014). In birds, previous miRNA studies have mainly focused
on miRNAs that regulate germ cells in various stages of chicken embryo development
and breeder cock testes (Table 1). While the latest release (v21) of the miRBase database
contains a total of 1328 mature miRNAs in birds, these sequences are based exclusively on
domesticated poultry species and do not represent the vast diversity of Class Aves.

Parrots, comprising the parakeets, cockatiels, macaws and cockatoos, are members of
the Psittaciformes order. Currently, within the order Psittaciformes at least 397 species
are recognized across 94 genera (Gill & Donsker, 2017). This order is classified into four
families: Strigopidae (New Zealand parrots), Cacatuidae (Cockatoos), Psittacidae (African
& New world parrots), and Psittaculidae (Old world parrots). Parrots are generally
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recognized as the most remarkable intelligent animals along with corvids, chimps,
dolphins, and humans. The budgerigar (Melopsittacus undulatus) is a small parrot from
Australia and a popular domestic pet throughout the world (Del Hoyo et al., 2015). It

is also the most widely studied parrot species, frequently used as a model organism for
behavioral studies, feather pigmentation and neuroscience, specifically in the fields of
behavioral and neurosciences due to their easy availability, small size and easy breeding in
controlled conditions. Budgerigars were also well-fitted for genetic mapping experiments,
the polyketide synthase was abolished by the R644W substitution, which blocked the
synthesis of yellow pigmentation in the budgerigars (Cooke et al., 2017). Several studies
have shown that vocal learning in adult budgerigars is gender-biased. In males, right-sided
dominance of molecular neuronal activation was found in answer to mate calls in the
CMM male (Eda-Fujiwara et al., 2016), several studies found that vocal learning in adult
budgerigars is sex-biased (Striedter et al., 2003). These differences in learning have been
well documented at various developmental stages in males and females as well (Hoeschele
¢ Bowling, 2016). Nevertheless, the biological functions of gonadal miRNAs in budgerigars
are largely unknown and the sexual differential expression (DE) profile of gonadal miRNAs
in budgerigars has not been reported.

In the current study, miRNA expression profiles were collected in two groups of
budgerigars (male testes and female ovaries) using [llumina paired-end sequencing
technology. Based on the new data generated for M. undulatus and the existing information
from miRBase, we achieved the following goals: (1) identification of known miRNAs
and novel miRNAs in M. undulatus gonads; (2) nucleotide bias in these miRNAs; (3)
identification of those that are differentially expressed.

METHODS

Ethics statement
Animals in the current study were authorized by the Ethics Committee of Anhui Normal
University (Anhui, China) with authorization number #20150612.

Tissue collection, RNA preparation and sequencing

Six adult 1.5-year-old budgerigars (three males and three females) were obtained from
Wuhu (31°33'N, 118°37’E, southeast of China) in 2015. Total RNAs from six gonadal
samples were extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The quality
and integrity of the RN As were examined using an ND-8000 spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA) and a 2100-Bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA), which having a RNA integrity number >7.0 (Fig. S1). To reduce the
individual differences between samples, two RNA pools for deep sequencing were prepared
using equal amounts of the extracted RNA from three ovaries and three testes. The Truseq
Small RNA Sample Preparation Kit (Illumina, San Diego, CA, USA) was used to isolate small
RNA (sRNA) to construct a miRNA library according to manufacturer’s specifications. The
resulting cDNA products were sequenced by the Illumina Hiseq 2500 sequencer (Illumina
Inc, San Diego, CA, USA). The resulting sequence data have been submitted to the Short
Read Archive at NCBI and are available through accession SRR5664259 and SRR5664260.
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Analyses of sequencing data

The low-quality reads and adaptor contamination were identified by FastQC v0.11.5
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) using the PHRED
algorithm and removed using cutadapt v1.14 (Martin, 2011), resulting in fragments
corresponding to RNAs of 14-41 nt in length. Subsequently, analyses of the length
distribution and clustering of SRNA reads revealed the characteristics of the SRNAs. Next,
the resulting sSRNA sequences were aligned against expressed sequence tags (ESTs) stored in
NCBI (https://blast.ncbi.nlm.nih.gov), Rfam 11.0 (Burge et al., 2012), and RepBase (Jurka
et al., 2005). The aligned sequences were removed, and the small RNAs were annotated into
different categories, such as rRNA, tRNA, small nuclear RNA (snRNA), and small nucleolus
RNA (snoRNA), and reads mapped to those were removed as well. The Bowtie v1.2.1.1
(Langmead et al., 2009) and the SOAP2 (Li et al., 2009b) software were used, allowing for
< 1 mismatch, to map with the budgerigar genome (v6.3) (Accession: NW_004848282.1)
(Ganapathy et al., 2014). Conserved miRNAs were identified in the budgerigar by matching
the unannotated data to precursor and mature miRNA sequences in miRBase v21. Venn
diagram drawn using BioVenn (Hulsen, Vlieg ¢ Alkema, 2008).

Prediction of potential miRNAs and analysis of miRNA function
miRDeep2 software was used to discover known and novel miRNAs from sequence data
(Friedlinder et al., 2012). The Dicer-binding sites and the free energies were combined in
evaluating these candidate miRNAs to assign them score numbers that correspond to the
reliability if the miRDeep2 predictions (Gong et al., 2017), then, the miRDeep2 predictions
were used to map the remaining results with the genome (mismatch < 1). The criteria we
used to distinguish miRNAs from other classes of small RNAs amounted to a score of total
reads >5, and a true positive prediction > 90%. Mfold program based on the free energy
minimization, was used to predict their propensity to form hairpin loops as potential
pre-miRNAs (Zuker, 2003).

To investigate differentially expressed miRNAs, each library was normalized to
transcripts per million (TPM) by DESeq (Anders ¢» Huber, 2010). Three miRNAs that
were differentially expressed between ovaries and testes were determined to be statistically
significant using p-value < 0.05 (g < 0.01) and a minimum fold change of 2 (Benjamini
¢ Hochberg, 1995). Samtools (Li et al., 2009a) were used to extract 3UTR sequence. Using
3UTR regions of budgerigar for targeting. The potential target genes for the seed sequence
of three significantly differentially expressed miRNAs and eighteen miRNAs were predicted
using miRanda (score > 150, MFE (minimum free energy) <—20 Kcal/mol) (Enright et
al., 2004), seedVicious (Marco, 2017) and TargetScan (Yatsenko et al., 2005) software. The
basic functional targets were classified using Gene Ontology (GO) annotations (Ashburner
et al., 2000) and the KEGG pathway database (Kanehisa et al., 2017), false discovery rate
(FDR) <0.05 was defined as statistical significance.

Quantitative PCR validation
Five randomly selected miRNAs were used to validate their expression profiles by real-time
quantitative PCR (Q-PCR). All reactions were duplicated three times to validate the
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Table 2 Raw reads and clean reads in M. undulatus gonads.

Category Total reads

Ovaries Testes
Raw reads 9,191,836 100% 6,383,927 100%
Clean reads 7,540,057 82.03% 5,389,781 84.43%

reliability of the predicted miRNAs. Primers to detect miRNAs were designed using
miRprimer2, as previously described (Busk, 2014). The cDNA was synthesized using
Rayscript cDNA Synthesis KIT (GENEray, GK8030). Based on the protocol of the AceQ
TM Q-PCR Probe Master Mix (Vazyme, Q112-02), the PCR reaction and temperature
conditions were performed in a two-step Q-PCR method using the ABI 7500 qPCR
instruments (Applied Biosystems Inc., Foster City, CA, USA). The housekeeping gene
5S ribosomal RNA was used as an internal normalization control. The Q-PCR reaction
mixture (20 pL) contained 5 wL ¢cDNA product, 0.5 L primer forward and 0.5 wL primer
reverse, 10 pL Tagman Mix with 0.4 pL ROX, and 3.6 nL ddH,0. PCR cycles were as
follows: 2 min at 95 °C, followed by 40 cycles of 10 s at 95 °C, and 49s at 60 °C. All reactions
were duplicated three times, and after amplification, melting curves were analyzed for all
reactions. We calculated relative quantification expression results by the 2~44¢T method
(Livak & Schmittgen, 2001). Analyses were performed in R (http://www.R-project.org/)
using the t-test function with a p-value < 0.05, which was used to detect the significantly
differentially expressed miRNAs between ovaries and testes.

RESULTS

Small RNA sequence profile

Two small RNA libraries were sequenced using Illumina Hiseq 2500 in a single lane.

A total of 9,191,836 and 6,383,927 raw reads were obtained from the ovarian and the
testicular samples, respectively. After filtering for adaptors and low quality reads, 82.03%
and 84.43% of the total reads were recovered (Table 2). The proportion of clean and
unique reads that matched to the M. undulatus genome were 6,927,475 (91.88%) / 448,234
(78.34%) and 4,646,370 (86.21%) / 2,007,263 (84.68%) in the ovarian and testicular
libraries, respectively. Fewer ovarian reads mapped to CDS, intron, and 3UTR upstream
and downstream, compared to those of the testis; however, more ovarian reads mapped
to SUTR sequences (Fig. 1). We also mapped unique reads to the Rfam, RepBase, EST
database and miRBase (v21). The sequences that mapped perfectly to the pre-miRNAs
and mature miRNAs in miRBase (v21), were considered to be mappable reads. To avoid
influencing miRNA identification, the unmappable reads were removed by searching
against noncoding RNAs (tRNA, rRNA, snoRNA, and snRNA) deposited in the RepBase
and Rfam databases (Fig. 2). Finally, 7,540,057 cleaned sequences of ovaries representing
572,201 unique reads and 5,389,781 cleaned sequences of testes representing 2,370,340
unique reads were used for subsequent analysis.

Jiang et al. (2018), PeerJ, DOI 10.7717/peerj.4615 5119


https://peerj.com
http://www.R-project.org/
http://dx.doi.org/10.7717/peerj.4615

Peer

30 29.56 @

x 10000

25

20

ds

15
13.60 ®

.

unique rea

9.23@
7.14@

> 446 @ 3.86@

0 1338 NREN 1.06@ 141@

CDS intron 3UTR S5UTR upstream downstream

@ovaries unique reads @ testes unique reads

Figure 1 Unique reads mapped to the genome.
Full-size Gal DOI: 10.7717/peer;j.4615/fig-1

40 3932 @
35
30.62 @

W
(=]

26.35@®

[\o]
9}

21.15@

13.32
13219 13.87@

|
S W

Unique reads (x 1000)
[\°)
=]

8.70 @ 8.95@ 8.11 .

7.20
3920

S W

rRNA snoRNA repeat miRNA tRNA snRNA

@ovaries unique reads @ testes unique reads

Figure 2 Mappable unique reads about small RNA classification.
Full-size Gal DOI: 10.7717/peer;j.4615/fig-2

Identification of new members of known miRNAs and novel miRNAs

The unique reads from the two deep-sequencing libraries were mapped to the budgerigar
genome. The secondary stable hairpin structures were predicted for identification of new
miRNAs (see Fig. 52). The abundances of known miRNAs that mapped to the budgerigar
genome and miRBase v21. Predicted pre-miRNAs were analyzed and represent 101 miRNA
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families, including 254 miRNAs previously identified in Aves (see Table S1). Differences
in expression frequencies among miRNAs reads were detected.

MiRNA family represents sequences that evolved from a common ancestor. The let-7
family is a conserved miRNA family, both in sequence and function and plays a vital role
in animal development. To date, more than thirteen types of let-7 family miRNAs have
been identified in animals, and the seven detected in this study, mun-let-7, mun-let-7a,
mun-let-7¢, mun-let-7e, mun-let-7f, mun-let-7g, mun-let-7i have not been previously
described. These members of let-7 family in budgerigar are highly differentially expressed.

We identified several putative novel miRNAs using the reads that did not map to known
miRNAs. A total of 141 novel miRNA candidates were predicted (Table S2). In total,
395 miRNAs were identified including 254 known and 141 novel miRNAs from the two
libraries. Furthermore, 282 of these were co-expressed in male and female gonads, while
113 were gender-specific: 88 female and 25 male (Table S3). Compared with the Aves
database (zebra finch and chicken) in miRBase v21, we used Venn diagrams to compare
three species (zebra finch, chicken and budgerigar), 135 miRNAs were found co-expressed
in the three species, 76 miRNAs were found in zebra finch and in budgerigar, and 43
miRNAs were found in chicken and in budgerigar (Fig. 3).

miRNA nucleotide bias

The first 5" end nucleotide of the budgerigar miRNAs, of any length, was not frequently
uridine, as seen in 42.8% of gonadal samples, various nucleotides are detected at the 5" end
of miRNA sequences. In general, U is the predominant nucleotide at 5" end of all miRNAs of
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all lengths. Adenine accounts for 23.8%, Cytosine accounts for 23.3%, Guanidine accounts
for 10.1% across all miRNA nucleotide positions. Averaged across both gonad samples,
66.6% of the nucleotides consisted of A+U in the first bias (Fig. 4). In the seed region of
the miRNAg, i.e., the second to eighth nucleotide positions, A-U was the most frequently
observed pair.

Differentially expressed and sex-biased miRNAs identification
Notably, three of the miRNAs (mun-215-5p, mun-novel24-5p and mun-novell0-3p)
were expressed differentially between the gonadal samples with statistical significance,
differentially expressed miRNAs were detected using both the absolute value of fold change
>2 and g-value <0.01 (Table 3). Consequently, 11 of these were among the 141 novel
miRNAs found in the testes but not found in the ovaries. Likewise, mun-miR-203-5p
was expressed in the testes, exclusively. Of the remaining detected miRNAs expressed
in both gonads. For instance, mun-miR-194-5p and mun-miR-375-3p in ovaries, and
mun-miR-2954-3p, mun-novel101-3p, mun-novel102-3p and mun-novel8-3p in testes
were expressed more than average. Due to these, 21 miRNAs were selected for following
functional analysis.

Quantitative-PCR analysis of gonadal miRNAs

To confirm the reliability of the miRNA-seq data and bioinformatic predictions, stem-loop
Q-PCR assays were conducted. Mun-miR-215-5p, mun-miR-18b-5p, mun-miR-2954-
3p, mun-novel10-5p, and mun-novel24-3p were randomly selected for validation. All
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Table 3 Three significant expression miRNAs and eighteen miRNAs in M. undulatus gonads.

miRNA name Ovaries Testes Ovaries_TPM Testes_ TPM FoldChange_Log2 Pvalue Qvalue

mun-miR-215-5p 61,621 81 18,361.36013 230.9738828 —6.312799391 1.05E-06 0.000494547
mun-novel24-3p 0 943 0 2,688.992241 Inf 1.99E-06 0.000494547
mun-novell0-3p 0 489 0 1,394.397885 Inf 3.83E-05 0.006351634
mun-novell5-3p 0 152 0 433.4324715 Inf 0.001679481 0.129097846
mun-novel68-3p 0 97 0 276.5983535 Inf 0.003671809 0.202765425
mun-novel31-3p 0 27 0 76.99129428 Inf 0.005862203 0.224116531
mun-novel45-3p 0 27 0 76.99129428 Inf 0.005862203 0.224116531
mun-novel72-3p 0 30 0 85.54588253 Inf 0.005261171 0.224116531
mun-novel29-3p 0 30 0 85.54588253 Inf 0.005261171 0.224116531
mun-novel46-3p 0 23 0 65.58517661 Inf 0.007334974 0.260391575
mun-miR-203-5p 0 16 0 45.62447068 Inf 0.014360624 0.419837066
mun-novel36-3p 0 12 0 34.21835301 Inf 0.02575755 0.609595344
mun-novel72-5p 0 10 0 28.51529418 Inf 0.037043893 0.836750495
mun-novel66-3p 0 9 0 25.66376476 Inf 0.045293686 0.865806236
mun-novel7-3p 0 9 0 25.66376476 Inf 0.045293686 0.865806236
mun-novel102-3p 1 194 0.297972446 553.1967071 10.85839792 0.002078034 0.129097846
mun-novel8-3p 2 59 0.595944893 168.2402357 8.14112813 0.015983738 0.427715185
mun-novel101-3p 9 202 2.681752018 576.0089424 7.746771562 0.013714368 0.419837066
mun-miR-2954-3p 218 803 64.95799333 2,289.778122 5.139556933 0.040127921 0.836750495
mun-miR-375-3p 2,228 11 663.8826108 31.3668236 —4.403616818 0.040406463 0.836750495
mun-miR-194-5p 2,669 5 795.2884597 14.25764709 —5.801670415 0.009804135 0.324843664

results were concordant with their relative expression trends for our miRNA-seq analyses
basically, and confirmed that these miRNAs exist in the budgerigar. The expression level of
mun-miR-18b-5p, mun-miR-2954-3p, mun-novel10-5p, and mun-novel24-3p in the male
samples were higher than in the female samples, whereas mun-miR-215-5p expression
was higher in the ovaries. There were a minor differences between the miRNA-seq analysis
and Q-PCR assays results. For example, mun-novel10-5p and mun-novel24-3p expression
were not detected in the SRNA sequence data of the ovaries (Table 3), but weak expression
was detected in the validation experiments (Fig. 5).

Putative target prediction for known and novel miRNAs

The putative target genes for these 21 miRNAs were predicted by miRanda, seedVicious
and Targetscan. One thousand, five hundred and sixty-seven genes were determined to be
feasible targets and had complete complementarity to the seed sequence of 21 miRNAs.
These predictions suggest that a single miRNA might target more than one mRNA, such as
mun-miR-2954-3p, which is predicted to target 129 budgerigar genes (Table 54). Similarly,
one gene can be controlled by one or more miRNAs. For instance, mun-novel102-

3p could target FOXGI, and FOXP1 has three miRNAs target sites (mun-novel45-3p,
mun-novel102-3p and mun-miR-2954-3p), and mun-novel7-3p, mun-novel36-3p, mun-
novel102-3p and mun-miR-203-3p could target FOXP2 (Table 54). The miRNAs identified
in this study can target multiple transcription factor genes, such as GATA4, GTF2E1,
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GTF3C3, JUN, LZTFL1, MBTPS1, MTF1, NFYA, NFYC, PBX3, RFX4, and SOX10.
Moreover, computational analysis of the 21 miRNA sequences with known, functional
miRNA-mRNA regulatory modules suggested these miRNAs may target genes encoding
KPNA3, PKP4, CHN1, SMG7, FAM53A, and calmodulin, which are included in a series of
important physiological processes and metabolic networks.

GO annotation and KEGG pathway analyses

The genes found to be potentially regulated by miRNAs from this study were annotated
using GO annotation and KEGG pathway analyses. Gene Ontogeny annotations were
classified as cellular component, biological process and molecular function, using GO
rank 2 with p-value < 0.05 (FDR < 0.05). We found that many of the miRNAs detected
in this study were involved in the organogenesis. Seven subcategories within “cellular
components” were found, with “cell part” and “membrane-bounded organelle” being
most represented. Sixteen subcategories of “biological processes” were also identified,
with “single-organism cellular process” being most abundant. Furthermore, many genes
were assigned to five subcategories in “molecular function,” with the largest proportion in
“protein binding” (Fig. 6). Notably, mun-miR-215-5p, which demonstrated significantly
biased expression in the ovaries, is likely a primary modulator of a protein complex
involved in signaling and/or catalytic enzyme activity, like RABGAP1, PRR5, FGF13,
SDCBP, TIALI, PRDX4 (Table S4). From the GO term, we found nine GO annotations
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Figure 6 Gene ontology classification annotated by gene2go for target genes of differentially expressed
miRNAs. The figure shows partial GO enrichment for the predicted target genes in ontologies of molecu-
lar function, cellular component, biological processes.
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were related to female, which the detected miRNAs could regulated some genes, like
FKBP4, C1QBP, VMP1, AKT1, BMPRI1B, ADAMTSI1, PHB2, IF2B2, MED1, DACH2,
CHD7, AKS8, TBP, TAF4, DACH1, LHX9, TYRO3, KIT, EIF2B2, DACH2 and PDGFRA,
thirteen GO terms were found related to male and six GO annotations wete detected

as gonadal function as well (Table S5). In addition, FOXP1 (mun-miR-2954-3p, mun-
novel102-3p and mun-novel45-3p) and FOXP2 (mun-miR-203-5p, mun-novel102-3p,
mun-novel36-3p and mun-novel7-3p) were detected to regulate vocal learning, moreover,
VDACI1, CNTN2, GRIN1, FOXP1, FOXP2, HIF1A, VDAC3, CAMK4, PRKARI1B, ITGAS,
GRIA1, PLK2,HMGCR, KCNAB1, CHST10, RELN, FGF13, ABI1, APP, SRF, LIS1, AKS,
CTNND?2 and ATADI1 were illustrated to regulate learning ability (Table S5). The KEGG
pathway analysis demonstrated that the target genes were related to significantly expressed
miRNAs. According to the KEGG pathway analysis (FDR < 0.05), three pathways were
significantly enriched, such as the cell communication (FDR = 0.00317745), excretory
system (FDR = 0.00317745) and signal transduction (FDR = 0.00446146) (Table S6).
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DISCUSSION

MiRNA research is needed in more phylogenetically disparate avian species to obtain a
more accurate concept of the miRNAome. Furthermore, some important avian miRNAs
involved in regulating gonadal sex differentiation and development were demonstrated
(Table 1). However, avian studies of sex-biased miRNA expression between ovaries and
testes are limited. The role of non-coding RNAs in the gonads is an area of active research.
Here we used Illumina sequencing to investigate the differentially expressed miRNAs in
the male and female gonads of budgerigars. We observed numerous miRNA families in
our data that may potentially work as key regulators of gene expression. For example, the
let-7 family has been shown to function as a heterochronic switch, and loss of these could
cause periods of cell fate reiteration in adults. In contrast, increasing the gene dosage would
led to premature expression in adult fates (Reinhart et al., 2000). Consequently, the let-7
family miRNAs are considered highly conserved in Animalia (Hertel et al., 2012). Let-7 and
miR-125 are associated with polycistronic transcripts and work as two key regulators of
development in Bilateria.

MiR2954, which is known in chicken (Garcia-Riart et al., 2017; Liu et al., 2017) and
zebra finch (Lin, Balakrishnan & Clayton, 2014), is an bird-specific gene (absent in the
mammalian lineage) and is encoded on the Z chromosome which is known to result in
its higher expression in males than females (Lin, Balakrishnan ¢ Clayton, 2014; Luo et al.,
2012). It has been proposed that this might affect the neurogenomic mechanisms that lead
to sexually dimorphic bird song habituation (Lin, Balakrishnan ¢ Clayton, 2014). Based
on bioinformatical and experimental analysis from chicken and zebra finch, miR-2954-3p
is male-biased and Z-linked miRNA, which targets across a range of bird species, could
help the study field about the evolutionary dynamics of partial dosage compensation and
the genetic architecture underlying gonadal characteristics (Warnefors et al., 2017). The
bioinformatical prediction and the qPCR validation in the present study has confirmed
that there is a male-biased expression of miR2954 in M. undulatus, further corroborating
its involvement in sexual dimorphism. Putative genes targeted by miR2954 include a
TLE4 transcription factor family, which might be associated with nervous system function,
including Ca**/ calmodulin-dependent protein kinase IV (CaMKIV), SCAMP1, and
SMARCA?2. Mun-miR-2954 is also related to development, environmental adaptation,
the nervous system, signaling molecules and interaction, and substance dependence as
indicated in the KEGG analysis. Previous study in zebra finch has elaborated miR2954
could target FOXP2 to regulate vocal learning and detected higher male expression in many
tissues (Fu et al., 2014), however, we haven’t detected mun-miR2954-3p target FOXP2,
whereas mun-miR-203-3p, mun-novel102-3p, mun-novel36-3p and mun-novel7-3p
might regulate FOXP2, mun-miR-2954-3p, mun-novel102-3p and mun-novel45-3p might
regulate FOXP1, which related to vocal learning in the budgerigars and we also measured
higher male expression in gonads.

Further investigations of GO analysis, miRNA in current study might regulate several
sex-related genes. For instance, FKBP4 was considered to be markers of hypospermatogenic
testis (D’Aurora et al., 2017), we found higher male expression of mun-novel7-3p and
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mun-novel72-3p could target FKBP4. mun-miR-194-5p and mun-novel31-3p might
regulate SALL1 which the transcriptional regulators of adipose-specific sex-different genes
(Karastergiou ¢ Fried, 2017). LHX9 is needed for ovarian function (Workman, 2017), mun-
novel72-3p and mun-novel8-3p could regulate it. Mun-miR-215-5p which significantly
expressed in ovaries could target PRDX4 (sex-linked gene) (Tippabathani et al., 2017). In
mice gonadal development, miR-181a suppressed granulosa cell proliferation by targeting
ACVR2A, we detected that mun-novel7-3p could regulated ACVR2A as well (Zhang et
al., 2013). Currently, mun-novel7-3p could also target AKT1 (with prior report for sex
differences (Seney et al., 2013)). And mun-novel31-3p could target RNF2 (associated with
regulation of genetic imprinting (Li, Zhang & Wu, 2017)). mun-novel68-3p might regulate
HSF2 which related to sex-determining (Literman et al., 2018), mun-miR-2954-3p and
mun-novel72-3p could target KITLG (sex development) (Hersmius et al., 2017) (Table 54).
Of all the miRNAs tested, we found three gonad-enriched miRNAs (mun-miR-215-5p,
mun-novel10-5p and mun-novel24-3p). In the present study, the presence of these miRNAs
in the gonads suggests that they might serve a similar function in the budgerigar. These
miRNAs may produce sex-specific responses to potential biological mechanisms that have
not yet been described. Although the physiological and biochemical functions of mun-
novell0-5p and mun-novel24-3p remain unclear, their differentially expressed patterns
indicate that they might play important roles in sexual differentiation and development.

CONCLUSIONS

In this study, the whole gonadal miRNAome of budgerigars was sequenced, consisting
of a total of 12,929,838 clean reads and 2,942,541 unique reads. Moreover, differential
expression of 254 known miRNAs and 141 novel miRNAs were analyzed in the gonadal
tissues of budgerigars. The majority of these miRNAs were evolutionarily conserved within
chordates while some of them were budgerigar- or avian-specific. In conclusion, this work
describes the characteristics of sex-biased miRNAs of M. undulatus and adds new sequences
to the avian miRNAome database to facilitate further functional genomic research.
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