

OPEN

Elevated isoleucine may be a protective factor for primary hypertension A pooled causal effect study

Ying Shi, MD, PhDa, Hairun Liu, MDb, Yi Chen, PhDc,*

Abstract

Hypertension continues to pose a huge burden to global public health. Abnormal metabolism not only serves as a risk factor for hypertension but also acts as a driving force in its aggravation. However, there remains a lack of large-scale causal demonstration based on extensive samples. Our study aims to investigate the causal relationship between metabolism and primary hypertension (PH) using Mendelian randomization analysis. We used genome-wide association studies instrumental variables for Mendelian randomization association analysis integrating the diagnosis results of PH in 3 populations from East Asia, the Middle East, and Africa with serum metabolites and metabolite ratios. This allowed us to identify predictive metabolites and metabolic pathways for diagnosing or treating PH. Inverse-variance weighting was the main model for establishing causal associations. In addition horizontal pleiotropy test, linkage disequilibrium test, and sensitivity analysis were employed to test the explanatory power of instrumental variables. A total of 10,922 cases of PH and 8299 cases of metabolomics detection cohorts were included in the study. In East Asian, Middle Eastern, and African populations, we found 36, 57, and 40 known metabolites respectively strongly associated with PH (P < .05). Cross-section and meta-analysis of these strongly correlated metabolites across the 3 ethnic groups revealed 7 common metabolites. Notably, elevated isoleucine (odds ratio = 0.74, 95% confidence interval: 0.56–0.96) was demonstrated as a potential protective factor against PH across 3 ethnic groups. The metabolites associated with PH have certain polymorphisms in different populations. Isoleucine may be a promising biomarker for PH diagnosis or treatment, but more clinical validation is needed.

Abbreviations: DBP = diastolic blood pressure, GWAS = genome-wide association study, IVW = inverse-variance weighted, MR = Mendelian randomization, PH = primary hypertension, RCT = randomized-controlled trial, SBP = systolic blood pressure, SNP = single-nucleotide polymorphism.

Keywords: causal association, Mendelian randomization, metabolite, multiple populations, primary hypertension

1. Introduction

Primary hypertension (PH) is one of the most important risk factors for cardiovascular diseases, stroke, chronic kidney disease as well as dementia. The prevalence of elevated blood pressure has declined substantially in Western high-income regions since 1970s, but keeps rising in East, South and Southeast Asia, sub-Saharan Africa, and Oceania. Asian characteristics differed from the West and led to higher stroke

incidence.^[2] Masked hypertension is a significant clinical entity of target organ damage and cardiovascular disease.^[3] The prevalence of masked hypertension for Asians (16.0%) is higher than European (9%).^[4] Regarding Africa, hypertension is common in sub-Saharan Africa, the prevalence significantly varies in different African countries, ranging from 37% to 75%.^[5] Approximately one-tenth of adolescents have elevated blood pressure across sub-Saharan Africa.^[6] The prevalence of hypertension was high in both rural (27.4%) and urban areas

YS and HL contributed to this article equally.

This study was financially supported by Guangxi Health Commission self-funded research project (Grant No. Z-A20230040); Guangxi Science and Technology Base and Special Talents' Project (Grant No. GK AD17129026); Guangxi Medical and Health Appropriate Technology Research and Development Project (Grant No. S2015 46).

The authors have no conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are publicly available.

This study was conducted based on publicly available data and did not require ethical approval.

Supplemental Digital Content is available for this article.

^a Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China, ^b Department of Cognitive and Sleep, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China, ^c Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, Nanning, China.

* Correspondence: Yi Chen, Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region and Guangxi Academy of Medical Sciences, No. 6 Taoyuan Road, Qingxiu District, 530021, Nanning, China (e-mail: chenyi1109@126.com).

Copyright © 2025 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Shi Y, Liu H, Chen Y. Elevated isoleucine may be a protective factor for primary hypertension: A pooled causal effect study. Medicine 2025;104:9(e41651).

Received: 1 August 2024 / Received in final form: 5 February 2025 / Accepted: 6 February 2025

http://dx.doi.org/10.1097/MD.0000000000041651

(33.9%) of West Africa.^[7] However, the rates of hypertension diagnosis, treatment, and control are markedly low^[8] and cause a heavy health and economic burden in both Asia and Africa.^[9] The hypertension treatment rates were below 25% for women and less than 20% for men in South Asia and some sub-Saharan African countries. Control rates were lower than 10% in these countries and for men in some countries of North Africa and Central Asia.^[10]

PH has been regarded as a disorder of the renin-angiotensin-aldosterone system and the sympathetic nervous system (SNS) in tradition.[11] Yet, current treatments aiming at limiting the effects of renin-angiotensin-aldosterone system or SNS on blood pressure fail in about 40% of cases.[12] This implied that other mechanisms may exist. Previous studies found that immune mechanisms can contribute to the development of hypertension.^[13] Flavonoids were reported to possess an underlying mechanism to regulate antihypertensive effects.^[14] Genetics can drive the occurrence of hypertension in certain patients.^[15] Anxiety diagnosis was also reported can cause development or incidence of hypertension, which might be due to the longer exposure to alterations in autonomic mechanisms.^[16] In addition, hypertension has been reported to be associated with impaired metabolic homeostasis and can be considered as a metabolic disorder.[17]

To date, there have been limited cohort-based causal studies examining the relationship between metabolites and PH,^[18-22] with a particular lack of research on Asian and African populations. If differentially abundant metabolites are risk factors or protective factors for PH, it is meaningful for the prediction of the disease and auxiliary diagnosis based on specific targets, as well as for further treatment.

Therefore, our study aims to investigate the causal relationship between metabolism and PH in Asian and African populations using Mendelian randomization (MR). We analyzed serum metabolites and metabolite ratios from genomewide association studies (GWAS). Applying MR analysis, which mimics the design of randomized-controlled trials (RCTs), we explored the causal effects of these metabolites on PH. We used metabolite-associated single-nucleotide polymorphisms (SNPs) as instrumental variables to assess the causal impact and to elucidate the underlying metabolic pathways.

2. Materials and methods

2.1. Study design

The dataset that contains all the data in this study is available to the public on the open website (http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90199001-GCST90200000 and https://gwas.mrcieu.ac.uk/). The GWAS summary statistics have already been published. The ethics committee at each institutional review board authorized all participants' written informed permission in separate cohort studies. No extra ethical approval or informed consent was required in this study.

In the current study, we comprehensively evaluated the relationship between 1091 serum metabolites, 309 metabolite ratios, and PH datasets from East Asian, Middle East, and African populations one by one rigorously based on the MR design. A scientific MR study must include the testing of the following 3 hypotheses: genetic instrumental variables (SNPs) are strongly associated with the serum metabolites level or ratio; genetic instrumental variables should be irrelevant to the PH and independent of any known or unknown confounding factors; and the effect of instrumental variables on the results is mediated only by the serum metabolites level or ratio. Briefly, a causal analysis strategy was employed to select genetically significant SNPs for 1091 human serum metabolites, 309 metabolite ratios, and PH. To avoid sample overlap, metabolites and

genetic information of PH were selected from independent GWAS datasets in this study. A schematic of this study is demonstrated in Figure 1.

2.2. GWAS data for human serum metabolites

A genome-wide association aggregate dataset of 1091 human serum metabolites and 309 metabolite ratios involved in this study was obtained by Chen et al^[23]These data are publicly available from the GWAS server (http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90199001-GCST90200000). The service platform collects relatively complete human serum metabolomics data. A total of 8299 individuals from the Canadian Longitudinal Study on Aging cohort were included in the GWAS analysis. A total of 248 loci were found to be associated with 690 metabolite levels and 69 loci with 143 metabolite ratios. After integrating metabolite genes and gene expression information, 94 effector genes were identified for 109 metabolites and 48 metabolite ratios. The chemical properties of another 241 unknown or partially characterized metabolites have not been fully determined.

2.3. GWAS data for primary hypertension

The GWAS data of PH among East Asia, Middle East, and Africa populations were obtained from the data of the integrative epidemiology unit open GWAS project (https://gwas.mrcieu.ac.uk/). These summary data were collected from the UK-Biobank cohort in 2020 and GWAS ID were ukb-e-401_EAS, ukb-e-401_MID and ukb-e-401_AFR. In this GWAS meta-analysis, the summary data included 5554 PH cases and 10,922 control cases, yielding a total of 15,530,091 SNPs. We extracted SNPs by analyzing visual component framework files shared by the integrative epidemiology unit platform. The patients with PH were diagnosed according to the standard criteria of the World Health Organization and the International Hypertension Alliance.

2.4. Selection of instrumental variables

In this MR analysis, the selection of instrumental variables was based on 3 basic assumptions. First, we set $P < 1 \times 10^{-5}$ as the genome-wide significance threshold to obtain strongly associated SNPs for each metabolite. Second, a clumping procedure implemented in R software was employed to identify the independent variants. $R^2 < 0.001$ within a 500-kb distance was used to avoid linkage disequilibrium. Third, to quantitatively verify whether the selected SNPs were strongly correlated instruments, we calculated the phenotypic variation explained and the F statistic for each metabolite. Typically, a threshold of F > 10 is suggested for the next operation. [24]

2.5. MR analysis

A standard inverse-variance weighted (IVW) method was the prioritized evaluation approach used for causal association exploration between metabolites and PH in this analysis. When the instrumental variables satisfy all 3 major hypotheses, the IVW method can provide a more accurate estimate of the causal effect of metabolite and is considered as the most efficient MR method. However, if some instrument variables do not conform to the instrumental variables hypothesis, the analysis may give inaccurate results. Hence, we conducted the following sensitivity analyses: Q tests were performed using the MR-Egger methods to detect heterogeneity between each instrument variable and the possibility of violating the assumption. [25] The MR-Egger intercept was used to estimate the horizontal pleiotropy, ensuring that the genetic variation was independently related to the metabolite and PH^[26]; additional approaches such as the

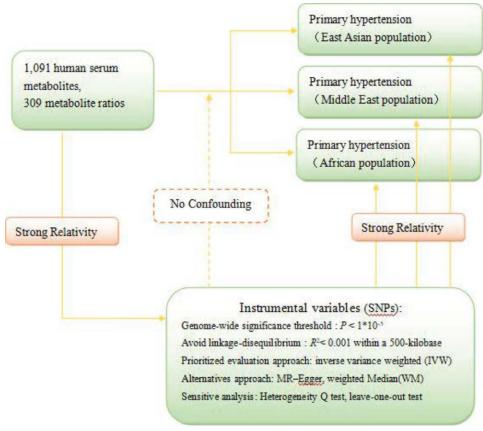


Figure 1. Schematic of the Mendelian randomization analysis. Significant instrumental variables were selected to assess the correlation between metabolites and primary hypertension crossing 3 population. The 3 basic assumptions of Mendelian randomization analysis were illustrated in the acyclic graph. SNP = single-nucleotide polymorphism.

weighted median and weighted mode were applied to enhance the reliability and stability of hypothesis testing; and the individual SNP analysis and leave-one-out test were conducted to estimate the likelihood of relevance observed by individual SNPs. To ensure there was no direct association with PH or other confounding factors, candidate SNPs were compared against the human reference genome database.

2.6. Metabolic pathway analysis

Metabolome enrichment pathways associated with PH were estimated using web-based MetaboAnalyst 5.0. (https://www. Metaboanalyst.ca/, Natural Sciences and Engineering Research Council of Canada, Ottawa, Canada). The pathway and enrichment analysis modules were applied to identify probable metabolite clusters or superpathways that may be associated with metabolic processes and the potential association with PH. The Small Molecule Pathway Database and the Kyoto Encyclopedia of Genes and Genomes database were applied for reference. The significance level of the enrichment pathway was 0.05.

2.7. Intersection analysis

An intersection such as meta-analysis was introduced to analyze the shared metabolites screened by the 3 PH datasets, in conjunction with potential pathway mechanisms, to evaluate the polymorphism of related metabolites in different races.

2.8. Statistical analysis

The MR analysis was conducted using the "TwoSampleMR" package in R (version 4.3.1), developed by Gibran Hemani,

Philip Haycock, Jie Zheng, Tom Gaunt, Ben Elsworth, and Tom Palmer (available at https://mrcieu.github.io/TwoSampleMR/). P < .05 was considered as statistically significant. The odds ratio was used to estimate the magnitude and direction of the metabolic impact with its corresponding 95% confidence interval. If there was missing data, we have chosen to delete it. The circle heatmap was drawn using ChiPlot (https://www.chiplot.online/) (accessed on September 29, 2023).

3. Results

3.1. Influence of serum metabolites on PH

As the genome-wide significance threshold was $P < 1 \times 10^{-5}$ to select strongly associated SNPs among 1091 human serum metabolites and 309 metabolite ratios, the instrument variables contained 76,267 SNPs in total, with a median of 17 SNPs. Among them, the East Asian population dataset accounted for 28.80%, the Middle East population dataset accounted for 41.63%, and the African population dataset accounted for 29.57%. The F statistic values were all >10, indicating that weak instrumental bias is not detected.

All metabolic analyses used IVW as the primary analytical methodology, with no evidence of heterogeneity and no weak instrument variables. [28] In the East Asian population dataset, 36 significantly associated named metabolites were selected (P < .05 for IVW), in which 19 were positively associated with PH and 17 were negatively associated with PH. Carnitine to propionyl carnitine (C3) ratio (P = .0020) was the most significant factor, followed by 4-hydroxychlorothalonil levels (P = .0046) and histidine to alanine ratio (P = .0051) (Fig. 2A). In the Middle East population dataset, 57 significantly associated named metabolites were selected (P < .05 for IVW), in which 24 were

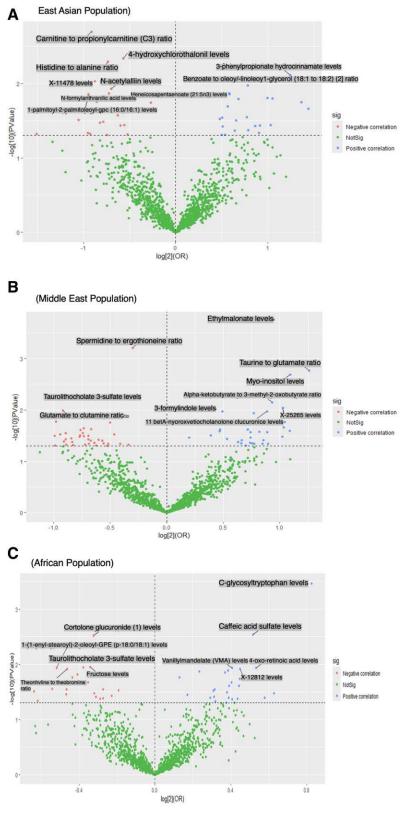


Figure 2. Volcano plots depicting correlations related to the influence of metabolites on primary hypertension. (A–C) Correlation volcano plots among East Asian, Middle East, and African. The plots include both ORs in log 2 scale and P values in –log 10 estimated by the inverse variance weighted method for metabolites among 3 populations. OR = odds ratio.

positively associated with PH and 33 were negatively associated with PH. Ethyl malonate levels (P = .0002) were the most significant factor, followed by spermidine to ergothioneine ratio (P = .0006) and taurine to glutamate ratio (P = .0017) (Fig. 2B).

In the African population dataset, 40 significantly associated named metabolites were selected (P < .05 for IVW), in which 26 were positively associated with PH and 14 were negatively associated with PH. C-glycosyl tryptophan levels (P = .0003) were

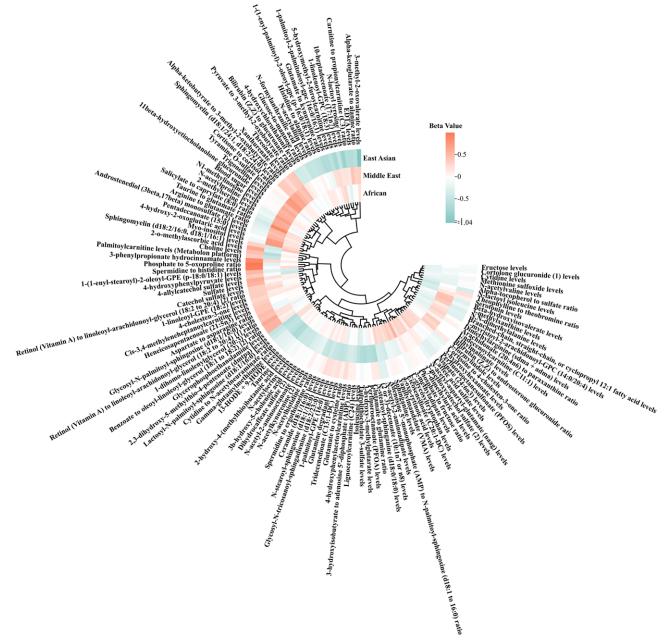


Figure 3. Heat map of the direction of the potential correlation of metabolic involvement in the 3 populations.

the most significant factor, followed by caffeic acid sulfate levels (P = .0029) and cortolone glucuronide (1) levels (P = .0030) (Fig. 2C). Figure 3 exhibited the direction of the potential correlation of metabolic involvement in the 3 populations. The results of the alternative analysis, Q test, and sensitivity analysis for the known metabolites are shown in Table 1. All instrument variables passed the sensitivity tests (P > .05).

The metabolites significantly associated with PH among 3 populations were entered into the MetaboAnalyst 5.0 platform to determine various underlying metabolic pathways involved in the pathogenesis of PH. In the East Asia dataset, histidine, L-aspartic acid, oxoglutaric acid, pyruvic acid, D-glucose, and phosphate were involved in the metabolic enrichment pathway of ammonia recycling, glucose–alanine cycle, urea cycle, alanine metabolism, malate–aspartate shuttle, and glutamate metabolism (P < .05). Regarding Middle East dataset, 2-ketobutyric acid, choline, and spermidine were involved in the metabolic enrichment pathway of methionine metabolism (P < .05). For Africa dataset, myoinositol, D-fructose, and phosphate were involved in the metabolic

enrichment pathway of galactose metabolism and phosphatidylinositol phosphate metabolism (P < .05) (Table 2). The metabolic mechanism formed by the above metabolites may be involved in the pathogenesis of PH. Figure S1A–C, Supplemental Digital Content, http://links.lww.com/MD/O433 exhibits the networks of interactions among the metabolic pathways involved in East Asian, Middle East, and African populations.

3.2. Intersection between East Asian, Middle East, and African populations

Intersection analysis was introduced to analyze the shared metabolites screened by the MR analyses. The cross-sectional and metaanalysis of strongly correlated metabolites across the 3 ethnic groups revealed that 7 metabolites were consistently identified, 5 of which were previously known. Among these, isoleucine (odds ratio = 0.74, 95% confidence interval: 0.56–0.96) emerged as a protective factor for PH across all 3 ethnic groups (Figs. 4 and 5A–E).

Table 1

The 3 Mendelian randomization model estimates of the causal relationships between known metabolites and the risk of primary hypertension and tests for heterogeneity and horizontal pleiotropy

					•	neterogenetry	,	rieioii opy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	Ь	a	Ь	Intercept	Ь
East Asian	Carnitine to propionylcarnitine (C3) ratio	15	IVW MR-Egger	0.53 (0.36–0.79) 0.56 (0.26–1.24)	.0020	4.5097 4.4819	.9915 .9849	-0.0098	.8702
	4-Hydroxychlorothalonil levels	19	WW IVW MR-Egger	0.67 (0.51–0.89) 0.67 (0.51–0.89) 0.80 (0.50–1.26) 0.77 (0.67–1.09)	.0046 .3445	22.1837 21.2158	.2239	-0.0484	.3908
	Histidine to alanine ratio	20	WW IVW MR-Egger WM	0.73 (0.42–0.86) 0.60 (0.42–0.86) 0.73 (0.41–1.32) 0.65 (0.38–1.10)	.07.02 .0051 .3108	18.6695 17.9689	.4782	-0.0315	.4135
	3-Phenylpropionate hydrocinnamate levels	12	IVW MR-Egger MM	2.37 (1.26–4.46) 2.37 (1.26–4.46) 2.44 (0.60–9.92) 1.80 (0.76–4.26)	.0078 .0078 .2413	10.0966 10.0943	.5217	-0.0039	.9632
	Benzoate to oleoyl-linoleoyl-glycerol (18:1 to 18:2) ratio	22	IVW MR-Egger MM	1.72 (1.13–2.6) 1.72 (1.13–2.6) 1.45 (0.41–5.05) 1.54 (0.83–2.88)	.01065685	10.8147	.9663	0.0189	.7783
	N-acetyalliin levels	6	IVW MR-Egger MM	0.62 (0.42–0.9) 0.68 (0.28–1.67) 0.56 (0.31–1)	.0119 .4146 .0511	13.4070 13.3416	.7669	-0.0165	.8013
	N-formylanthranilic acid levels	4	IVW MR-Egger WM	0.6 (0.41–0.9) 0.6 (0.32–1.37) 0.69 (0.41–1.9)	.0136	9.0650 8.9767	.7680	-0.0163	.7713
East Asian	Heneicosapentaenoate (21:5n3) levels	E	IVW MR-Egger WM	1.49 (1.09–2.05) 1.43 (0.91–2.25) 1.24 (0.8–1.93)	.0136 .1534 .3396	5.2030 5.1426	.82772	0.0135	.8113
	1-Palmitoyl-2-palmitoleoyl-gpc (16:0/16:1) levels	16	IVW MR-Egger MM	0.52 (0.31 – 0.88) 0.58 (0.18–2.6) 0.68 (0.18–2.6)	.0140 .5815	11.2002	.7383	-0.0306	.6761
	Pyruvate to 3-methyl-2-oxobutyrate ratio	8	IVW MR-Egger MM	7.5 (1.08–2.07) 1.5 (1.08–2.07) 1.19 (0.68–2.09) 1.41 (0.89–2.22)	.0141 .0141 .5563	15.5724 14.6036	.5543	0.0481	.3396
	Glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) levels	16	IVW MR-Egger WM	1.6 (1.09–2.35) 1.34 (0.63–2.85) 1.48 (0.89–2.45)	.0161 .0161 .4536	14.6432 14.3493	.4240	0.0306	2009.
	Alpha-ketoglutarate to alanine ratio	12	IVW MR-Egger MM	0.55 (0.34–0.9) 0.42 (0.14–1.31) 0.44 (0.22–0.8)	.0176	12.9394 12.6673	.5313	0.0400	.6107
	Spermidine to histidine ratio	6	IVW MR-Egger WM	2.58 (1.18–5.66) 5.55 (0.1–296.53) 1.75 (1.6–5.09)	.0180 .4264	3.2099 3.0616	.9205	-0.0698	.7116
	N-acetyl-aspartyl-glutamate levels	35	IVW MR-Egger WM	0.83 (0.71–0.97) 0.89 (0.63–1.26) 0.86 (0.7–1.06)	.0182 .5274 .1485	42.2787 41.9671	.1558	-0.0248	.6239
								0)	(Continued)

	7
	(
	1
Ψ	
O	;
Ø	1
4	Ċ

East Name Methods of the system	Note							Heterogeneity		Pielotropy	
Apparticit to in agranting in the interest of the inter	No.	Population	Metabolite	SNP (N)	Method	OR (95% CI)	٩	Ø	d	Intercept	b
MAY	MM 133 (0.85-2.09 3475 13.0395	East Asian	Aspartate to asparagine ratio	15	W	1.48 (1.06–2.05)	.0202	13.2872	.5040	0.0255	.6275
Phosphate to 6-coopointe ratio 14	Phosphate to 6-couprofine ratio 14				MR-Egger	1.32 (0.76–2.3)	.3475	13.0395	.4448		
Headboy function levels	14 WM 2.15 to 10.75 1.451 1.420 1.451 1.			Ţ	MM.	1.33 (0.85–2.08)	.2103		i i	0	0
Number N	Haddolf tyresine levels		Phosphate to 5-oxoproline ratio	14	MM C	2.71 (1.16–6.37)	9120.	18.3300	.1454	0.0067	.9643
No. Application No. Application No. Application Applicatio	Net cloth by tyrosine levels 9 NW 0.44 (0.12-1.69) 0.251 7.4480				MM WM	2.32 (0.09-71.37)	. 2980	16.3208	1001.		
Sulfate levels Sulfat	Mary 17 10 10 10 10 10 10 10		N-lactov/ tyrosine (evels	6	<u> </u>	0.44 (0.21–0.9)	.0251	7.4480	.4892	0.0514	.7739
Sulfate levels WM 0.44 (0.16-2.76) C0264 1 2.0370 89470 0.0159 C.S-3.4-methylenetherptanoploamitine levels 19 VW 1.74 (0.82-4.74) 6.69 1.2022 8471 0.0068 C.S-3.4-methylenetherptanoploamitine levels 19 VW 1.42 (1.04-1.94) 0.029 13.5086 7.008 0.0068 Catechol sulfate levels 19 VW 1.42 (1.04-1.94) 0.029 13.5086 7.008 0.0068 1-Linolenoyl-GPC (18.3) levels 19 VW 1.42 (1.04-1.94) 0.022 18.839 5.332 0.0330 1-Linolenoyl-GPC (18.3) levels 20 VW 1.43 (1.04-1.49) 0.022 1.6082 5.775 0.0330 1-Linolenoyl-GPC (18.3) levels 20 VW 1.10 (1.07-1.68) 0.002 1.8632 5.332 0.0330 5-Hydroxymethyl-2-funoylexamitine levels 20 VW 1.10 (1.07-1.68) 0.002 1.8632 3.032 0.0470 5-Hydroxymethyl-2-funoylexamitine levels 1.70 (1.07-1.48) 0.00000 0.00000 1.404<	NW			1	MR-Egger	0.26 (0.01–8.33)	.4721	7.3542	.3930		
Name	Sulfate levels Sulf				MM	0.44 (0.16–1.19)	.1063				
Whetegoar 1148 (0.24-7.47) 643 12 (0.02 847) 1148 (0.24-7.47) 643 12 (0.02 847) 1148 (0.24-7.48) 1148 (0.24-7.48) 1148 (MN		Sulfate levels	20	W	1.71 (1.06–2.76)	.0284	12.0370	.8840	0.0159	.8542
WM 1.47 (10.47-3.46) 1149 1.47 (10.87-3.46) 1.149 1.47 (10.87-3.46) 1.149 1.47 (10.87-3.46) 1.149 1.47 (10.87-3.46) 1.149 1.47 (10.41-1.94) 1.28 (10.8-2.13) 1.187 1.34 (10.8-1.89) 1.36 (10.88-2.13) 1.187 1.34 (10.8-1.89) 1.36 (10.88-2.13) 1.187 1.34 (10.8-1.89) 1.36 (10.88-2.13) 1.187 1.34 (10.8-1.89) 1.36 (10.88-2.13) 1.36 (10.88-2	MR-Egger 1.42 (1.04-1.34) 1.149 1.350.08 1.149 1.350.08 1.149 1.350.08				MR-Egger	1.48 (0.29–7.47)	.6436	12.0022	.8471		
WM Calechol sulfate levels Calechol sulfate le	NH				MM	1.74 (0.87–3.46)	.1149				
MM-Egger 138 (10-2-17) 134 (152 134 (153 134	MH-Egger 1.38 (0.88-2.13) 1587 13.4763		Cis-3,4-methyleneheptanoylcarnitine levels	19	<u>~</u>	1.42 (1.04–1.94)	.0289	13.5036	.7608	0.0066	.8707
Catechol sufficie levels 1-Linolency-GPC (18.3) levels 2.0 NW 1.36 (1057–1.89) 0.469 16.0892 5.75 0.0330 NW 0.48 (0.25–0.99) 0.007 31.4044 0.0364 0.1670 NW 0.48 (0.25–0.99) 0.007 31.4044 0.0364 0.1670 NW 0.48 (0.25–0.99) 0.007 31.4044 0.0364 0.1670 1-(1-enyl-palmitley)-2-oleoyl-gpc (P-16:0/18:1) levels 1-Linolency-GPC (18.3) levels 1-Linolency-GPC (18	Catechol sulfate levels WMM 1.45 (103-1.89) 0.332 16.8539 MH-Egger 1.2 (0.75-1.89) 0.4569 16.0892 MH-Egger 1.2 (0.75-1.89) 0.4569 16.0892 MH-Egger 1.2 (0.75-1.89) 0.4569 16.0892 1-(1-en/t-paintion)-2-dieo/t-gibc (P-16.0/18.1) levels 18 MH-Egger 0.1 (0.01-0.66) 0.6288 26.9103 WMM 0.36 (0.35-0.96) 0.6288 26.9103 WMM 0.76 (0.1-1.06) 0.628 11.3348 S-Hydroxymethyl-2-furoylcamtitine levels 11.3 (0.35-0.96) 0.3289 11.3348 S-Hydroxymethyl-2-furoylcamtitine levels 18 MM-Egger 0.28 (0.05-1.38) 0.335 11.3348 Billirubin (Z,Z) to glucurorate ratio 0.28 (0.05-1.38) 0.336 14.7415 WMM 0.79 (0.41-0.69) 0.896 14.1081 WM 0.79 (0.41-0.69) 0.896 14.1081 WM 0.79 (0.41-0.69) 0.896 14.1081 WM 1.88 (1.04-3.24) 0.388 14.1081 WM 1.88 (1.04-3.24) 0.388 11.5035 WM 1.88 (1.04-3.24) 0.388 11.5035 WM 1.20 (0.42-3.19) 0.387 11.5035 WM 1.20 (0.42-3.19) 0.388 11.5035 WM 1.20 (0.42-3.19) 0.388 11.5035 WM 1.20 (0.42-3.19) 0.381 16.5537 WM 1.20 (0.42-6.1) 0.392 11.5035 WM 1.20 (0.32-2.91) 0.322 11.50				MR-Egger	1.38 (0.9–2.13)	.1587	13.4763	.7038		
The control surface levels	19				MM	1.35 (0.88–2.07)	.1/00				
MM-Egger 12 (17/5-1184) 0.4569 16.0892 5.175 MM-Egger 1.2 (17/5-1184) 0.4569 16.0892 5.175 MM-Egger 1.2 (17/5-1184) 0.4569 16.0892 5.175 MM-Egger 1.0 (10 (10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -	Thinolenoy-GPC (18:3) levels		Catechol sulfate levels	19	M ii	1.4 (1.03–1.89)	.0302	16.8539	.5332	0.0330	.3941
1-Linolenoyl-GPC (18.3) levels	1-Linotenoyl-GPC (18:3) levels 20 WM 1-103 (UG/1-15:9) 8934 1-Linotenoyl-GPC (18:3) levels 10-105 (Recontrol of the control of				MR-Egger	1.2 (0.75–1.89)	0.4569	16.0892	.5175		
1-(1-enyl-palmitoyl)-2-oleoyl-gipt (P.16:0/18:1) levels (P.16:0/18:1) le	1-Linoleroyi-GPC (18:3) levels 20 NW 0.48 (0.25–0.43) 330 C 31.4044 MMR-Egger 0.1 (0.01-0.66) 0.6258 26.9103 WM 0.47 (0.21–1.05) 0.6534 11.3548 WM 0.58 (0.35–0.96) 0.6239 11.7308 1-(1-enyl-palmitoyi)-2-deoyl-gpc (P-16.0/18:1) levels 17 NW 0.58 (0.35–0.96) 0.633 11.3548 5-Hydroxymethyl-2-furoylcamitine levels 17 NW 0.51 (0.26–1.01) 0.6534 11.3548 Bilirubin (Z,Z) to glucurorate ratio 17 NW 0.58 (0.41–0.96) 0.335 21.9405 2-o-methylascorbic acid levels 18 NW 0.68 (0.41–0.96) 0.356 14.7415 WM 0.68 (0.41–0.96) 0.356 14.7415 WM 0.68 (0.41–0.96) 0.356 11.5035 Hydroatechol sulfate levels 13 NW 1.88 (1.04–3.24) 0.356 11.5035 Hydroatechol sulfate levels 13 NW 1.82 (1.02–3.41) 0.368 11.5035 Hydroatechol sulfate levels 13 NW 1.22 (1.02–1.99) 0.391 16.6553 Hydroatechol sulfate levels 14 NW 1.22 (1.02–1.99) 0.391 16.653 Hydroatechol sulfate levels 15 NW 1.22 (1.02–1.99) 0.391 16.653 Hydroatechol sulfate levels 15 NW 1.22 (1.02–1.99) 0.391 16.653 Hydroatechol sulfate levels 15 NW 1.22 (1.02–1.99) 0.391 16.653 Hydroatechol sulfate levels 15 NW 1.22 (1.02–1.99) 0.391 16.653 WM 1.22 (1.02–2.91) 0.3924 12.7695 WM 1.23 (0.36–2.59) 0.3874 WM 1.23 (0.36–2.59) 0.3874			;	MM	1.03 (0.67–1.59)	.8934				
WW	NM-Egger 0.1 (0.01-0.66) 0.286 26.9103		1-Linolenoyl-GPC (18:3) levels	20	M	0.48 (0.25-0.93)	.0307	31.4044	.0364	0.1670	.1000
1-(1-enyl-palmitoyl)-2-oleoyl-gpc (P-16:0/18:1) levels 18 WW	1-(1-enyl-palmitoyi)-2-oleoyl-gpc (P-16:0/18:1) levels WM				MR-Egger	0.1 (0.01–0.66)	.0286	26.9103	.0807		
14. The myt-palmitry)-2-oleoyl-gip (P-16:018:1) levels 18 MW 0.58 (0.35-0.96) 0.328 11.7308 8.162 0.0470 MM 0.51 (0.25-1.01) 0.334 11.7308 8.162 0.0470 MM 0.51 (0.25-1.01) 0.334 11.3548 7.7871 0.0916 1.0510 0.28 (0.04-1.38) 0.3136 20.7850 1.438 0.0916 1.438 0.0716 0.28 (0.04-1.38) 0.3352 1.4715 3.238 1.4715 3.238 MM 0.56 (0.44-1.06) 0.66 (0.44-1.06) 0.66 (0.44-1.06) 0.66 (0.44-1.06) 0.66 (0.44-1.06) 0.66 (0.44-1.06) 0.66 (0.44-1.06) 0.66 (0.44-1.06) 0.66 (0.44-	14. (T-enyl-palmitoyl)-2-oleoyl-gpc (P-16:0/18:1) levels				MM	0.47 (0.21–1.05)	.0653				
MR-Egger 0.36 (0.07-1.79) 2.295 11.3548 .7871 WM 0.51 (0.26-1.01) .0534 21.9405 .1451 0.0916 MR-Egger 0.28 (0.06-1.38) .1389 20.7850 .1438 WM 0.79 (0.4-1.56) .4941 .2352 .14.7415 .3238 MR-Egger 0.7 (0.35-1.41) .3352 14.7415 .3238 WM 0.66 (0.4-1.06) .0860 .11.5035 .5687 MR-Egger 0.45 (0.07-2.82) .4092 .11.5035 .5687 MR-Egger 0.45 (0.07-2.82) .4092 .11.5035 .5687 MR-Egger 1.22 (0.34-6.1) .4920 .5820 .8824 WM 1.66 (0.71-3.89) .2440 .5820 .8824 WM 1.73 (0.82-3.64) .1500 .6553 .7318 0.0151 WM 1.71 (0.21-3.19) .0381 16.6553 .7318 WM 1.72 (0.22-3.14) .9994 12.7695 .4658 WM 1.22 (0.02-2.31) .9994 12.7695 .4658	MN-Egger 0.36 (0.07–1.79) .2295 11.3548 WM 0.51 (0.26–1.01) .0534 21.9405 MR-Egger 0.28 (0.06–1.38) .1389 20.7850 WM 0.79 (0.4–1.56) .4941 14.7532 WM 0.68 (0.47–0.98) .0364 14.7415 WM 0.68 (0.47–0.98) .0364 14.7415 WM 1.88 (1.04–3.41) .3352 14.7415 WM 1.88 (1.04–3.41) .0368 14.1081 WM 1.82 (1.04–3.41) .0368 11.5035 WM 1.66 (0.71–3.89) .2440 5.8620 WM 1.82 (1.04–3.2) .0373 5.8991 WM 1.22 (0.43–6.1) .4920 5.8620 WM 1.73 (0.82–3.64) .1550 WM 1.73 (0.82–3.64) .1550 WM 1.74 (1.02–1.98) .0381 16.553 WM-Egger 1.29 (0.67–2.46) .1500 WM 1.72 (1.02–2.46) .1501 WM-Egger 1.03 (0.54–2.46) .1501 WM-Egger 1.03 (0.58–2.46) .1501 WM-Egger 1.03 (0.58–2.364) .1501 WM-Egger 1.03 (0.58–2.364) .1501 WM-Egger 1.03 (0.58–2.59) .5874	East Asian	1-(1-enyl-palmitoyl)-2-oleoyl-gpc (P-16:0/18:1) levels	18	M	0.58 (0.35-0.96)	.0328	11.7308	.8162	0.0470	.5484
WM 0.51 (0.26-1.01) .0534 .1451 0.0916 NW 0.57 (0.33-0.96) .0335 21.9405 .1451 0.0916 NM 0.28 (0.04-1.56) .4941 .1752 .3962 -0.0056 NM 0.78 (0.47-0.98) .0384 14.7532 .3952 -0.0056 15 NW 0.05 (0.47-0.98) .0850 14.7415 .3238 -0.0056 15 NW 1.88 (1.04-3.41) .0368 14.1081 .4417 0.1629 NM 1.66 (0.47-0.98) .0850 14.1081 .4417 0.1629 NM 1.88 (1.04-3.41) .0368 14.1081 .4417 0.1629 NM 1.60 (0.77-3.89) .2409 11.5035 .5877 .8824 NM 1.73 (0.82-3.64) .1500 .8824 .0.0151 NW 1.42 (1.02-1.38) .0381 16.5317 .6831 NM 1.72 (1.02-2.91) .0422 13.8896 .4580 0.0715 NM 1.72 (1.02-2.91) .0422 13.8896 .4580 0.0715 NM	17 WM 0.51 (0.26-1.01) .0534 MR-Eger 0.28 (0.06-1.38) .1389 20.7850 MM 0.79 (0.4-1.56) .49405 MM 0.79 (0.4-1.56) .0364 14.7532 MM 0.66 (0.4-1.56) .0364 14.7415 MM 0.65 (0.4-1.56) .0364 14.7415 MM 0.65 (0.4-1.56) .0365 14.7415 MM 1.88 (1.04-3.41) .0368 14.7415 MM 1.88 (1.04-3.41) .0368 14.7415 WM 1.82 (1.04-3.24) .0368 11.5035 WM 1.82 (1.04-3.24) .0368 11.5035 WM 1.73 (0.82-3.64) .1500 5.8620 WM 1.73 (0.82-3.64) .1500 5.8620 WM 1.73 (0.82-3.64) .1500 16.6553 MM 1.72 (1.02-1.98) .0381 16.6553 MM 1.72 (1.02-1.98) .0381 16.5517 WM 1.71 (1.02-1.98) .0381 16.553 MM 1.72 (1.02-2.91) .0422 13.8896 MM				MR-Egger	0.36 (0.07–1.79)	.2295	11.3548	.7871		
17 NW	17 IWW 0.57 (0.33–0.96) .0335 21.9405 WM 0.79 (0.4–1.38) .1389 20.7850 WM 0.79 (0.4–1.56) .4941 WW 0.68 (0.47–0.98) .0364 14.7532 WM 0.65 (0.4–1.06) .0868 WM 1.88 (1.04–3.41) .0368 14.1081 WM 1.88 (1.04–3.41) .0368 14.1081 WM 1.82 (1.04–3.2) .0373 5.8991 WM 1.82 (1.04–3.2) .0373 5.8991 WM 1.73 (0.82–3.64) .150 WM 1.73 (0.82–3.64) .150 WM 1.72 (1.02–1.98) .0381 16.6553 WM 1.72 (1.02–1.98) .0452 13.8896 WM 1.72 (1.02–2.91) .0422 13.8896 WM-Egger 1.0.32–2.91) .0422 13.8896 WM-Egger 1.0.32–2.91) .0542 WM 1.23 (0.58–2.59) .5874				MM	0.51 (0.26–1.01)	.0534				
MR-Egger 0.28 (0.06-1.38) .1389 20.7850 .1438 WM 0.79 (0.4-1.56) .4941 MR-Egger 0.78 (0.4-1.56) .4941 MR-Egger 0.78 (0.4-1.69) .0364 14.752 .3952 -0.0056 MR-Egger 0.65 (0.4-1.06) .0368 14.7415 .3238 WM 1.88 (1.04-3.4) .0368 14.1081 .4417 0.1629 WM 1.82 (1.04-3.2) .0373 5.8991 .9211 0.0155 WM 1.82 (1.04-3.2) .0373 5.8991 .9211 0.0155 WM 1.73 (0.82-3.64) .1500 Z2 WW 1.42 (1.02-2.19) .0381 16.6553 .7318 0.0151 WM 1.41 (0.91-2.18) .0452 13.8896 .4580 0.0715 WM 1.72 (1.02-2.91) .0422 13.8896 .4589 WM 1.23 (0.58-2.59) .5874	MR-Egger 0.28 (0.06–1.38) .1389 20.7850 WM 0.79 (0.4–1.56) .4941 MR-Egger 0.7 (0.35–1.41) .3352 14.7415 WM 0.65 (0.4–1.06) .0850 15 WW 1.88 (1.04–3.41) .0368 14.1081 WM 1.88 (1.04–3.42) .0368 14.1081 WM 1.82 (1.04–3.2) .2440 WM 1.82 (1.04–3.2) .0373 5.8991 WM 1.82 (0.043–6.1) .4920 5.8620 WM 1.73 (0.82–3.64) .150 22 IVW 1.42 (1.02–1.98) .0381 16.6553 WM 1.74 (1.02–1.98) .0381 16.5317 WM 1.72 (1.02–2.91) .0422 13.8896 WM 1.72 (1.02–2.91) .0422 13.8896 WM 1.23 (0.58–2.59) .5874 WM 1.23 (0.58–2.59) .5874		5-Hydroxymethyl-2-furoylcarnitine levels	17	W	0.57 (0.33-0.96)	.0335	21.9405	.1451	0.0916	.3756
15 WW 0.79 (0.4-1.56) .4941 .4.7532 .3952 -0.0056 .4.70 .6.8 (0.47-0.98) .0.364 14.7532 .3952 -0.0056 .2.70 .2.40 .0.86 .4.7415 .3238 .2.385 .2.40 .0.86 .2.40 .2.40 .2.867 .2.807	WM 0.79 (0.4–1.56) .4941 I5 IWW 0.68 (0.47–0.98) .0364 14.7532 MR-Egger 0.7 (0.35–1.41) .3352 14.7415 WM 0.66 (0.4–1.06) .0850 14.7415 MR-Egger 0.7 (0.7–2.82) .0962 11.5035 WM 1.88 (1.04–3.41) .0368 11.5035 WM 1.82 (1.04–3.2) .0373 5.8991 MM-Egger 1.66 (0.71–3.89) .2440 5.8620 WM 1.73 (0.82–3.64) .150 5.8620 WM 1.72 (1.02–1.98) .0373 5.8620 MM-Egger 1.62 (0.43–6.1) .4920 5.8620 WM 1.72 (0.22–3.1) .150 16.6553 WM 1.72 (1.02–2.91) .0422 13.8896 MR-Egger 1 (0.32–2.91) .9994 12.7695 WM 1.23 (0.58–2.59) .5874				MR-Egger	0.28 (0.06–1.38)	.1389	20.7850	.1438		
15 IVW 0.68 (0.47–0.98) .0364 14,7532 .3952 -0.0056 MR-Egger 0.7 (0.35–1.41) .3352 14,7415 .3238 MR-Egger 0.7 (0.35–1.41) .0368 14,1081 .4417 0.11629 MR-Egger 1.66 (0.71–3.89) .2440 .58620 .8824 MR-Egger 1.62 (0.43–6.1) .0373 5.8991 .9211 0.0155 MR-Egger 1.62 (0.43–6.1) .0381 16.6553 .7318 0.0151 MR-Egger 1.29 (0.67–2.46) .4531 16.5317 6.831 MR-Egger 1.29 (0.67–2.46) .1201 MM 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1.032–3.12) .9994 12.7695 .4658	15 IVW 0.68 (0.47–0.98) .0364 14.7532 WMP-Egger 0.7 (0.35–1.41) .3352 14.7415 WMM 0.65 (0.4–1.06) .0850 14.1081 MR-Egger 0.45 (0.07–2.82) .0373 5.8991 MR-Egger 1.62 (0.43–6.1) .9373 5.8991 MMP-Egger 1.62 (0.43–6.1) .4920 5.8620 WM 1.73 (0.82–3.64) .1500 WM 1.42 (1.02–1.98) .0373 16.6553 MMP-Egger 1.29 (0.67–2.46) .4531 16.5317 WM 1.42 (1.02–1.98) .0381 16.553 WM 1.72 (1.02–2.91) .0422 13.8896 MR-Egger 1 (0.32–2.12) .9994 12.7695 WMP-Egger 1 (0.32–2.12) .9994 12.7695				MM	0.79 (0.4–1.56)	.4941				
MR-Egger 0.7 (0.35–1.41) .3352 14,7415 .3238 WM 0.65 (0.4–1.06) .0850 MR-Egger 0.45 (0.07–2.82) .4092 11.5035 .5687 WM 1.66 (0.71–3.89) .2440 MR-Egger 1.62 (0.43–6.1) .0373 5.8991 .9211 0.0155 WM 1.72 (1.02–1.98) .0381 16.6553 .7318 0.0151 WM 1.72 (1.02–1.98) .1201 MR-Egger 1.03 (0.67–2.46) .4531 16.5317 6.831 WM 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 WM-Egger 1.03 (0.58–2.59) .5874	MR-Egger 0.7 (0.35–1.41) .3352 14.7415 WM 0.65 (0.4–1.06) .0850 15		Bilirubin (Z,Z) to glucuronate ratio	15	W	0.68 (0.47-0.98)	.0364	14.7532	.3952	-0.0056	.9206
WM 0.65 (0.4–1.06) .0850 15 IVW 1.88 (1.04–3.41) .0368 14.1081 .4417 0.1629 MR-Egger 0.45 (0.71–3.89) .2440 .5897 .5887 MR-Egger 1.66 (0.71–3.89) .2440 .8824 MR-Egger 1.62 (0.43–6.1) .4920 5.8620 .8824 MM 1.73 (0.82–3.64) .0381 16.5317 .6831 MR-Egger 1.29 (0.67–2.46) .4531 16.5317 .6831 WM 1.71 (0.91–2.18) .1201 .4531 .6831 WM 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1 (0.32–3.12) .9994 12.7695 .4658	WM 0.65 (0.4–1.06) .0850 14.1081 MR-Egger 0.45 (0.07–2.82) .4092 11.5035 WM 1.88 (1.04–3.41) .0368 14.1081 WM 1.66 (0.71–3.89) .2440 MR-Egger 1.62 (0.43–6.1) .4920 5.8620 WM 1.73 (0.82–3.64) .1500 MR-Egger 1.29 (0.67–2.98) .0381 16.5553 WM 1.72 (1.02–1.98) .0381 16.5553 WM 1.72 (1.02–2.91) .0422 13.8896 WM 1.22 (1.02–2.91) .0422 13.8896 WM 1.23 (0.58–2.59) .5874				MR-Egger	0.7 (0.35–1.41)	.3352	14.7415	.3238		
15 IVW 1.88 (1.04–3.41) .0368 14,1081 .4417 0.1629 MR-Egger 0.45 (0.07–2.82) .4092 11,5035 .5687 WM 1.66 (0.71–3.89) .2440 .58991 .9211 0.0155 MR-Egger 1.62 (0.43–6.1) .4920 5.8991 .9211 0.0155 22 IVW 1.72 (1.02–3.64) .0381 16.6553 .7318 0.0151 WM 1.72 (1.02–2.94) .4531 16.5317 6.831 WM 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1 (0.32–3.12) .9994 12.7695 .4658	15 IVW 1.88 (1.04–3.41) .0368 14.1081 MR-Egger 0.45 (0.07–2.82) .4092 11.5035 WM 1.66 (0.77–3.89) .2440 .1.5035 MR-Egger 1.62 (0.43–6.1) .4920 5.8620 WM 1.73 (0.82–3.64) .1500 22 IVW 1.73 (0.82–3.64) .1500 MR-Egger 1.29 (0.67–2.46) .4531 16.55317 WM 1.72 (1.02–1.98) .0422 13.8896 MR-Egger 1 (0.31–2.19) .0422 13.8896 WM 1.23 (0.58–2.59) .5874				MM	0.65 (0.4–1.06)	.0850				
MR-Egger 0.45 (0.07 – 2.82) 4.092 11.5035 5.5687 WM 1.66 (0.77 – 3.89) 2.440 MR-Egger 1.62 (0.43 – 6.1) 4.920 5.8620 8.824 WM 1.73 (0.82 – 3.64) 1.500 Z2 IVW 1.42 (1.02 – 1.98) 1.201 WM 1.72 (1.02 – 2.91) 1.201 15 IVW 1.72 (1.02 – 2.91) 1.201 MR-Egger 1 (0.32 – 3.12) 9.994 12.7695 4.658 WM 1.23 (0.58 – 2.59) 5.874	MR-Egger 0.45 (0.07 – 2.82) .4092 11.5035 WM 1.66 (0.77 – 3.89) .2440 1.80 (1.04 – 3.2) .0373 5.8991 MR-Egger 1.62 (0.43 – 6.1) .4920 5.8620 WM 1.73 (0.82 – 3.64) .1500 22 IVW 1.42 (1.02 – 1.98) .0381 16.6553 MR-Egger 1.29 (0.67 – 2.46) .4531 16.5317 WM 1.72 (1.02 – 2.91) .0422 13.8896 MR-Egger 1 (0.32 – 3.12) .9994 12.7695 WM 1.23 (0.58 – 2.59) .5874		2-o-methylascorbic acid levels	15	W	1.88 (1.04–3.41)	.0368	14.1081	.4417	0.1629	.1306
WM 1.66 (0.71–3.89) .2440 .2440 I3 IWW 1.82 (1.04–3.2) .0373 5.8991 .9211 0.0155 MR-Egger 1.62 (0.43–6.1) .4920 5.8620 .8824 WM 1.73 (0.82–3.64) .1500 .8824 .00151 MR-Egger 1.29 (0.67–2.64) .4531 16.5517 .6831 WM 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1 (0.32–3.12) .9994 12.7695 .4658 WM 1.23 (0.58–2.59) .5874 .5874	WM 1.66 (0.71–3.89) .2440 WM 1.82 (1.04–3.2) .0373 5.8991 MR-Egger 1.62 (0.43–6.1) .4920 5.8620 WM 1.73 (0.82–3.64) .1500 WM 1.72 (0.82–3.64) .0381 16.6553 MR-Egger 1.29 (0.67–2.46) .4531 16.5317 WM 1.72 (1.02–2.91) .0422 13.8896 MR-Egger 1 (0.32–3.12) .9994 12.7695 WM 1.23 (0.58–2.59) .5874				MR-Egger	0.45 (0.07–2.82)	.4092	11.5035	.5687		
13 IVW 1.82 (1.04–3.2) .0373 5.8991 .9211 0.0155 MR-Egger 1.62 (0.43–6.1) .4920 5.8620 .8824 WM 1.73 (0.82–3.64) .1500 22 IVW 1.42 (1.02–1.98) .0381 16.553 .7318 0.0151 WM 1.41 (0.91–2.18) .1201 15 IVW 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1.23 (0.58–2.93) .5874 WM 1.23 (0.58–2.59) .5874	13 I/W 1.82 (1.04–3.2) .0373 5.8991 MR-Egger 1.62 (0.43–6.1) .4920 5.8620 WM 1.73 (0.82–3.64) .1500 Z2 I/W 1.42 (1.02–1.98) .0381 16.6553 WR-Egger 1.29 (0.67–2.46) .4531 16.5317 WM 1.72 (1.02–2.91) .0422 13.8896 WR-Egger 1 (0.32–2.91) .9994 12.7695 WM 1.23 (0.58–2.59) .5874				MM	1.66 (0.71–3.89)	.2440				
MR-Egger 1.62 (0.43-6.1) .4920 5.8620 .8824 WM 1.73 (0.82-3.64) .1500 22	MR-Egger 1.62 (0.43-6.1) .4920 5.8620 WM 1.73 (0.82-3.64) .1500 Z2 IVW 1.42 (1.02-1.98) .0381 16.6553 MR-Egger 1.29 (0.67-2.46) .4531 16.5317 WM 1.72 (1.02-2.91) .0422 13.8896 MR-Egger 1 (0.32-2.91) .9994 12.7695 WM 1.23 (0.58-2.59) .5874		4-Allylcatechol sulfate levels	13	<u>~</u>	1.82 (1.04–3.2)	.0373	5.8991	.9211	0.0155	.8508
WM 1,73 (0.82–3.64) .1500 22	WM 1.73 (0.82–3.64) .1500 .16.6553				MR-Egger	1.62 (0.43–6.1)	.4920	5.8620	.8824		
22 NW 1.42 (1.02–1.98) .0381 16.553 .7318 0.0151 MR-Egger 1.29 (0.67–2.46) .4531 16.5317 .6831 WM 1.41 (0.91–2.18) .1201 15 NW 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1 (0.32–3.12) .9994 12.7695 .4658 WM 1.23 (0.58–2.59) .5874	22 IWW 1.42 (1.02–1.98) .0381 16.6553 MR-Egger 1.29 (0.67–2.46) .4531 16.5317 WM 1.72 (1.02–2.91) .0422 13.8896 MR-Egger 1.03(2–2.91) .9994 12.7695 WM 1.23 (0.58–2.59) .5874				MM	1.73 (0.82–3.64)	.1500				
MR-Egger 1.29 (0.67–2.46) .4531 16.5317 .6831 WM 1.41 (0.91–2.18) .1201 15 IVW 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1 (0.32–3.312) .9994 12.7695 .4658 WM 1.23 (0.58–2.59) .5874	MR-Egger 1.29 (0.67–2.46) .4531 16.5317 WM 1.41 (0.91–2.18) .1201 15 IVW 1.72 (1.02–2.91) .0422 13.8896 MR-Egger 1 (0.32–3.12) .9994 12.7695 WM 1.23 (0.58–2.59) .5874		1-Linoleoyl-GPE (18:2) levels	22	M	1.42 (1.02–1.98)	.0381	16.6553	.7318	0.0151	.7289
WM 1.41 (0.91–2.18) .1201 15 IVW 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1 (0.32–3.312) .9994 12.7695 .4658 WM 1.23 (0.58–2.59) .5874	WM 1.41 (0.91–2.18) .1201 15 IVW 1.72 (1.02–2.91) .0422 13.8896 MR-Egger 1 (0.32–3.12) .9994 12.7695 WM 1.23 (0.58–2.59) .5874				MR-Egger	1.29 (0.67–2.46)	.4531	16.5317	.6831		
15 IVW 1.72 (1.02–2.91) .0422 13.8896 .4580 0.0715 MR-Egger 1 (0.32–3.1.2) .9994 12.7695 .4658 WM 1.23 (0.58–2.59) .5874	15 IVW 1.72 (1.02–2.91) .0422 13.8896 MR-Egger 1 (0.32–3.12) .9994 12.7695 WM 1.23 (0.58–2.59) .5874				MM	1.41 (0.91–2.18)	.1201				
1 (0.32–3.12)9994 12.7695 1.23 (0.58–2.59)5874	1 (0.32–3.12)9994 12.7695 1.23 (0.58–2.59)5874		Glycerophosphoethanolamine levels	15	W	1.72 (1.02–2.91)	.0422	13.8896	.4580	0.0715	.3092
1.23 (0.58–2.59)	1.23 (0.58–2.59)				MR-Egger	1 (0.32–3.12)	.9994	12.7695	.4658		
					MM	1.23 (0.58–2.59)	.5874				

	. •
_	
d)	
	:
Ω	Ι.
ס.	
-	(

						:		:	
						Heterogeneity		Pielotropy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	Ь	b	Ь	Intercept	Ь
East Asian	Retinol to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio	18	W	1.56 (1.01–2.4)	.0433	24.8466	.0982	0.0755	.2968
			MR-Egger ww	0.97 (0.37–2.53)	.9575	23.1626	.1095		
	1-Dihomo-linolenyiglycerol (20:3) levels	13	M	1.87 (1.01–3.45)	.0461	15.5200	.2142	0.0803	.5334
			MR-Egger	0.93 (0.1–8.54)	.9502	14.9579	.1844		
	Olimpa de la constantina del constantina de la constantina de la constantina del constantina de la con	Ç	MIN	1.38 (0.62–3.1)	.4309	0	0000		1000
	Giutaniate to Kynurenine Fano	0	IVW MR-Fager	0.52 (0.2/ -0.39) 0.23 (0.04-1.4)	1329	23.0016	.0828	0.0903	.3033
			MM	0.35 (0.16–0.78)	.0105		-		
	3-Methyl-2-oxovalerate levels	5	MM	0.35 (0.12–0.99)	.0475	0.9170	.9221	-0.3963	.4997
			MR-Egger	30.38 (0-2914355.81)	2009.	0.3312	.9541		
	- v + + C - L	;	MM	0.38 (0.11–1.32)	.1269	L	1	0	0
	ED IA levels	Ε	M L	0.53 (0.28–0.99)	.0479	6.8895	7358	-0.1059	.3361
			MK-Egger WM	0.64 (0.2–8.09)	.7950	5.8569	./542		
	Glucose-to-mannose ratio	21	<u>~</u>	0.7 (0.48–1)	.0481	22.8218	.2976	-0.0128	.8232
			MR-Egger	0.76 (0.33–1.73)	.5189	22.7604	.2481		
			MM	0.72 (0.44–1.18)	.1967				
	Retinol to linoleoyl- arachidonoyl-glycerol (18:2 to 20:4) [2] ratio	15	M/I	1.41 (1–1.99)	.0489	5.7364	.9727	0.0453	.4605
			MR-Egger	1.08 (0.5–2.33)	.8437	5.1579	.9715		
			MM	1.37 (0.85–2.2)	.1993				
East Asian	Threonate levels	13	MA	1.45 (1–2.09)	.0492	12.2787	.4236	0.0077	.9157
			MR-Egger	1.4 (0.7–2.8)	.3581	12.2656	.3440		
			M M	1.52 (0.94–2.47)	.0898				
Middle East	Ethylmalonate levels	61	<u>~</u>	1.43 (1.19–1.73)	.0002	54.7498	.6674	-0.0005	.9879
			MR-Egger	1.43 (1.07–1.93)	.0208	54.7496	.6328		
			MM	1.37 (1.02–1.82)	.0350				
	Spermidine to ergothioneine ratio	19	<u></u>	0.81 (0.72–0.91)	9000.	11.2851	.8819	-0.0019	.9517
			MR-Egger	0.81 (0.71–0.93)	.0085	11.2813	.8416		
			MM:	0.81 (0.69–0.95)	7110.		6	1	
	laurine to glutamate ratio	20	MAI C	2.4 (1.39–4.13)	700.	9.3095	.9680	-0.0589	.4338
			MM—Egger MM	3.04 (1.14-11.03)	.0427	8,6683	8008.		
	Min inneital lavole	90	IVIVI VVVI	2.37 (1.09–3.12) 2.12 (1.22.2.4E)	/070.	0E 017E	7447	0.0750	2457
	Myd-lilusitul levels	07	MB_Edger	7 (1.32–3.43) 7 (1.38–12.53)	0200.	23.317.0	7444.	-0.07	7647.
			DBB MM	1.92 (0.98–3.78)	.0587	2000	7		
	Taurolithocholate 3-sulfate levels	23	<u>~</u>	0.52 (0.33–0.83)	.0056	23.1388	.3939	0.0837	.1886
) I	MR-Foner	0.3 (0.12–0.75)	0176	21.2686	4426))
			MM	0.68 (0.37–1.26)	.2218	1	-		
	Alpha-ketobutyrate to 3-methyl-2-oxobutyrate ratio	22	MAI	1.91 (1.19–3.06)	.0071	18.2615	.6324	-0.0206	.7526
			MR-Egger	2.19 (0.83–5.81)	.1295	18.1594	.5769		
			WM	2.33 (1.11–4.88)	.0247				
								0)	(Continued)

_	. 7
Φ.	1
=	١:
(0)	
Ø.	П
4	1

						Heterogeneity		Pleiotropy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	d	D	d	Intercept	Ь
Middle East	Glutamate to glutamine ratio	22	IVW MR-Egger	0.53 (0.33–0.86) 0.78 (0.23–2.68)	.0102	15.3621 14.9190	.8044	-0.0492	.5132
	11 Beta-hydroxyetiocholanolone glucuronide levels	25	WM IVW MR-Egger	0.33 (0.26–1.06) 1.85 (1.15–2.96) 1.82 (0.7–4.73)	.0106 .2285	31.5004 31.4989	.1399	0.0022	.9741
	3-Formylindole levels	34	WM IVW MR-Egger	1.7 6 (0.95–3.26) 1.4 (1.08–1.82) 1.78 (1.19–2.68)	.0739 .0107 .0090	17.3762 15.1488	.9883	-0.0610	.1454
	13-HODE + 9-HODE levels	15	WM IVW MR-Egger	1.35 (0.94–1.94) 0.51 (0.29–0.88) 0.52 (0.18–1.49)	.1053 .0167 .2439	12.9101 12.9083	.5336	-0.0028	.9674
	Tyramine O-sulfate levels	17	WM IVW MR-Egger	0.52 (0.23–1.17) 2.06 (1.14–3.73) 1.46 (0.29–7.44)	.1138 .0170 .6547	14.4652 14.2673	.5641	0.0449	.6628
	3-Hydroxyisobutyrate to adenosine 5'-diphosphate ratio	21	www IVW MR-Egger	0.71 (0.53–0.94) 0.71 (0.53–0.94) 0.9 (0.57–1.42)	.0177 .0177 .6586	15.4088 13.6465	.7526	-0.0633	.2001
	4-Hydroxy-2-oxoglutaric acid levels	25	WM IVW MR-Egger	0.8 (0.53-1.23) 2.05 (1.11-3.79) 1.71 (0.43-6.84)	.3109 .0216 .4581	39.7832 39.6369	.0226	0.0246	.7734
Middle East	N-Stearoyl-sphingosine (d18:1/18:0) levels	23	WM IVW MR-Egger	1.41 (0.68–2.90) 0.6 (0.39–0.93) 0.32 (0.1–1.1)	.3556	20.8341 19.7073	.5310	0.0812	3002
	2-Hydroxy-4-(methylthio)butanoic acid levels	26	WM IVW MR-Egger	0.52 (0.28–0.96) 0.63 (0.42–0.94) 0.63 (0.28–1.38)	.0339 .2560	21.1211 21.1207	.6858	0.0009	.9857
	Cortisone to cortisol ratio	18	WM IVW MR-Egger	0.8 (0.46–1.4) 2.12 (1.1–4.12) 0.73 (0.15–3.59)	.4372 .0256 .6995	19.8887 17.6125	.3471	0.1209	.1697
	N1-methylinosine levels	25	WW IVW MR-Egger	2.36 (1.1 – 2.03) 1.76 (1.07 – 2.91) 2.36 (0.59 – 9.41) 1.37 (0.69, 9.76)	.0303 .0268 .2347	16.8257 16.6265	.8560	-0.0316	.6595
	Salicylate to caprylate (8:0) ratio	17	WW IVW MR-Egger	1.85 (1.07–3.2) 1.85 (1.07–3.2) 1.79 (0.49–6.5)	.3921	14.4466 14.4432	.5655	0.0041	.9543
	2,3-Dihydroxy-5-methylthio-4-pentenoate levels	26	WW IVW MR-Egger	0.54 (0.31–0.94) 0.54 (0.11–2.97) 0.54 (0.11–2.97)	.0463 .0283 .4822	13.3700 13.3700	.9716 .9596	0.0003	0266.
	N-acetyl-2-aminooctanoate levels	36	wwl IVW MR-Egger WM	0.54 (0.26–1.15) 0.72 (0.54–0.97) 0.83 (0.51–1.34) 0.77 (0.52–1.13)	.1126 .0299 .4479 .1852	36.0884 35.6174	.3921	-0.0293	.5071
								(0,0)	(Continued)

	, 1
$\overline{}$	
d)	
$\underline{\Psi}$	
Ω	1
D.	
	(

						Heterogeneity		Pleiotropy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	Ь	0	d	Intercept	Ь
Middle East	Taurine levels	14	IVW MR-Egger	0.52 (0.29–0.94) 0.5 (0.16–1.58)	.0301	7.6962 7.6871	.8628	0.0072	.9254
	Lactosy/-N-palmitoy/-sphingosine (d18:1/16:0) levels	22	WM IVW MR-Egger	0.62 (0.27–1.43) 0.59 (0.36–0.95) 0.6 (0.14–2.6)	.2616 .0312 .5049	10.7939	.9667	-0.0028	.9729
	Bilirubin (Z,Z) to androsterone glucuronide ratio	41	WM IVW MR-Egger	0.7 (0.35–1.4) 1.31 (1.02–1.67) 1.23 (0.85–1.78)	.3077 .0313 .2766	27.2977 27.1058	.9370	0.0149	.6637
	1-Palmitoyl-GPE (16:0) levels	20	WM IVW MR-Egger	1.27 (0.9–1.79) 0.62 (0.4–0.96) 0.62 (0.19–2.06)	.0320	13.6132 13.6132	.8058	-0.0001	.9994
	N-stearoyi-sphinganine (d18:0/18:0) levels	=	WM IVW MR-Egger	0.56 (0.3–1.02) 0.5 (0.27–0.94) 0.45 (0.1–2.11)	.0320	8.7142	.5594	0.0142	.8818
	Glutamine degradant levels	28	WW IVW MR-Egger	0.57 (0.24–1.34) 0.6 (0.38–0.96) 0.45 (0.16–1.29)	.0324	17.6893 17.3384	.9127 .8985	0.0325	.5587
	Tridecenedioate (C13:1-DC) levels	22	www IVW MR-Egger	0.49 (0.26–0.33) 0.59 (0.36–0.96) 0.39 (0.13–1.17)	.0289 .0331 .1083	11.3832 10.7199	.9548	0.0512	.4250
Middle East	N-acety/proline levels	17	www IVW MR-Egger	0.46 (0.23–0.32) 2.03 (1.06–3.91) 3.34 (0.45–25.03) 2.50 (4.52, 9.35)	.0333 .0333 .2586	20.8007	.1863	-0.0571	.6159
	N-acetyl-aspartyl-glufamate levels	84	www IVW MR-Egger	3.38 (1.33–8.38) 1.15 (1.01–1.3) 1.24 (0.99–1.55)	.0032 .0342 .0680	94.4424 93.7036	.1837	-0.0309	.4237
	Xanthurenate levels	23	WW IVW MR-Egger	1.67 (1.04–1.49) 1.67 (1.04–2.69) 2.44 (0.7–8.55)	.0345	18.4574 18.0456	.6786 .6461	-0.0504	.5280
	Perfluorooctanoate levels	21	ww IVW MR-Egger	1.75 (0.87–3.5) 0.54 (0.3–0.96) 0.45 (0.1–2.1)	.0372 .3223	23.1113 23.0380	.2834	0.0217	.8084
	Palmitoylcarnitine levels (Metabolon platform)	26	Www IVW MR-Egger	0.62 (0.39–0.97) 0.62 (0.39–0.97) 0.55 (0.19–1.6)	.0377	17.5792 17.5151	.8597 .8259	0.0165	.8023
	Lignoceroylcarnitine (C24) levels	25	IVW MR-Egger MM	0.66 (0.44–0.98) 0.82 (0.35–1.91) 0.82 (0.35–1.91)	.0382 .0382 .6544	26.9693 26.5671	.3059	-0.0380	.5608
	Androstenediol (3 beta, 17 beta) monosulfate (2) levels	28	WM IVW MR-Egger WM	1.58 (1.02–2.45) 1.07 (0.4–2.82) 1.52 (0.81–2.85)	.0385 .0385 .8940 .1901	15.6267 14.8372	.9597	0.0506	.3824
								9)	(Continued)

_	
ወ 📗	
= :	
(0)	
₪ I	
≝	

						Heterogeneity		Pleiotropy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	d	0	۵	Intercept	Ь
Middle East	2-Methylserine levels	18	IVW MR-Egger	1.81 (1.03–3.18) 3.44 (0.89–13.3)	.0392	17.0208 15.9725	.4530	-0.0879	.3211
	N-acetylserine levels	26	IVW MR-Egger	0.63 (0.2–3.13) 0.63 (0.4–0.98) 0.5 (0.2–1.28)	.0394 .0394 .1597	17.2396 16.9493	.8508	0.0342	.5950
	Glycosyl-N-tricosanoyl-sphingadienine (d18:2/23:0) levels	25	WM IVW MR-Egger	0.74 (0.4–1.36) 0.67 (0.46–0.98) 0.67 (0.29–1.56)	.3260 .0399 .3591	21.2894 21.2890	.6216	0.0011	.9845
	Beta-hydroxyisovalerate levels	25	WM IVW MR-Egger	0.39 (0.34–1.03) 1.55 (1.02–2.36) 2.85 (1.23–6.62)	.0618 .0417 .0225	21.8935 19.1771	.5856	-0.0944	.1129
	Gamma-glutamylmethionine levels	24	WMI IVW MR-Egger	1.94 (1.08–3.5) 0.56 (0.32–0.98) 0.24 (0.05–1.23) 0.51 (0.34–1.05)	.0277 .0421 .1017	25.8038 24.5066	.3102	0.0866	.2922
	Dihydrocaffeate sulfate (2) levels	27	WWI IVW MR-Egger	0.31 (0.24–1.03) 0.64 (0.42–0.99) 0.45 (0.16–1.27)	.0000 .0437 .1445	29.3497 28.7161	.2954	0.0541	.4646
	Arginine to glutamate ratio	25	WM IVW MR-Egger	0.04 (0.35–1.18) 1.67 (1.01–2.74) 1.94 (0.6–6.26)	.1553	23.4446 23.3643	.4937	-0.0188	.7811
Middle East	Blood sugar levels	22	WM IVW MR-Egger	1.42 (0.68–2.95) 1.69 (1.01–2.82) 2.75 (0.86–8.79)	.3469 .0445 .1036	19.2234 18.3864	.5708	-0.0593	.3712
	4-Hydroxyphenylacetoylcamitine levels	28	WM IVW MR-Egger	0.68 (0.72~3.04) 0.68 (0.47~0.99) 0.61 (0.27~1.36)	.2363	26.0823 25.9843	.5140	0.0177	.7567
	3-Methylkanthine levels	21	WMI IVW MR-Egger	0.76 (0.44–1.32) 1.58 (1.01–2.47) 1.48 (0.67–3.28)	.3269 .0449 .3449	9.8214 9.7849	.9713 .9581	0.0103	.8506
	Sphingomyelin (d18:1/24:1, d18:2/24:0) levels	17	WM IVW MR-Egger	7.33 (1.71–3.41) 7.33 (1.71–3.43) 7.36 (1.71–31.32)	.3048 .0451 .0169	15.5945 11.4447	.4816	-0.1831	.0597
	N-Acetylkynurenine (2) levels	25	WWI IVW MR-Egger	2.73 (1.10–0.0) 0.75 (0.57–0.99) 0.7 (0.43–1.15)	.0457	20.9821 20.8683	.5891	0.0184	.7390
	Pentadecanoate (15:0) levels	20	WW IVW MR-Egger	0.81 (0.38–1.17) 1.71 (1.01–2.89) 1.36 (0.46–3.99)	.0457	14.5167 14.2883	.7528	0.0332	.6385
	Ceramide (d18:1/16:0) levels	56	wivi IVW MR-Egger WM	1.41 (0.64–3.1) 0.62 (0.39–0.99) 0.64 (0.22–1.85) 0.66 (0.34–1.28)	.3919 .0457 .4168	20.4800 20.4761	.7212	-0.0039	.9506
				,				99)	(Continued)

	. 7
_	
d)	
≝ .	
9	1
Ø	
-1	١(

						Lotorogonoity		Dloiotrony	
					'	iletel ogenery	•	i icioni opy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	Ь	Ø	Ь	Intercept	Ь
Middle East	N-acetyl-2-aminoadipate levels	25	WVI	0.7 (0.49–0.99)	.0459	23.3699	.4981	0.0257	.5866
			MR-Egger	0.61 (0.33–1.12)	.1251	23.0649	.4570		
		Ç	MAN	0.7 1 (0.43–1.17)	. 1703	101000	0.00	0000	000
	Choine levels	<u>n</u>	MAI CV	0.54 (0.29–0.99)	.04/3	22.3185	2812.	-0.0523	6280.
				0.66 (0.29–1.47)	.3058	21.9140	0001.		
	N-Acetylhistidine levels	27	M	0.79 (0.63–1.00)	.0475	23.9955	.5762	-0.0193	.6468
		i	MR-Egger	0.84 (0.6–1.18)	.3292	23.7803	.5321		
			MM	0.75 (0.54–1.03)	.0710				
	Glutamate to cysteine ratio	28	WM	0.61 (0.37–0.99)	.0476	25.3018	.5576	0.0914	.3089
			MR-Egger	0.28 (0.06–1.30)	.1166	24.2247	.5631		
			MM	0.47 (0.23-0.97)	.0425				
	Isoleucine levels	20	M	0.56 (0.32-0.99)	.0479	17.9483	.5259	-0.0536	.6199
			MR-Egger	0.84 (0.16–4.3)	.8322	17.6936	.4760		
		(MM	0.6 (0.27-1.34)	2116		0	0	0
	3-Hydroxy-3-methylglutarate levels	19	M I	0.5 (0.25–1.00)	.0489	21.2300	.2680	0.1611	.1692
			MK-Egger	0.16 (0.03-0.88)	10504	18.9334	.3324		
	Ab Hadenary B. Complete Comple	C	MINI	0.5 (0.21–1.21)	. 1233		7000	0.0070	0010
	SD-HYDIOXY-D-CIIOIEIIOIC ACID IEVEIS	87	NVI CVV	0.00 (0.42–1.00)	4840.	33.2029	4004	-0.0Z/ 8	0800.
			IVIK—Egger	0.78 (0.31–1.99)	.0080	32.9011	.1984		
	H	Ċ	MINI	0.00 (0.38–1.10)	. 1480		7	0	C
Middle East	Irigonelline levels	53	MAI (1.62 (1–2.64)	.0494	22.9836	.4027	0.0702	.2385
			MK-Egger	1.08 (0.48–2.44)	.8519	21.4779	.4301		
(; ·) V	a so	Ç	MINIM	1.30 (0.79-5.08)	7861.	0000		0	OV DV
AIIICa	C-glycosyii ypioprian ieveis	<u>n</u>	IVW	1.77 (1.3–2.42)	5000.	75.0007	.2320	0.0448	0404.
			MM/ MM/	1.1 (0.31–3.88)	.8838	21.2079	.Z145		
	Coffein anid enthate lavale	2	W W W	1.00 (10 104)	2200.	7 4000	0770	0.0010	0010
	טמוופור מטומ לו ופעפוט	2	MD Eggs	1.45 (1.15-1.01)	1840	7 1017	.9449	-0.00.0	5108.
				1 41 (1 01–1 97)	. 1640	1.4211	2/18:		
	Cortolone alucuronide (1) levels	19	<u> </u>	0.8 (0.69–0.93)	0030	17.1555	.5124	-0.0219	.3279
			MR-Egger	0.9 (0.68–1.18)	.4504	16.1408	.5139		
			MM	0.82 (0.66–1.01)	.0590				
	Fructose levels	12	MM	0.79 (0.66 - 0.95)	.0113	9.8232	.5464	0.0609	.0649
			MR-Egger	0.6 (0.43–0.82)	.0105	5.5254	.8534		
			MM	0.77 (0.58–1.02)	.0712				
	Taurolithocholate 3-sulfate levels	16	M	0.77 (0.63–0.94)	.0114	11.7921	.6947	0.0289	.3336
			MR-Egger	0.64 (0.43–0.96)	.0510	10.7890	.7025		
	(b. 04) 0.0 b 0/ FIGO 1. cools 0 (1. cools 0 b) b	Ţ	MINI	0.83 (0.83–1.13)	2382.	0	C	0	7
	1-(1-Enyi-Stearoyi)-Z-0leoyi-GPE (P-18:0/18:1) levels	E	MM CW	0.7 (0.53-0.92)	.0116	8.4359	.5863	0.0813	1,50.
			MM	0.58 (0.4–0.86)	.0058	3.0787	5158.		
								0)	(Continued)

	-
	. 7
_	
an .	
•	
_	- 1
0	- 7
-	
T.	1
w	٠,
_	•

						Heterogeneity		Pleiotropy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	d	Ø	Ь	Intercept	Ь
Africa	Vanillylmandelate levels	20	IVW MR-Egger	1.33 (1.06–1.65) 0.98 (0.58–1.65)	.9463	13.9439 12.3974	.8261	0.0368	.2296
	4-Oxo-retinoic acid levels	=	WW IVW MR-Egger	1.45 (0.91–1.00) 1.45 (1.09–1.93) 1.77 (0.82–3.83)	.0118	6.7209 6.4065	.7515 .6986	-0.0253	.5887
	Theophylline to theobromine ratio	12	WW IVW MR-Egger	0.73 (0.86–2.03) 0.73 (0.56–0.93) 0.85 (0.54–1.33) 0.75 (0.53–1.06)	.0122	5.7802	.8876	-0.0242	.4159
	4-Cholesten-3-one levels	19	WW IVW MR-Egger	0.7 3 (0.33-1.06) 1.18 (1.03-1.34) 1.15 (0.96-1.39) 1.19 (0.00.1.4)	.0135	11.9367 11.8586	.8505	0.0050	.7833
	Perfluorooctanesulfonate levels	15	IVW MR-Egger	1.29 (1.05–1.58) 0.93 (0.58–1.51) 1.31 (0.08–1.51)	.0140	14.0928 11.9598	.4428	0.0531	.1679
	Branched-chain, straight-chain, cyclopropyl 12:1 fatty acid levels	13	IVW MR-Egger	0.75 (0.36–1.74) 0.75 (0.6–0.95) 0.6 (0.36–1.01)	.0053 .0153 .0829	11.5410 10.6785	.4832	0.0321	.3730
	N-acetyl-aspartyl-glutamate levels	35	WW IVW MR-Egger	1.09 (1.02–1.18) 1.02 (0.88–1.19) 1.07 (0.66–1.10)	.0172 .7580	27.7778 26.7483	.7655	0.0234	.3177
Africa	Alpha-tocopherol to sulfate ratio	41	IVW MR-Egger	0.74 (0.58–0.95) 0.64 (0.39–1.03)	.0173	11.9544 11.4651	.5314	0.0232	.4976
	Phosphate to fructose ratio	6	WW IVW MR-Egger	0.84 (0.58–1.22) 1.36 (1.05–1.76) 1.8 (1.2–2.68)	.3003 .0185 .0243	12.3296 8.8489	.1371	-0.0579	.1410
	Dimethylarginine (symmetric dimethylarginine + asymmetric dimethylarginine) levels	18	WWW IVW MR-Egger	0.78 (0.64–0.96) 0.77 (0.53–1.13)	.0212 .1994	11.3797 11.3696	.8362	0.0025	.9211
	10-Heptadecenoate (17:1n7) levels	15	WM IVW MR-Egger	0.75 (0.54-1.03) 1.32 (1.04-1.68) 1.57 (0.82-3.04)	.0215 .0215 .1994	13.2555 12.9442	.5065	-0.0229	.5864
	Nisinate (24:6n3) levels	12	WW IVW MR-Egger	1.16 (0.82-1.71) 1.31 (1.04-1.66) 1.75 (0.96-3.19)	.0244	16.1313 14.5725	.1363	-0.0531	.3254
	3-Methoxycatechol sulfate (2) levels	13	MR-Egger	1.36 (1.04–1.78) 1.36 (0.95–4.06) 1.56 (1.07, 2.20)	.0067 .0967	11.1206 9.9882	.5186	-0.0433	.3101
	Serotonin levels	41	ww IVW MR-Egger WM	1.30 (1.07—2.26) 0.69 (0.49—0.96) 1.23 (0.31—4.97) 0.7 (0.44—1.13)	.0280 .0280 .7721	9.8659 9.1445	.7049	-0.0572	.4123
								20)	(Continued)

	. '
-	
Φ	L
<u></u>	
<u>a</u>	
	н

						Heterogeneity		Pleiotropy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	Ь	Ø	Ь	Intercept	Ь
Africa	Cortisone to 4-cholesten-3-one ratio	21	M	1.24 (1.02–1.51)	.0282	19.5209	.4882	0.0149	.6220
			MR-Egger ww	1.09 (0.63–1.88)	7524	19.2662	.4399		
	1-Myristoyl-2-arachidonoyl-GPC (14:0/20:4) levels	20	X	0.83 (0.7–0.98)	.0283	8.1798	.9848	0.0084	.7433
			MR-Egger WM	0.79 (0.59–1.07) 0.83 (0.66–1.04)	.1450	8.0692	9276.		
	Methionine sulfoxide levels	17	M	0.88 (0.78–0.99)	.0299	17.5541	.3506	0.0365	.0457
			MR-Egger ww	0.8 (0.7–0.92)	.0073	12.8072	.6172		
	4-Hydroxyphenylpyruvate levels	6		0.64 (0.43–0.96)	.0311	7.3750	.4968	-0.0625	.3490
			MR-Egger wM	1.18 (0.34–4.16)	.8004	6.3676	.4975		
	Adenosine 5'-monophosphate to N-palmitoyl-sphingosine (d18:1 to 16:0) ratio	16	X	1.3 (1.02–1.66)	.0325	12.3291	.6540	-0.0364	.2336
			MR-Egger ww	1.75 (1.04–2.96)	.0554	10.7790	.7033		
	N, N-dimethylalanine levels	15	MM	0.8 (0.65–0.98)	.0335	11.0904	6829	0.0165	.6186
			MR-Egger	0.73 (0.48–1.11)	.1647	10.8303	.6250		
	Soleucine levels	14		0.72 (0.53–0.98)	.0352	15.2994	.2890	0.0143	.8117
			MR-Egger	0.65 (0.27–1.59)	.3660	15.2241	.2294		
			MM	0.81 (0.54–1.21)	.3007				
Africa	Undecenoylcarnitine (C11:1) levels	28	MAI	0.85 (0.74-0.99)	.0371	32.2583	.2227	-0.0131	.5205
			MR-Egger www	0.92 (0.71–1.18)	.5054	31.7404	.2018		
	N-acetyl-2-aminoadipate levels	2	<u> </u>	1.24 (1.01–1.52)	.0385	25.6616	6080	0.0141	.6244
	-		MR-Egger	1.16 (0.82–1.63)	.4142	25.2680	.0652		
			MM	1.22 (1.00–1.49)	.0532				
	Arachidonate (20:4n6) to paraxanthine ratio	-	MAI !	0.81 (0.66–0.99)	.0391	9.4481	.4902	-0.0205	.5073
			MK-Egger WM	0.89 (0.62–1.28)	.5544	8.9714	.4399		
	3-Methyladipate levels	13	<u></u>	1.22 (1.01–1.48)	.0402	4.6236	.9694	-0.0016	.9553
			MR-Egger	1.24 (0.82–1.86)	.3293	4.6204	.9482		
	3-Hydroxyhexanoate levels	12		1.23 (0.95–1.6)	.116/	11.0169	4418	0.0387	3389
		1	MR-Egger	1.00 (0.55–1.8)	.9938	10.0076	.4398		
			MM	1.26 (0.9–1.78)	.1771				
	Sphingomyelin (d18:2/16:0, d18:1/16:1) levels	12	M	1.49 (1.02–2.19)	.0405	9.6401	.5630	0.1771	.1431
			MR-Egger	0.15 (0.01–2.62)	.2230	7.1148	.7146		
	Outiding lavale	17	IVIVA IVVV	(86.7–70.0) 06.1	. 1409	17 5630	T O	86000	0000
	cytudine revers	=	MR-Fager	0.84 (0.58–1.23)	3826	14.5557	4839	0700.0-	6076.
			MM	0.82 (0.63–1.07)	.1455				
								30)	(Continued)

						:		:	
						Heterogeneity		Pleiotropy	
Population	Metabolite	SNP (N)	Method	OR (95% CI)	Ь	Ø	٩	Intercept	Ь
Africa	N-acetylvaline levels	1	MAI	0.82 (0.67–0.99)	.0422	7.7614	.6521	-0.0167	.5086
			MR-Egger	0.89 (0.66–1.2)	.4501	7.2877	.6072		
			MM	0.85 (0.67–1.07)	.1619				
	(2 or 3)-decenoate (10:1n7 or n8) levels	16	MM	1.35 (1.01–1.81)	.0424	16.2002	.3689	0.0041	.9351
			MR-Egger	1.3 (0.5–3.42)	8009	16.1923	.3018		
			WM	1.29 (0.87–1.93)	.2032				
	1,7-Dimethyluric acid levels	19	MM	1.33 (1.01–1.74)	.0430	17.2405	.5066	-0.0037	.9463
			MR-Egger	1.37 (0.48–3.93)	.5626	17.2358	.4385		
			MM	1.12 (0.78–1.62)	.5466				
	N-lactoyl isoleucine levels	8	M	0.65 (0.43-0.99)	.0455	5.7616	.5678	0.0563	.4147
			MR-Egger	0.39 (0.11–1.34)	.1839	4.9940	.5446		
			MM	0.58 (0.32-1.03)	.0623				
	Sphinganine levels	17	MM	1.25 (1–1.55)	.0464	15.2364	.5074	-0.0573	.1097
			MR-Egger	1.89 (1.12–3.2)	.0317	12.3449	.6528		
			WM	1.37 (1.02–1.84)	.0344				
	Myo-inositol levels	19	MM	1.3 (1–1.68)	.0496	12.9993	.7916	0.0095	.7776
			MR-Egger	1.19 (0.62–2.27)	.6041	12.9169	.7417		
			MM	1.24 (0.87–1.78)	.2399				

4. Discussion

Our study found 36, 57, and 40 known metabolites were strongly related to PH in East Asian, Middle Eastern, and African populations, respectively. Histidine, L-aspartic acid, oxoglutaric acid, pyruvic acid, D-glucose, and phosphate were found to be involved in the metabolic enrichment pathway of ammonia recycling, glucose-alanine cycle, urea cycle, alanine metabolism, malate-aspartate shuttle, and glutamate metabolism in East Asian population. 2-Ketobutyric acid, choline, and spermidine were involved in the metabolic enrichment pathway of methionine metabolism among the Middle East population. Myo-inositol, D-fructose, and phosphate were found to be involved in the metabolic enrichment pathway of galactose metabolism and phosphatidylinositol phosphate metabolism for African people. Of the metabolites that were found to be strongly correlated among the 3 races in both cross-sectional and metaanalyses, 7 were consistently identified, 5 of which were previously known with name (N-acetyl-aspartyl-glutamate, taurolithocholate 3-sulfate, isoleucine, N-acetyl-2-aminoadipate, and myoinositol level) L-aspartic acid, oxoglutaric acid, pyruvic acid, and phosphate were crucial metabolites involved in the enrichment pathways in East Asia population. Isoleucine was demonstrated as a protective factor of PH across the 3 populations. N-acetyl-2-aminoadipate was found to be positively associated with PH in the Africa group, and negatively associated with the East Asian and Middle East populations. Myo-inositol was a risk factor for both African and Middle East groups, but a protective factor for the East Asian population.

Several studies have reported that alanine involved in the glucose-alanine cycle was associated with reduced ammonia excretion and directly affected the ammonia cycle. [29-31] Some studies have found dietary alanine was associated with higher systolic blood pressure (SBP) and diastolic blood pressure (DBP).[32,33] Yet, a cohort study has suggested that alanine tended to diminish the risk of hypertension.^[34] Urea cycle disorder can result in hypertension, there is a clear pathophysiological relationship between them. [35] Certain scholars have discovered that the urea cycle may contribute to the availability of precursors for nitric oxide synthesis, ultimately leading to neonatal pulmonary hypertension. [36,37] Hypertension shared common metabolic patterns with dyslipidemia, including alanine metabolism and glutamate metabolism, suggesting potential intervention targets could be provided to patients with both hypertension and dyslipidemia.[38] It was discovered in the Dahl saltsensitive rat, a model of salt-sensitive hypertension, that aspartate or malate can increase levels of L-arginine and nitric oxide, thereby reducing hypertension.[39] Another study found that a high salt diet can induce hypertension of liver-Yang hyperactivity syndrome by mediating the microbiota associated with the glutamate/y-aminobutyric acid-glutamine metabolic cycle via the gut-brain axis.[40] Methionine metabolism was involved in endothelial dysfunction, atherosclerosis, and renal fibrosis. It can cause early hypertensive nephrosclerosis. [41] A previous study proposed that methionine-enriched diet could induce elevated SBP. [42,43] Galactose ingestion, like glucose, was reported to result in significantly lesser increases in blood pressure compared with fructose ingestion, [44] indicating its involvement in blood pressure regulation through galactose metabolism. Impaired phosphoinositide metabolism has been found linked to

L-aspartic acid has been reported to possess notable clinical significance because of its effectiveness in the treatment of hypertension. [46] It has been observed that 2-oxoglutaric acid had abnormal rhythms and contents in hypertension. [47] Plasma pyruvic acid was found to be associated with pulmonary arterial hypertension. [48] Pyruvate acid could change continuously in hypertension progression. [49] Inorganic phosphate might serve as a crucial dietary risk factor for hypertension. The potential mechanisms could be dietary phosphorus excess induces

calcium-handling abnormalities associated with hypertension. [45]

CI = confidence interval, IVW = inverse-variance weighted, MR-Egger = Mendelian randomization-Egger, OR = odds ratio, SNP = single-nucleotide polymorphism, WM = weighted median

Table 2

The significant enrichment	pathways of the	metabolites selected	ov Mendelian	randomization.
The significant emicriment	paulways of the	metabonies selected	oy wichachan	randonnization.

Population	Pathway	Metabolite	P	FDR
East Asia	Ammonia recycling	Histidine, L-aspartic acid, oxoglutaric acid, pyruvic acid, phosphate	.00685	0.00685
	Glucose–alanine cycle	D-glucose, oxoglutaric acid, pyruvic acid	.00142	0.000699
	Urea cycle	L-aspartic acid, oxoglutaric acid, pyruvic acid, phosphate	.00205	0.000699
	Alanine metabolism	Oxoglutaric acid, pyruvic acid, phosphate	.00448	0.00116
	Malate-aspartate shuttle	L-aspartic acid, oxoglutaric acid	.0217	0.00453
	Glutamate metabolism	L-aspartic acid, oxoglutaric acid, pyruvic acid, phosphate	.0275	0.00483
Middle East	Methionine metabolism	2-Ketobutyric acid, choline, spermidine	.0219	1.000
Africa	Galactose metabolism	Myo-inositol, D-fructose, phosphate	.0237	0.951
	Phosphatidylinositol phosphate metabolism	Myo-inositol, phosphate	.0317	0.951

FDR = false discovery rate

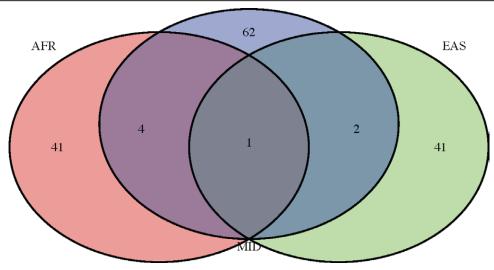


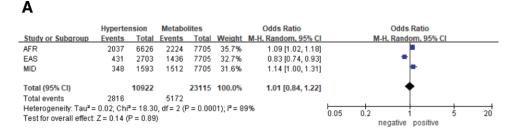
Figure 4. Venn diagram of metabolites' intersection between East Asian, Middle East, and Africa populations.

hypertension including activation of the SNS, impaired endothelial function, increased vascular stiffness, and renal sodium retention. [50] In addition, supplementation of inositol has shown promising results in significantly reducing both SBP and DBP. [51] Moreover, myo-inositol supplementation has demonstrated a notable decrease in the overall incidence of pregnancy-induced hypertension. [52] All these prior findings were aligned with our study, emphasizing these metabolites are really crucial in the enrichment pathways influencing PH.

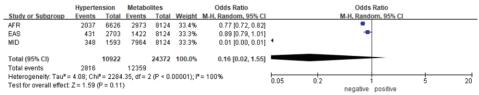
Numerous studies have stated that isoleucine-proline-proline/valine-proline-proline lactotripeptides can significantly reduce office SBP in both Asian and European populations. [53-55] Another study discovered that the combination of isoleucinetryptophan with whey protein hydrolysate effectively inhibits plasma angiotensin-1-converting enzyme, leading to antihypertensive effects. [56] These findings highlight the importance of isoleucine as an essential amino acid in managing hypertension. Our study verified the causal correlations between isoleucine and PH among African, Middle East, and East Asian populations based on MR analysis. N-acetyl-2-aminoadipate was found to be a positive predictor on DBP according to another MR analysis focus on the European population. [21] Our study contributes to existing literature by demonstrating that N-acetyl-2-aminoadipate was demonstrated as a risk factor of PH in the African group, but a protective factor in East Asian and Middle East populations. A meta-analysis concluded that inositol supplementation can significantly decrease SBP and DBP, but further large-scale RCTs are still needed to confirm these findings.^[51] Interestingly, myo-inositol showed as risk factor in both African and Middle East groups in our study.

There are certain limitations in our study. First, our findings need to be verified by clinical trials or longitudinal studies, particularly large-scale RCTs, to explore their therapeutic potential. Second, we must examine the role of specific metabolites in the development of PH to understand the underlying mechanisms. Our next step will involve using multiomics data to analyze and validate potential mediators. Finally, further research is needed on 2 unidentified metabolites that exhibit overlapping characteristics across different racial groups, as they may have important clinical implications.

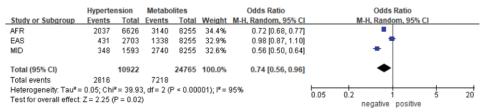
5. Conclusion


Our study discovered several metabolites having causal relationships with PH across East Asian, Middle East, and African populations. Isoleucine might be a valuable amino acid in the prevention or treatment for PH.

Acknowledgments


We are grateful to all the participants and investigators of the study, as well as to all the investigators who contributed to the genome-wide association study of modifiable risk factors.

Author contributions


Funding acquisition: Yi Chen. Writing – original draft: Ying Shi, Hairun Liu. Conceptualization: Yi Chen.

C

D

	Hyperter	ision	Metabo	olites		Odds Ratio		Odds	Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95% CI		
AFR	2037	6626	2003	7606	33.8%	1.24 [1.15, 1.34]			•		
EAS	431	2703	1513	7606	33.2%	0.76 [0.68, 0.86]					
MID	348	1593	2174	7606	33.0%	0.70 [0.61, 0.79]					
Total (95% CI)		10922		22818	100.0%	0.87 [0.59, 1.29]		•	-		
Total events	2816		5690								
Heterogeneity: Tau ² =	0.12; Chi ²	= 83.90	0, df = 2 (1)	P < 0.00	001); I ² = !	98%	0.05 0	2	 	ţ_	20
Test for overall effect:	Z = 0.67 (F	P = 0.50)				0.05 0	negative	positive	5	20

Ε



Figure 5. Illustration of the pooled causal effects of 5 known intersecting metabolic factors. (A) The pooled causal effect of N-acetyl-aspartyl-glutamate levels, (B) taurolithocholate 3-sulfate levels, (C) isoleucine levels, (D) N-acetyl-2-aminoadipate levels, and (E) myo-inositol levels. CI = confidence interval, M-H = Mantel-Haenszel. OR = odds ratio.

Data curation: Yi Chen. Formal analysis: Yi Chen. Writing – review & editing: Yi Chen.

References

- [1] Zhou B, Perel P, Mensah GA, Ezzati M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol. 2021;18:785–802.
- [2] Turana Y, Tengkawan J, Chia YC, et al; HOPE Asia Network. Hypertension and stroke in Asia: a comprehensive review from HOPE Asia. J Clin Hypertens (Greenwich). 2021;23:513–21.
- [3] Cuspidi C, Sala C, Tadic M, et al. Untreated masked hypertension and carotid atherosclerosis: a meta-analysis. Blood Press. 2015;24:65–71.
- [4] Omboni S, Aristizabal D, De la Sierra A, et al; ARTEMIS (International Ambulatory Blood Pressure Registry: TEleMonitoring of Hypertension and Cardiovascular rISk Project) Investigators. Hypertension types

- defined by clinic and ambulatory blood pressure in 14 143 patients referred to hypertension clinics worldwide. Data from the ARTEMIS study. J Hypertens. 2016;34:2187–98.
- [5] Parati G, Lackland DT, Campbell NRC, et al; World Hypertension League. How to improve awareness, treatment, and control of hypertension in Africa, and how to reduce its consequences: a call to action from the world hypertension league. Hypertension. 2022;79:1949–61.
- [6] Chen A, Waite L, Mocumbi AO, et al. Elevated blood pressure among adolescents in sub-Saharan Africa: a systematic review and metaanalysis. Lancet Glob Health. 2023;11:e1238–48.
- [7] Sani RN, Connelly PJ, Toft M, et al. Rural-urban difference in the prevalence of hypertension in West Africa: a systematic review and meta-analysis. J Hum Hypertens. 2022;38:352–64.
- [8] Shakil SS, Ojji D, Longenecker CT, Roth GA. Early stage and established. hypertension in sub-Saharan Africa: results from population health surveys in 17 countries, 2010–2017. Circ Cardiovasc Qual Outcomes. 2022;15:e009046.

- [9] Kohli-Lynch CN, Erzse A, Rayner BL, Hofman KJ. Hypertension in the South African public healthcare system: a cost-of-illness and burden of disease study. BMJ Open. 2022;12:e055621.
- [10] NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–80.
- [11] Cody RJ. The sympathetic nervous system and the renin-angiotensin-aldosterone system in cardiovascular disease. Am J Cardiol. 1997;80:9J-14J.
- [12] Cai A, Calhoun DA. Resistant hypertension: an update of experimental and clinical findings. Hypertension. 2017;70:5–9.
- [13] Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol. 2019;19:517–32.
- [14] Maaliki D, Shaito AA, Pintus G, El-Yazbi A, Eid AH. Flavonoids in hypertension: a brief review of the underlying mechanisms. Curr Opin Pharmacol. 2019;45:57–65.
- [15] Manosroi W, Williams GH. Genetics of human primary hypertension: focus on hormonal mechanisms. Endocr Rev. 2019;40:825–56.
- [16] Johnson HM. Anxiety and hypertension: is there a link? A literature review of the comorbidity relationship between anxiety and hypertension. Curr Hypertens Rep. 2019;21:66.
- [17] Tanaka M, Itoh H. Hypertension as a metabolic disorder and the novel role of the gut. Curr Hypertens Rep. 2019;21:63.
- [18] Louca P, Nogal A, Moskal A, et al. Cross-sectional blood metabolite markers of hypertension: a multicohort analysis of 44,306 individuals from the COnsortium of METabolomics Studies. Metabolites. 2022;12:601.
- [19] Lin C, Sun Z, Mei Z, et al. The causal associations of circulating amino acids with blood pressure: a Mendelian randomization study. BMC Med. 2022;20:414.
- [20] Dietrich S, Floegel A, Weikert C, et al. Identification of serum metabolites associated with incident hypertension in the European prospective investigation into cancer and nutrition–potsdam study. Hypertension. 2016;68:471–7.
- [21] Dai N, Deng Y, Wang B. Association between human blood metabolome and the risk of hypertension. BMC Genom Data. 2023;24:79.
- [22] Qiao J, Zhang M, Wang T, Huang S, Zeng P. Evaluating causal relationship between metabolites and six cardiovascular diseases based on GWAS summary statistics. Front Genet. 2021;12:746677.
- [23] Chen Y, Lu T, Pettersson-Kymmer U, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet. 2023;55:44–53.
- [24] Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.
- [25] Cohen JF, Chalumeau M, Cohen R, Korevaar DA, Khoshnood B, Bossuyt PMM. Cochran's Q test was useful to assess heterogeneity in likelihood ratios in studies of diagnostic accuracy. J Clin Epidemiol. 2015;68:299–306.
- [26] Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89.
- [27] Chong J, Xia J. Using MetaboAnalyst 4.0 for metabolomics data analysis, interpretation, and integration with other Omics data. In: Li S, ed. Computational Methods and Data Analysis for Metabolomics. Springer US; 2020:337–360.
- [28] Jin H, Lee S, Won S. Causal evaluation of laboratory markers in type 2 diabetes on cancer and vascular diseases using various Mendelian randomization tools. Front Genet. 2020;11:597420.
- [29] Weiner ID, Verlander JW. Emerging features of ammonia metabolism and transport in acid-base balance. Semin Nephrol. 2019;39:394–405.
- [30] Arnold JE, Healy JK. Hyperkalemia, hypertension and systemic acidosis without renal failure associated with a tubular defect in potassium excretion. Am J Med. 1969;47:461–72.
- [31] Sanjad SA, Mansour FM, Hernandez RH, Hill LL. Severe hypertension, hyperkalemia, and renal tubular acidosis responding to dietary sodium restriction. Pediatrics. 1982;69:317–24.
- [32] Stamler J, Brown IJ, Daviglus ML, et al. Dietary glycine and blood pressure: the international study on macro/micronutrients and blood pressure. Am J Clin Nutr. 2013;98:136–45.
- [33] Tuttle KR, Milton JE, Packard DP, Shuler LA, Short RA. Dietary amino acids and blood pressure: a cohort study of patients with cardiovascular disease. Am J Kidney Dis. 2012;59:803–9.
- [34] Teymoori F, Asghari G, Mirmiran P, Azizi F. Dietary amino acids and incidence of hypertension: a principle component analysis approach. Sci Rep. 2017;7:16838.

[35] Solé C, Arriaga M, Cañedo E. High blood pressure in a urea cycle disorder: case report. AJP Rep. 2020;10:e347–51.

Medicine

- [36] Pearson DL, Dawling S, Walsh WF, et al. Neonatal pulmonary hypertension. N Engl J Med. 2001;344:1832–8.
- [37] Kaluarachchi DC, Smith CJ, Klein JM, Murray JC, Dagle JM, Ryckman KK. Polymorphisms in urea cycle enzyme genes are associated with persistent pulmonary hypertension of the newborn. Pediatr Res. 2018;83:142–7.
- [38] Ke C, Zhu X, Zhang Y, Shen Y. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics. 2018;14:117.
- [39] Hou E, Sun N, Zhang F, et al. Malate and aspartate increase L-arginine and nitric oxide and attenuate hypertension. Cell Rep. 2017;19:1631–9.
- [40] Zheng T, Wu Y, Peng M, Xiao N, Tan Z, Yang T. Hypertension of liver-yang hyperactivity syndrome induced by a high salt diet by altering components of the gut microbiota associated with the glutamate/ GABA-glutamine cycle. Front Nutr. 2022;9:964273.
- [41] Øvrehus MA, Bruheim P, Ju W, et al. Gene expression studies and targeted metabolomics reveal disturbed. serine, methionine, and tyrosine metabolism in early hypertensive nephrosclerosis. Kidney Int Rep. 2019;4:321–33.
- [42] Robin S, Maupoil V, Groubatch F, Laurant P, Jacqueson A, Berthelot A. Effect of a methionine-supplemented diet on the blood pressure of Wistar–Kyoto and spontaneously hypertensive rats. Br J Nutr. 2003;89:539–48.
- [43] Yang P, Zhao X, Zhou L, et al. Protective effect of oral histidine on hypertension in Dahl salt-sensitive rats induced by high-salt diet. Life Sci. 2021;270:119134.
- [44] Charrière N, Loonam C, Montani J-P, Dulloo AG, Grasser EK. Cardiovascular responses to sugary drinks in humans: galactose presents milder cardiac effects than glucose or fructose. Eur J Nutr. 2017;56:2105–13.
- [45] Remmal A, Koutouzov S, Girard A, Meyer P, Marche P. Defective phosphoinositide metabolism in primary hypertension. Experientia. 1988;44:133–7.
- [46] Hussain MM, Asiri AM, Rahman MM. Simultaneous detection of L -aspartic acid and glycine using wet-chemically prepared Fe₃O₄@ZnO nanoparticles: real sample analysis. RSC Adv. 2020;10:19276–89.
- [47] Wang H, Wang X, Qi D, et al. Establishment of the circadian metabolic phenotype strategy in spontaneously hypertensive rats: a dynamic metabolomics study. J Transl Med. 2020;18:38.
- [48] Wawrzyniak R, Grešner P, Lewicka E, et al. Metabolomics meets clinics: a multivariate analysis of plasma and urine metabolic signatures in pulmonary arterial hypertension. J Proteome Res. 2023;23:2795–804.
- [49] Gao S, Zhao J, Liu X, Liu L, Chen R. Metabolomics reveals serum metabolic signatures in H-type hypertension based on mass spectrometry multi-platform. Eur J Clin Invest. 2023;53:e14063.
- [50] Kim H-K, Mizuno M, Vongpatanasin W. Phosphate, the forgotten mineral in hypertension. Curr Opin Nephrol Hypertens. 2019;28:345–51.
- [51] Hashemi Tari S, Sohouli MH, Lari A, Fatahi S, Rahideh ST. The effect of inositol. supplementation on blood pressure: a systematic review and meta-analysis of randomized-controlled trials. Clin Nutr ESPEN. 2021;44:78–84.
- [52] Vitale SG, Corrado F, Caruso S, et al. Myo-inositol supplementation to prevent gestational diabetes in overweight non-obese women: bio-electrical impedance analysis, metabolic aspects, obstetric and neonatal outcomes a randomized and open-label, placebo-controlled clinical trial. Int J Food Sci Nutr. 2021;72:670–9.
- [53] Chanson-Rolle A, Aubin F, Braesco V, Hamasaki T, Kitakaze M. Influence of the lactotripeptides isoleucine–proline–proline and valine– proline–proline on systolic blood pressure in Japanese subjects: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2015;10:e0142235.
- [54] Cicero AFG, Aubin F, Azais-Braesco V, Borghi C. Do the lactotripeptides isoleucine-proline-proline and valine-proline-proline reduce systolic blood pressure in European subjects? A meta-analysis of randomized controlled trials. Am J Hypertens. 2013;26:442–9.
- [55] Cicero AFG, Rosticci M, Ferroni A, et al. Predictors of the short-term effect of isoleucine–proline–proline/valine–proline–proline lactotripeptides from casein on office and ambulatory blood pressure in subjects with pharmacologically untreated high-normal blood pressure or first-degree hypertension. Clin Exp Hypertens. 2012;34:601–5.
- [56] Martin M, Kopaliani I, Jannasch A, et al. Antihypertensive and cardioprotective effects of the dipeptide isoleucine–tryptophan and whey protein hydrolysate. Acta Physiol (Oxf). 2015;215:167–76.