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1  | INTRODUC TION

Behavioural and evolutionary ecologists have long been interested 
in studying within-individual variation in animal behaviour and life 
history (Dingemanse, Kazem, Réale, & Wright, 2010; Piersma & 

Drent, 2003). For example, the amount of parental care may be al-
tered by offspring needs and explorative behaviour may depend on 
the time of day (Dingemanse et al., 2010). Similarly, life-history de-
cisions such as clutch or litter size and timing of reproduction are 
responsive to the environment, for example food availability or local 
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Abstract
Phenotypic plasticity is a central topic in ecology and evolution. Individuals may dif-
fer in the degree of plasticity (individual-by-environment interaction (I × E)), which 
has implications for the capacity of populations to respond to selection. Random re-
gression models (RRMs) are a popular tool to study I × E in behavioural or life-history 
traits, yet evidence for I × E is mixed, differing between species, populations, and 
even between studies on the same population. One important source of discrepan-
cies between studies is the treatment of heterogeneity in residual variance (hetero-
scedasticity). To date, there seems to be no collective awareness among ecologists 
of its influence on the estimation of I × E or a consensus on how to best model it. We 
performed RRMs with differing residual variance structures on simulated data with 
varying degrees of heteroscedasticity and plasticity, sample size and environmen-
tal variability to test how RRMs would perform under each scenario. The residual 
structure in the RRMs affected the precision of estimates of simulated I × E as well 
as statistical power, with substantial lack of precision and high false-positive rates 
when sample size, environmental variability and plasticity were small. We show that 
model comparison using information criteria can be used to choose among residual 
structures and reinforce this point by analysis of real data of two study populations of 
great tits (Parus major). We provide guidelines that can be used by biologists studying 
I × E that, ultimately, should lead to a reduction in bias in the literature concerning the 
statistical evidence and the reported magnitude of variation in plasticity.
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temperatures (Both, Tinbergen, & Visser, 2000; Brommer, Rattiste, 
& Wilson, 2008; Réale, McAdam, Boutin, & Berteaux, 2003). Many 
labile traits are thus phenotypically plastic (Pigliucci, 2001), and this 
plasticity can be described by reaction norms (Woltereck, 1909). 
Often these reaction norms are assumed linear, described by an in-
tercept or elevation (phenotype in the average environment, if the 
environmental average is zero) and a slope (sensitivity of the trait 
to the environment) (but see Morrissey & Liefting, 2016). Animals 
may differ from their conspecifics in their mean trait value (Dall, Bell, 
Bolnick, & Ratnieks, 2012; Réale & Dingemanse, 2010), but also in 
their degree of phenotypic plasticity (individual-by-environment in-
teractions or I × E), leading to changing phenotypic variances across 
the environmental gradient (Nussey, Wilson, & Brommer, 2007). 
When these variances have a genetic basis (G × E), this may impact 
on how populations can respond evolutionarily to environmental 
change (Merilä, Sheldon, & Kruuk, 2001; Wood & Brodie, 2016; but 
see Ramakers, Culina, Visser, & Gienapp, 2018). It is hence important 
to study variation in reaction norms to understand ecological and 
evolutionary processes in wild populations (Dingemanse et al., 2010; 
Piersma & Drent, 2003).

Mixed-modelling approaches are powerful tools to study individ-
ual (or genetic) sources of phenotypic variation in natural populations 
(Nussey et al., 2007; Bolker et al., 2009; Van de Pol & Wright, 2009; 
Wilson et al., 2010; Dingemanse & Dochtermann, 2013). Random 
regression models (RRMs) are a special case of mixed-effects mod-
els that allow individuals to differ in their reaction norm elevation 
as well as slope (Dingemanse & Dochtermann, 2013; Nussey et al., 
2007). RRMs can be extended to include an additive genetic effect 
(e.g. via a pedigree; Henderson, 1988; Kruuk, 2004) in a so-called 
“random regression animal model” (RRAM), allowing one to partition 
I × E into a permanent-environment (PE × E) and an additive genetic 
(G  ×  E) component. These methods have been widely used in the 
evolutionary literature to study the evolutionary potential of a vari-
ety of behavioural and life-history traits (see Gienapp and Brommer 
(2014) and Appendix S1 in Van de Pol (2012) for relevant overviews).

There are several issues that can lead to misleading conclusions 
when modelling variation in plasticity (here for simplicity referring 
to I × E, as opposed to PE × E or G × E), including (a) a lack of power 
attributable to sampling design and sample size (Martin, Nussey, 
Wilson, & Réale, 2011; Van de Pol, 2012), (b) using an inappropri-
ate environmental covariate (the “cue” affecting the phenotype) 
(Gienapp, 2018), and (c) mistaking environmental trends in residual 
variance (heteroscedasticity) for I × E (see examples below). Here, 
we focus on the latter. We refer to residual variance as the amount 
of within-individual phenotypic variance left unexplained by the 
statistical model. Although it has been argued to contain biologi-
cally relevant information (Cleasby & Nakagawa, 2011; Nicolaus, 
Brommer, Ubels, Tinbergen, & Dingemanse, 2013; Westneat, 
Wright, & Dingemanse, 2015), it may cause erroneous inferences of 
I × E if not appropriately modelled. Nicolaus et al. (2013) found that 
out of 26 studies of I × E in behavioural and life-history traits, only 
5 allowed for heterogeneity in the residual variances and concluded 
for their own study (great tit (Parus major) clutch size in response to 

population density) that a RRM with heterogeneous residual vari-
ances outperformed a model with homogeneous residual variance. 
Similarly, Ljungström, Wapstra, and Olsson (2015) found that esti-
mated I × E in egg-laying date in response to temperature in sand 
lizards (Lacerta agilis) disappeared when residuals were allowed to 
vary with the environment. Although sample size in this study might 
have played a role in the apparent lack of I × E, these authors fitted 
a residual variance for each environment (year), which may have led 
to severe overfitting of the model. In contrast, Husby et al. (2010) 
let residual variances only differ between three decadal groups in 
a RRM estimating I × E in egg-laying date in great tits. The rationale 
was that because phenotypic variance increased with temperature, 
and temperature increased over time due to climate change, fitting 
decade-specific residual variances would capture the heteroscedas-
ticity in the RRM, an assumption later found to be false (Ramakers, 
Gienapp, & Visser, 2018).

The “problem” of heteroscedasticity has long been recognized 
outside ecology and evolution, for example in the field of animal 
breeding (Hill, 1984). Although the biological importance of the 
residual variance is increasingly appreciated in the field of ecology 
and evolution (Nicolaus et al., 2013; Westneat et al., 2015), there 
appears to be no clear awareness among evolutionary ecologists 
about how heteroscedasticity may affect estimates of variation in 
plasticity (I × E) and how it should be dealt with within the context of 
RRMs (but see Cleasby & Nakagawa, 2011 for an application outside 
RRMs). If one is interested in the evolutionary potential of the reac-
tion norm in wild populations (Gienapp & Brommer, 2014; Ramakers 
et al., 2018), the main goal is usually to get unbiased estimates of 
I × E and G × E. To achieve this, behavioural and evolutionary ecolo-
gists can make use of advocated mixed-modelling tools (Dingemanse 
& Dochtermann, 2013; Nussey et al., 2007) and use RRMs in such 
a way that they effectively account for heterogeneity in residual 
variances.

In this study, we used a simulation approach to investigate how 
estimates of I  ×  E, and the statistical power to detect it, are af-
fected by heterogeneity in residual variance not appropriately ac-
counted for in the RRM. We aimed to illustrate in which contexts 
(the amount of variation in plasticity (I  ×  E), the strength of the 
environmental dependency of residual variance, the number of 
individuals and environments, and environmental variability) het-
eroscedasticity is likely to be problematic in the estimation of I × E 
and how different residual structures in the RRM deal with this 
heteroscedasticity. Next, we tested how model selection criteria 
performed in choosing the model that best fit the simulated data 
(e.g. with respect to I × E and residual structure). Previous simu-
lation studies have demonstrated how sampling design and size 
(Martin et al., 2011; Van de Pol, 2012) and the choice of the envi-
ronmental covariate (Gienapp, 2018) affect the statistical power 
and predictive accuracy in detecting I × E, so we did not fully ex-
plore these aspects here. Finally, we tested how the methodology 
applied in the simulations performs in the analysis of phenology 
in two contrasting study populations of great tits. We use the re-
sults of our simulations and empirical analysis to extend existing 
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guidelines for students of behavioural and life-history phenotypic 
plasticity using random regression models by shifting the focus on 
heterogeneity in residual variances.

2  | MATERIAL S AND METHODS

2.1 | Random regression models

A univariate mixed-model describing the relationship between trait z 
and environment x can be written as.

where zij is the jth phenotype of the ith individual, and the linear func-
tion of zij on environment xij is characterized by the population-mean 
intercept a0 plus the individual deviation ai∼N

(
0,�2

a

)
, the popula-

tion-mean slope b and the error term eij∼N
(
0,�2

e

)
. This so-called ran-

dom-intercept model (RIM) can be extended to a random regression 
model (RRM), where each individual is allowed to not only have a dif-
ferent intercept, but also a different slope bi:

where

The error term in Equation (2a) can be assumed to come from a 
univariate normal distribution as above, but may sometimes itself 
be described by some function of the environment and is modelled 
as.

where k denotes a group categorizing similar environments (e.g. groups 
of years with low, intermediate and high temperatures), and where

Note that in reality, error variance (�2
e
) is more likely to vary 

with x in a more continuous and gradual fashion (whether linearly 
or not). When �2

e
 varies with x in a directional fashion (e.g. a linear 

increase or decrease), the model of Equation (2a) will likely fail to 
estimate variation in reaction norm slopes (�2

b
) accurately (i.e. the 

estimate may be inflated because the RRM may “force” reaction 
norms to converge at one end of the range of x and diverge at 
the other). Model (2b) should in this case be more appropriate. 
In empirical datasets, however, we can measure the association 

between phenotypic variation (�2
z
) and the covariate of interest (x) 

but it will be unclear whether this association is attributable to 
heterogeneity in �2

e
, �2

b
 or both.

2.2 | Simulation 1: effect of residual variance 
structure on estimates and detection rates of I × E

We tested with simulated data how the estimation of variance in 
reaction norm slopes, as well as the statistical power to detect it, 
differed between models with a homogeneous and heterogeneous 
residual structure. Specifically, we tested how this difference was 
mediated by the following factors (see Table 1): (a) the mean number 
of observations per individual (No), (b) the total number of different 
environments (Nx), (c) the variability in the environment (�2

x
), (d) the 

variation in slopes (�2
b
) and (e) an association between phenotypic 

variance and the environment caused by a (linear) correlation be-
tween residual variance and the environment (r

�
2
e ,x

). Every combina-
tion of parameters (Table 1) was simulated 1,000 times.

Environments were randomly drawn from a normal distribution, 
xj∼N

(
0,�2

x

)
. Residual variance (�2

e
) was assumed to be a linear func-

tion of the environment. We drew values for �2
e
 in each environment 

(mean = 10) according to r
�
2
e ,x

 such that

where r is the correlation coefficient (r
�
2
e ,x
) and [resx∼q]j is the re-

sidual of the linear regression between xj and a preliminary variable 
qj∼N

(
0,1.5

)
. The procedure was repeated as often as necessary to 

reach 2.8 < var(�2
e
) < 3.2, to ensure that the effects of r

�
2
e ,x

 and var(�2
e

) in the RRMs were not confounded. Each individual (N = 500) with 
No observations was randomly assigned to a breeding cohort within 
the range of x. Individuals randomly received a value for the intercept 
(ai) and slope (bi) (population mean = 0) and their phenotypes in envi-
ronment xj were determined following Equation (2b), with eij—not eijk
—drawn from the vector of residual variances generated above. We 

(1)zij=a0+ai+bxij+eij,

(2a)zij=a0+ai+
(
b+bi

)
xij+eij,

⎡
⎢⎢⎣

a

b

⎤
⎥⎥⎦i
∼N

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0

0

⎤
⎥⎥⎦
,

⎡
⎢⎢⎣

�2
a

�a,b

�a,b �
2
b

⎤
⎥⎥⎦i

⎞
⎟⎟⎠
.

(2b)zijk=a0+ai+
(
b+bi

)
xijk+eijk,

eijk∼N

⎛⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0

⋮

0

⎤⎥⎥⎥⎥⎦
ij

,

⎡⎢⎢⎢⎢⎣

�
2
e,1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ �
2
e,k

⎤⎥⎥⎥⎥⎦
ij

⎞⎟⎟⎟⎟⎠
.

�
2
e,j
=
[
r
�
2
e ,x

] [
�resx,q

]
xj+ [resx∼q]j+�x

√
1−

[
r
�
2
e ,x

]2
+10,

TA B L E  1   Parameter input in the simulation testing the effect of 
the residual variance structure in the RRMs to detect variation in 
reaction norm slopes

Parameter Description
Tested 
values

1. No Number of observations per 
individual

2, 5

2. Nx Number of different environ-
ments (years)

20, 40

3. �2
x

Variance in the environment 1, 2, 3

4. �2
b

Variance in reaction norm 
slopes

0.003, 0.3, 
1.0

5. r
�
2
e ,x

Coefficient of correlation 
between residual variance (�2

e

) and the environment (x).

0.01, 0.2, 
0.5, 0.8
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varied �2
b
 (Table 1) but fixed �2

a
 to 3; �a,b was assumed to be zero. The 

three scenarios for �2
b
 were chosen based on the estimates gained from 

studies listed in Table 3 in Nicolaus et al. (2013), which we used to de-
rive the slope variance in proportion to the intercept variance. That is, 
for all studies that fitted a model on data on the original (nonstandard-
ized) scale and reported estimates of 𝜎̂2

a
 and 𝜎̂2

b
 (20 pairs of estimates 

from 6 studies) we divided the 𝜎̂2
b
 by 𝜎̂2

a
 and deduced from that 0.001, 

0.1 and 0.33 as small, intermediate and large proportions of slope vari-
ance in relation to intercept variance. In our simulations, this meant 
�
2
b
=0.001 �2

a
=0.003, �2

b
=0.1 �2

a
=0.3 or �2

b
=0.33 �2

a
=1, respectively 

(Table 1). We used �2
b
=0.003 as a null scenario (variance close to zero).

With simulated environments and phenotypes in place, we fit-
ted RRMs with five different variance structures, using the pack-
age “nlme” (Pinheiro, Bates, DebRoy, Sarkar, & Team, 2017). Model 
1 had a homogeneous residual variance (Equation 2a); the residual 
structures in the next four models were variations of Equation (2b). 
For Model 2 and 3, environments were categorized into k=Nx∕5 or 
k=Nx∕10 equal-interval groups of similar environments, respec-
tively, and estimated residual variance 𝜎̂2

e
 was partitioned accord-

ingly to capture environmental trends. For Models 4 and 5, again 
k=Nx∕5 or k=Nx∕10, but this grouping was done based on consec-
utive environments, rather than similar environments (tantamount 
to random grouping). Models 4 and 5 served as “controls” to test 
whether a heterogeneous residual structure per se affects model 
performance (note that the number of degrees of freedom, that is 
the difference in the number of parameters, increases by 1 with each 
additional residual variance component).

From each model we extracted 𝜎̂2
b
. To test the significance of 

I × E, we compared each RRM to a RIM (keeping the same residual 
variance structure) with a likelihood-ratio test (LRT) with 1 degree 
of freedom. We extracted the proportion of tests with p < .05 from 
the 1,000 simulation runs (“power”). We used the LRT for hypothesis 
testing for illustrative purposes, as this is an intuitive and preferred 
method by many researchers, and since it provides a way to compare 
the power of our models between scenarios. Note, however, that the 
LRT can be conservative in practice and may not be the preferred 
method of testing variance components (e.g. Bolker, 2008; Goldman 
& Whelan, 2000).

2.3 | Simulation 2: distinguishing heterogeneous 
residual variance from I × E

When environmental heterogeneity in phenotypic variance (�2
z
) is 

present in the data, the question is whether RRMs can be used to 
disentangle whether this is caused by heterogeneity in �2

e
, �2

b
 (I × E), 

or both. In the second simulation, we repeated the analysis of above 
but focused specifically on relative model performance. We fixed 
No to 2 or 5, Nx to 40 and �2

x
 to 2. We simulated six scenarios, that is 

all combinations of �2
b
=0.003or1 and r

�
2
e ,x

=0.01, 0.2 or 0.8, and as-
sessed relative model performance using Akaike's information crite-
rion (AIC; Burnham & Anderson, 2002). The rationale was that if, for 
example, heterogeneity in �2

e
 was present but I × E was not, a RRM 

with a homogeneous residual structure (Equation 2a) may perform 
better (and have a higher penalized likelihood) than a RIM that incor-
porated a heterogeneous residual structure. In such a scenario, one 
would erroneously conclude that I × E was sizeable, whereas in real-
ity it was too small to be detected statistically. Note that the reverse 
could equally be true.

We fitted Models 1 to 3 as well as their random-intercept coun-
terparts as described above for Simulation 1. For simplicity, we re-
garded the best fitting model as the most parsimonious one (i.e. with 
the fewest degrees of freedom) within 2 AIC units from the model 
with the lowest AIC value.

2.4 | Applying RRMs with different residual 
structures to real data

As a last step, we aimed to illustrate how different treatments of 
the residual variance in RRMs affected estimates of I  ×  E in real 
data, and how model selection criteria in this context can pro-
vide misleading conclusions as to the presence of I × E depending 
on the residual variance specification. We used individual data of 
egg-laying dates in two of our long-term study populations of the 
great tit (P. major) at the Hoge Veluwe (HV; 52°01'57"N 5°52'05"E; 
Nbroods/females=4890∕3028) and the island of Vlieland (VL; 53°18′N, 
5°03′E; Nbroods/females=5250∕3131; note that excluding birds with 
only one or two broods did not affect the results (not shown here)). 
For a full description of the data collection and methods, see 
Ramakers et al. (2018).

We first defined the “basic” RIM for laying date in our popula-
tions in package “lme4” (Bates et al., 2018). The jth laying date of the 
ith female in the lth nest box and the hth year is described as.

where a0 is the population intercept, ai is the individual deviation 
from the population intercept (i.e. a random effect of female iden-
tity), c the average slope of the phenotype against the average spring 

temperature encountered by individual i (Ti) and b the average slope 

for the individual-centred temperature 
(
Tij−Ti

)
, ageij the female's 

age (first-year breeder or older) at the time of breeding, villagem (in or 
outside the village; only at VL, hence the parentheses around index 
m), nbl and yrh the nest box and year, respectively (as random effects) 
and eijlh(m) the residual term. The model of Equation (3) (called Model 
i) was compared to five different variations on it (Model ii–vi, com-
paring residual structures and RIMs vs. RRMs; see Table 2).

Models were specified in the package “MCMCglmm” (Hadfield, 
2010), since the “nlme” and “lme4” packages do not allow for the inclu-
sion of crossed random effects or heterogeneous residual variances, 
respectively. We used default normal priors for fixed effects, inverse 
Wishart priors for the residual variance (V = diag(k) and nu = 0.002) and 

(3)zijlh(m) =a0+ai+cTi+b
(
Tij−Ti

)
+ageij(+ villagem)+nbl+yrh+eijlh(m),
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parameter-expanded priors for the random effects (V = diag(d), nu = d, 
alpha.mu = 0, alpha.V = diag(d)*625, where d is the matrix dimension). 
The parameter-expanded priors are preferred for variance compo-
nents (but are not implemented in the residual structure) because of 
their superior mixing properties, especially when empirical values lie 
close to zero (see discussion in Hadfield, 2018). Models were run for 
a total of 10.1 ⋅106 MCMC steps, with a burn-in period of 105 samples 
and a thinning interval of 104. We report the posterior estimates of 
slope variance from Models iv–vi (Table 2) as well as the differences in 
deviance information criteria (ΔDIC) between models as a measure of 
relative model performance (Spiegelhalter, Best, Carlin, & Linde, 2002). 
Since issues have been raised about using DIC for model comparison 
in certain contexts (Hadfield, 2018; Spiegelhalter et al., 2002), we used 
a conservative but reasonable cut-off point of 6 DIC units from the 
most parsimonious model, analogous to ΔAIC=6 recommended for 
AIC (Richards, 2005; Burnham, Anderson, & Huyvaert, 2011; see also 
Spiegelhalter et al., 2002).

3  | RESULTS

3.1 | Effect of residual variance structure on 
estimates and detection rates of I × E

Data structure and sample size mediated the effect of the residual vari-
ance structure on both the estimates of I × E (�2

b
) and the probability 

of (falsely) detecting it using likelihood-ratio tests. For brevity, we de-
scribe here only the scenarios where No = 2, Nx = 20 (Figure 1) and 
No = 5, Nx = 20 (Figure 2; see Figures S1 and S2 for scenarios where 
Nx = 40). When �2

b
=0.003, RRMs consistently overestimate �2

b
, regard-

less of the RRM structure deployed (Figure 1a,d,g,j); this bias decreases 
across contexts as the environment becomes more variable (�2

x
; hori-

zontal axes). As r
�
2
e ,x

 increases (Figure 1, top to bottom), fitting a hetero-
geneous residual variance structure based on grouped environments 
slightly reduces the bias in the estimates when the number of groups is 
low (two groups of ten environments); that is, the median values move 
closer to the input value. Fitting more variances (four groups of five 
environments) in fact increases the imprecision of the estimates. When 
�
2
b
=0.3, the bias in estimates is less pronounced, but again fitting “too 

many” residual variances increases the imprecision (Figure 1b,e,h,k). 
When �2

b
=1 (Figure 1c,f,i,l), median slope estimates almost invariably 

match the input values reasonably well, regardless of levels of hetero-
scedasticity and the fitted model, but precision improves substantially 
as �2

x
 increases. Thus, the precision of I × E estimates greatly depends 

on the variability in the environment and when real �2
b
 is small, failure 

to fit the proper residual structure may lead to imprecise estimates of 
I × E (Figure 1). An increase in the number of observations per individ-
ual can remedy these issues substantially (Figure 2), as can, to a lesser 
extent, an increase in the number of environments (Figures S1 and S2).

Fitting a heterogeneous residual variance structure based on 
similar environments systematically leads to a reduction in the power 
(P) to detect I × E when �2

b
=0.003 (P « 0.1; Figures 1 and 2, secondary 

vertical axis). We would therefore (rightfully) accept the null hypoth-
esis that I × E was absent. Conversely, fitting homogeneous residual 
variance, or “random” heterogeneous residual variance, increases P 
as r

�
2
e ,x

 increases, leading to the erroneous conclusion that I × E ≫ 0. 
When �2

b
=1, p > .8 in highly variable environments (Figure 1c,f,i,l) and 

as the number of observations per individual increases, the influence 
of �2

b
 is further reduced (Figure 2c,f,i,l). An exception is when the 

residual variance is partitioned into environmental blocks of 5: even 
at �2

b
=1, when No=2 (Figure 1), “power” to detect slope variance 

typically falls below 0.8 at moderate environmental variability (�2
x
=2

) when the residual variance is partitioned too excessively. Again, 
this issue disappears when we have more observations per individ-
ual (Figure 2), but at �2

b
=0.003 the inappropriate residual structures 

keep the false-positive rate unacceptably high (P≫0.2). Thus, when 
true �2

b
 is small and r

�
2
e ,x

 is strong, fitting the right (heterogeneous) 
residual structure is crucial to correctly infer statistical evidence for 
I × E. Moreover, increasing the precision in estimates of I × E and 
statistical power to detect it when it is there is achieved more easily 
by increasing No than by increasing Nx (Figures S1 and S2).

3.2 | Distinguishing heterogeneous residual 
variance from I × E

Whenever there is an association between �2
z
 and the environ-

ment x, simple model comparison using AIC is effective at arriving 

Model Equation k

i zijlh (m) =a0+ai+b
(
Tij−Ti

)
+cTi+ageij

(
+villagem

)
+nbl+yrh+eijlh(m)

1

ii zijklh (m) =a0+ai+b
(
Tij−Ti

)
+cTi+ageij

(
+villagem

)
+nbl+yrh+eijklh(m)

9

iii zijklh (m) =a0+ai+b
(
Tij−Ti

)
+cTi+ageij

(
+villagem

)
+nbl+yrh+eijklh(m)

4/5

iv zijlh (m) =a0+ai+ (b+bi)
(
Tij−Ti

)
+cTi+ageij

(
+villagem

)
+nbl+yrh+eijlh(m)

1

v zijklh (m) =a0+ai+ (b+bi)
(
Tij−Ti

)
+cTi+ageij

(
+villagem

)
+nbl+yrh+eijklh(m)

9

vi zijklh (m) =a0+ai+ (b+bi)
(
Tij−Ti

)
+cTi+ageij

(
+villagem

)
+nbl+yrh+eijklh(m)

4/5

Note: k is the number of residual variances estimated, obtained by dividing the number of years by 
NX (homogeneous variance), 5 (resulting in 9 groups) or 10 (resulting in 4 or 5 groups in HV and VL, 
respectively). See text for explanation for other symbols.

TA B L E  2   Model specifications for 
great tit laying date (z) in the Hoge Veluwe 
and Vlieland populations
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F I G U R E  1   Estimated slope variances (median + 95% CI; left-hand axis) and proportion of significant (p < .05) models (“power”; asterisks, 
right-hand axis) from different random regression analyses on different simulated scenarios (No = 2 and Nx = 20 in all panels; see Table 1). 
From top to bottom: change in r

�
2
e
,x; from left to right: decrease in simulated �2

b
 increases (0.003, 0.3, 1.0), denoted with horizontal dotted 

lines. The horizontal axis displays the environmental variability (�2
x
); different colours and symbols display the estimates from models with 

different residual structures (blue: homogeneous residual structure; grey and yellow: heterogeneous residual structure based on similar 
environments and through random grouping, respectively, using groups of 5 (circles) or 10 (triangles) environments)
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at the qualitative conclusion of whether or not there is statistical 
evidence for I × E. That is, a combined proportion > 0.8 of models 
that appeared as the best model in the selection processes were 
either random regression models (RRMs) when simulated �2

b
=1 

or random-intercept models (RIMs) when simulated �2
b
=0.003 

(see Figure 3 for No = 2 and Figure 4 for No = 5). However, with 
few observations per individual (Figure 3), selection of the “cor-
rect” residual variance structure—matching the simulated data (i.e. 
homogeneous vs. heterogeneous)—was achieved at a rate « 0.8. 
For example, with a moderate heterogeneity in residual variance 
(r
�
2
e ,x

=0.2), models with a homogeneous residual structure were 
chosen most often (Figure 3c,d). When �2

e
=0.003 and r

�
2
e ,x

=0.8 
(Figure 3e,f), both models with and without a heterogeneous re-
sidual structure (with 10-env. groups) were selected at competing 
rates.

As expected, increasing No improved model selection 
(Figure 4). At r

�
2
e ,x

=0.2, the proportion of selected models having 
a homogeneous residual variance decreased at No = 5 compared 
to No = 2 (note the rise in the orange and grey bars in Figure 4c,d). 
At r

�
2
e ,x

=0.8, the vast majority of selected models was again cor-
rectly defined as either RIM or RRMs, and additionally had a 
heterogeneous residual structure (0.93 and 0.79, respectively; 
Figure 4e,f).

3.3 | Modelling I × E in great tit egg-laying dates

The HV and VL great tit populations differ in the degree of plastic-
ity in egg-laying date with respect to spring temperature (Table 3). 
At HV, the best model arising from DIC model selection was the 
random-intercept model with a heterogeneous residual structure 
(Model ii in Tables 2 and 3). In this population, raw annual pheno-
typic variance in laying dates correlates positively with mean spring 
temperature (coefficient  +  bootstrapped 95% CI: 2.39 [0.702, 
4.502]). As the estimate and 95% HPDI for 𝜎̂2

b
 in Model v show, I × E 

is limited in this population, so the association between �2
z
 and tem-

perature is not caused by individually differing reaction norms but 
to other, unmeasured (residual) factors. Comparing RIMs and RRMs 
while fitting a homogeneous residual structure (Model i vs. iv), this 
conclusion changes radically: now the DIC values suggest a strong 
preference for Model iv over Model i (ΔDIC = 41.8) with 𝜎̂2

b
 4.4 to 4.9 

times the size of that of Model v or vi.
At VL, the best supported model is a RRM with a homogeneous 

residual structure (Model iv in Tables 2 and 3). In this population, 
there is clear evidence for individual reaction norms differing in tem-
perature sensitivity and this evidence is picked up by the RRMs re-
gardless of its residual structure (see 𝜎̂2

b
 and 95% HPDIs for Models 

iv–vi), concurring with our simulation results (see Figures 1 and 2). 
Importantly, however, the effect size critically depends on the resid-
ual structure. Unlike the HV population, raw phenotypic variances in 
laying date at VL do not correlate with temperature (0.961 [–1.258, 
3.562]). The lack of this association suggests that �2

z
 covaries non-

linearly with temperature and that this is due to crossing reaction 

norms and not due to heterogeneity in residual variance (see Figure 
S3).

4  | DISCUSSION

We have shown with simulations that the precision with which I × E 
can be estimated depends on the level of heterogeneity in residual 
variance in the data and the way this heterogeneity is subsequently 
modelled. Importantly, substantial variability in the environment is a 
prerequisite for reliably estimating—and detecting—variance in reac-
tion norm slopes, although this effect wanes when individuals have 
observations in many (>2) environments (cf. Van de Pol, 2012). When 
these conditions are not met, failure to model heteroscedasticity in 
residuals adequately may strongly impair precision of estimates and 
the ability of statistical tests to correctly reject or maintain the null 
hypothesis. In our empirical example, the effect of the modelled 
residual structure on the magnitude of estimated I  ×  E (bias) was 
even more pronounced. We would therefore encourage due cau-
tion before proceeding to estimate I × E in observational studies (cf. 
Nicolaus et al., 2013).

Several studies have alluded to both the biological and statistical 
importance of heteroscedasticity (e.g. Cleasby & Nakagawa, 2011; 
Nicolaus et al., 2013; Westneat et al., 2015). However, in the oft-
cited mixed-model “how-to’”paper by Dingemanse and Dochtermann 
(2013), the implications of heteroscedasticity on model performance 
and the correct application of alternative methods are not discussed. 
The same is true for Nussey et al.’s (2007) guideline paper for the 
use of random regression models in studies of phenotypic plas-
ticity. Previous simulation studies on the subject of random regres-
sion models (Gienapp, 2018; Martin et al., 2011; Van de Pol, 2012) 
simulated data under the assumption of constant residual variance. 
Our study adds to previous work by studying heteroscedasticity in 
a random regression framework with simulated (and empirical) data 
with the specific aim to illustrate its effect on model estimates and 
inference from hypothesis testing.

Cleasby and Nakagawa (2011) perhaps give the most complete 
practical guidance for ecologists on how to identify and correctly 
model heteroscedasticity in a standard linear-model framework. 
They suggested (1) using heteroscedasticity-consistent standard 
error estimations or (2) fitting a generalized least-squares model. 
In their example analysis on experimental data (tarsus length as 
a function of feeding treatment and sex in house sparrows Passer 
domesticus), the latter was achieved by fitting a residual variance 
for each treatment–sex combination. In our RRMs, the covariate 
(the environment) was continuous and grouping therefore had to 
be done “experimentally” by varying the groups and selecting the 
most plausible model. Nicolaus et al. (2013) did this by comparing 
two heterogeneous residual structures when testing variation in 
plasticity of clutch size with respect to population density and 
found that partitioning residual variance by year—as opposed to 
two groups of environments—yielded the most plausible model. 
Our simulation results suggest that fitting a heterogeneous 
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F I G U R E  2   Estimated slope variances (median + 95% CI; left-hand axis) and statistical power (right-hand axis) from different random 
regression models on different simulated scenarios (No = 5 and Nx = 20 in all panels; see Table 1). See Figure 1 for a description of each panel 
and the different symbols
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F I G U R E  3   Frequency with which each model is chosen as the top model (based on ΔAIC < 2 and parsimony) under different scenarios 
(all Nx = 40, No = 2 and �2

x
 = 2). Top to bottom: increased heterogeneity in residual variance (r

�
2
e
,x); left to right: increased slope variance (�2

b

). Fitted models (horizontal axes) were random-intercept models (RIM) or random regression models (RRM) with a homogeneous residual 
variance structure (“1 resid”; blue bars), heterogeneous partitioned into groups of 5 (“5-env”; grey bars) or groups of 10 environments (“10-
env”; orange bars). Note that the meaning of the colours in this figure differs from that in Figures 1 and 2
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residual structure with many groups will be problematic when 
sample sizes are small (see Figure 1), potentially due to overfit-
ting. This may also have been the case, for example in a study on 
egg-laying dates in sand lizards, in which the residual variance in 

the RRM was estimated for each year (Ljungström et al., 2015). 
Fitting a homogeneous residual variance in that study yielded 
𝜎̂
2
b
=10.4

(
±3.4 SE

)
, whereas it decreased to 0 when fitting het-

erogeneous residual variance. Although the log-likelihood of the 

F I G U R E  4   Frequency with which each model is chosen as the top model (ΔAIC < 2) under different scenarios (all Nx = 40, No = 5 and �2
x
 = 

2). See the caption to Figure 3 for an explanation of the different scenarios and the description of the different colours

0.0

0.2

0.4

0.6

0.8

1.0
(a) r[Ve ~X ] = 0.01, Vb  = 0.003

0.0

0.2

0.4

0.6

0.8

1.0
(b) r[Ve ~X ] = 0.01, Vb  = 1

0.0

0.2

0.4

0.6

0.8

1.0
(c) r[Ve ~X ] = 0.2, Vb  = 0.003

0.0

0.2

0.4

0.6

0.8

1.0
(d) r[Ve ~X ] = 0.2, Vb  = 1

RIM
1 resid

RRM
1 resid

RIM
5−env
resid

RRM
5−env
resid

RIM
10−env

resid

RRM
10−env

resid

0.0

0.2

0.4

0.6

0.8

1.0
(e) r[Ve ~X ] = 0.8, Vb  = 0.003

RIM
1 resid

RRM
1 resid

RIM
5−env
resid

RRM
5−env
resid

RIM
10−env

resid

RRM
10−env

resid

0.0

0.2

0.4

0.6

0.8

1.0
(f) r[Ve ~X ] = 0.8, Vb  = 1

Model structure

Fr
eq

ue
nc

y 
to

p 
m

od
el

 (A
IC

)



362  |     RAMAKERS et al.

model improved considerably, the best model may actually have 
been a compromise between the two. Fitting too few groups, on 
the other hand, may not adequately deal with heteroscedastic-
ity and lead to overestimation of 𝜎̂2

b
. We did not explore “annual” 

residual variances in our simulations because the models could 
not be fit under certain conditions. We therefore strongly suggest 
that a “sensitivity analysis” be conducted by changing the num-
ber of residual variances stepwise and judge relative model per-
formance using information criteria. Caution is, however, always 
warranted when the sample size is low, and it may be reasonable 
to assume that fitting a residual variance for each environment 
will result in severe overfitting and potentially erroneous conclu-
sions. Ideally, when �2

e
 changes in a continuous fashion, it should 

be modelled as such; a model allowing this would be a parsimo-
nious alternative to fitting separate residual variances (Equation 
2b). Although this model can be fitted using the “nlme” package, 
we did not include it in the simulations since, to our knowledge, 
it is not a practical solution for many of the frequently used soft-
ware packages.

Fitting residual variance for different groups of environments is 
an effective way of dealing with heteroscedasticity, but obtaining re-
liable estimates of I × E naturally starts with the identification of the 
best “null” model describing the trait of interest, including the fixed 
effects on which the variance components are conditioned. Typical re-
productive traits such as egg-laying date and clutch size, for example, 
vary with age. If the phenotypic response to the environment changes 
with age (A × E; e.g. Van de Pol, Osmond, & Cockburn, 2012), individ-
ual variation in reaction norm slopes may in fact reflect (unobserved) 
A × E and not I × E (see discussion in Van de Pol, 2012); failing to fit 
the appropriate age structure in the model may lead to heteroscedas-
ticity and, in turn, to the erroneous conclusion of I × E. Cleasby and 

Nakagawa (2011) give a comprehensive account of ecological factors 
generating changes in residual variances across environmental gradi-
ents. Their main point, and that of others (e.g. Westneat et al., 2015), is 
that heteroscedasticity is a perfectly natural biological component of 
the data that, rather than being just statistical “nuisance” (Erceg-Hurn 
& Mirosevich, 2008), should inspire researchers to formulate new hy-
potheses and build their models accordingly.

Recommendations for evolutionary and 
behavioural ecologists

The results of our simulations and empirical data analysis can be 
used to draw up a set of guidelines for behavioural and evolution-
ary ecologists interested in phenotypic plasticity. Important recom-
mendations involving RRMs, and heteroscedasticity more generally, 
have been made by others (Nussey et al., 2007; e.g. Cleasby & 
Nakagawa, 2011; Martin et al., 2011; Van de Pol, 2012; Dingemanse 
& Dochtermann, 2013; Nicolaus et al., 2013; Gienapp, 2018). Note, 
also, that random regression techniques were originally developed 
mainly for the field of animal breeding (Henderson, 1982; Schaeffer, 
2004) and developments of tools mainly take place within this field. 
There are sophisticated statistical tools available for modelling het-
eroscedasticity (see Lee & Nelder, 2006; Rönnegård, Felleki, Fikse, 
Mulder, & Strandberg, 2010) that may be preferred in some contexts 
on biological and/or  statistical grounds. We, however, would like 
to present guidelines that can be used within the R environment in 
software packages and methods that many ecologists will be famil-
iar with (e.g. “nlme” (Pinheiro et al., 2017), “MCMCglmm” (Hadfield, 
2010) and “ASReml-R” (Butler, Cullis, Gilmour, & Gogel, 2009; 
Gilmour, Gogel, Cullis, & Thompson, 2009)).

TA B L E  3   Results of the RRMs on great tit laying dates from the Hoge Veluwe and Vlieland populations

Model Random effects Structure �2

e
Envs. grouped by

No. of residual 
groups ΔDIC 𝝈̂

2

b
 (95% HPDI)

Hoge Veluwe

i Y + NB +I Ho 44 (Nx) 1 159.0 -

ii Y + NB +I He 5 9 2.3 -

iii Y + NB +I He 10 4 88.4 -

iv Y + NB +IxE Ho 44 1 117.1 0.168 (0.018, 0.336)

v Y + NB +IxE He 5 9 0 0.034 (0.000, 0.123)

vi Y + NB +IxE He 10 4 85.5 0.039 (0.000, 0.135)

Vlieland

i Y + NB +I Ho 47 (Nx) 1 867.4 -

ii Y + NB +I He 5 9 230 -

iii Y + NB +I He 10 5 392.3 -

iv Y + NB +IxE Ho 47 1 0 1.893 (1.428, 2.322)

v Y + NB +IxE He 5 9 19.8 0.963 (0.428, 1.545)

vi Y + NB +IxE He 10 5 39.4 1.511 (1.032, 2.068)

Note: Y = year, NB = nest box, I = individual, I × E = individual-by-environment interaction, Ho = homogeneous residual variance, He = heterogeneous 
residual variance, Nx = number of environments (here: years). The best models (based on DIC and parsimony) are marked in bold.
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When it comes to random regression models to estimate I × E 
(and/or G × E), we suggest the following steps (but particularly step 
1, 2 and 4) be given sufficient thought:

1.	 Plot raw phenotypic variance against the environmental covariate. 
Plotting the data prior to analysis can sometimes be quite 
revealing, since it may give us an idea of whether and how 
we can expect variances to change with the environment. This 
may be helpful in deciding by how many groups residual vari-
ance in the RRM may need to be modelled. Furthermore, as a 
reality check, we can compare the plot to a plot of individual 
reaction norms drawn from RRMs (using “best linear unbiased 
predictors” (BLUPs) or their equivalents) and visually check if 
the trends in phenotypic variation match the estimated indi-
vidual reaction norms.

2.	 Compare RRMs with several different residual structures using infor-
mation criteria. To our knowledge, there is no clear guideline as 
to how many residual variances are reasonable, but our simula-
tions suggest that especially when sample size is an issue, more 
is not necessarily better. In combination with plots of raw pheno-
typic variance against the environment, the researcher can use 
informed judgement. A simple approach would be to take the 
total number of environments (Nx) and divide it by a predeter-
mined number, for example by 10, 7, 5, 3 or 1 (i.e. heterogeneous), 
or fitting a homogeneous residual variance. Information criteria 
can also be used to compare different means of grouping (e.g. 
equal-interval groups vs. groups based on natural breaks in the 
data) or, if possible, to compare discretization versus a continuous 
change in residual variance. It should be borne in mind that the 
more discrete groups, the more degrees of freedom are used and 
the higher the risk of overfitting. Importantly, the chosen residual 
structure should be an informed one, and this should be commu-
nicated to the reader.

3.	 Replace the environmental covariate in the RRM with environment-
specific mean phenotypes. When the trait in question does not 
respond strongly to the environment, estimates of I × E and the 
power to detect it may be downwardly biased (Gienapp, 2018). 
There may, however, still be undetected I × E and even G × E in 
the population, which may have implications for the ability of the 
population to genetically respond to selection. The mean pheno-
type in a given environment can be used in certain contexts as 
a substitute for the “real” environmental driver and in that way 
serve as a “yardstick” for testing whether I × E and/or G × E ex-
ists in the population (Gienapp, 2018; Ramakers, Culina, Visser, 
et al., 2018; but see discussions in Brommer, 2019 and Ramakers, 
Culina, Visser, & Gienapp, 2019).

4.	 Do a power analysis by simulation. Whenever the RRM fails to 
pick up statistical evidence for I × E, the question arises whether 
this is due to a true lack of I × E or the lack of statistical power. 
Simulations can shed light on this. One can simulate a population 
with differing Nx, No and �2

b
 and "play around" with parameter val-

ues to infer how likely one was to detect I × E in the real data in 
the first place.

5  | CONCLUDING REMARKS

We provide a simulation-informed set of guidelines that students of 
behavioural or life-history plasticity may adopt to successfully esti-
mate environment-specific individual variances (I × E) and/or genetic 
variances (G × E) using random regression tools. When sample sizes 
are reasonably large, a simple information-theoretic approach to se-
lecting the best model should help one arrive at the best model ex-
plaining the data. We note, however, that when sample sizes are too 
small, even the most efficient model will not be able to estimate I × E 
reliably. Defining what is a decent sample size is beyond the scope of 
this study and has been elegantly demonstrated in previous studies 
(Martin et al., 2011; van de Pol, 2012). Nevertheless, we encourage 
researchers to always thoroughly document all statistical procedures 
(e.g. though R scripts) and report sample sizes, effect sizes and the 
precision of their estimates, which in the long run will serve the sci-
entific field by enabling biological synthesis across study systems, for 
example in the form of meta-analysis.
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