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In recent years, the introduction of massively parallel sequencing platforms for Next Generation Sequencing (NGS) protocols,
able to simultaneously sequence hundred thousand DNA fragments, dramatically changed the landscape of the genetics studies.
RNA-Seq for transcriptome studies, Chip-Seq for DNA-proteins interaction, CNV-Seq for large genome nucleotide variations
are only some of the intriguing new applications supported by these innovative platforms. Among them RNA-Seq is perhaps the
most complex NGS application. Expression levels of specific genes, differential splicing, allele-specific expression of transcripts can
be accurately determined by RNA-Seq experiments to address many biological-related issues. All these attributes are not readily
achievable from previously widespread hybridization-based or tag sequence-based approaches. However, the unprecedented level
of sensitivity and the large amount of available data produced by NGS platforms provide clear advantages as well as new challenges
and issues. This technology brings the great power to make several new biological observations and discoveries, it also requires a
considerable effort in the development of new bioinformatics tools to deal with these massive data files. The paper aims to give a
survey of the RNA-Seq methodology, particularly focusing on the challenges that this application presents both from a biological
and a bioinformatics point of view.

1. Introduction

It is commonly known that the genetic information is
conveyed from DNA to proteins via the messenger RNA
(mRNA) through a finely regulated process. To achieve
such a regulation, the concerted action of multiple cis-
acting proteins that bind to gene flanking regions—“core”
and “auxiliary” regions—is necessary [1]. In particular,
core elements, located at the exons’ boundaries, are strictly
required for initiating the pre-mRNA processing events,
whereas auxiliary elements, variable in number and location,
are crucial for their ability to enhance or inhibit the basal
splicing activity of a gene.

Until recently—less than 10 years ago—the central
dogma of genetics indicated with the term “gene” a DNA
portion whose corresponding mRNA encodes a protein.
According to this view, RNA was considered a “bridge” in
the transfer of biological information between DNA and
proteins, whereas the identity of each expressed gene, and
of its transcriptional levels, were commonly indicated as
“transcriptome” [2]. It was considered to mainly consist of

ribosomal RNA (80–90%, rRNA), transfer RNA (5–15%,
tRNA), mRNA (2–4%) and a small fraction of intragenic
(i.e., intronic) and intergenic noncoding RNA (1%, ncRNA)
with undefined regulatory functions [3]. Particularly, both
intragenic and intergenic sequences, enriched in repetitive
elements, have long been considered genetically inert, mainly
composed of “junk” or “selfish” DNA [4]. More recently
it has been shown that the amount of noncoding DNA
(ncDNA) increases with organism complexity, ranging from
0.25% of prokaryotes’ genome to 98.8% of humans [5].
These observations have strengthened the evidence that
ncDNA, rather than being junk DNA, is likely to represent
the main driving force accounting for diversity and biological
complexity of living organisms.

Since the dawn of genetics, the relationship between
DNA content and biological complexity of living organisms
has been a fruitful field of speculation and debate [6]. To
date, several studies, including recent analyses performed
during the ENCODE project, have shown the pervasive
nature of eukaryotic transcription with almost the full length
of nonrepeat regions of the genome being transcribed [7].
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The unexpected level of complexity emerging with the
discovery of endogenous small interfering RNA (siRNA) and
microRNA (miRNA) was only the tip of the iceberg [8].
Long interspersed noncoding RNA (lincRNA), promoter-
and terminator-associated small RNA (PASR and TASR,
resp.), transcription start site-associated RNA (TSSa-RNA),
transcription initiation RNA (tiRNA) and many others [8]
represent part of the interspersed and crosslinking pieces
of a complicated transcription puzzle. Moreover, to cause
further difficulties, there is the evidence that most of the
pervasive transcripts identified thus far, have been found
only in specific cell lines (in most of cases in mutant cell lines)
with particular growth conditions, and/or particular tissues.
In light of this, discovering and interpreting the complexity
of a transcriptome represents a crucial aim for understanding
the functional elements of such a genome. Revealing the
complexity of the genetic code of living organisms by
analyzing the molecular constituents of cells and tissues, will
drive towards a more complete knowledge of many biological
issues such as the onset of disease and progression.

The main goal of the whole transcriptome analyses is
to identify, characterize and catalogue all the transcripts
expressed within a specific cell/tissue—at a particular stage—
with the great potential to determine the correct splicing
patterns and the structure of genes, and to quantify the
differential expression of transcripts in both physio- and
pathological conditions [9].

In the last 15 years, the development of the hybridiza-
tion technology, together with the tag sequence-based
approaches, allowed to get a first deep insight into this
field, but, beyond a shadow of doubt, the arrival on the
marketplace of the NGS platforms, with all their “Seq” appli-
cations, has completely revolutionized the way of thinking
the molecular biology.

The aim of this paper is to give an overview of the
RNA-Seq methodology, trying to highlight all the challenges
that this application presents from both the biological and
bioinformatics point of view.

2. Next Generation Sequencing Technologies

Since the first complete nucleotide sequence of a gene, pub-
lished in 1964 by Holley [10] and the initial developments
of Maxam and Gilbert [11] and Sanger et al. [12] in the
1970s (see Figure 1), the world of nucleic acid sequencing
was a RNA world and the history of nucleic acid sequencing
technology was largely contained within the history of RNA
sequencing.

In the last 30 years, molecular biology has undergone
great advances and 2004 will be remembered as the year
that revolutionized the field; thanks to the introduction
of massively parallel sequencing platforms, the Next Gen-
eration Sequencing-era, [13–15], started. Pioneer of these
instruments was the Roche (454) Genome Sequencer (GS)
in 2004 (http://www.454.com/), able to simultaneously
sequence several hundred thousand DNA fragments, with
a read length greater than 100 base pairs (bp). The cur-
rent GS FLX Titanium produces greater than 1 million

reads in excess of 400 bp. It was followed in 2006 by
the Illumina Genome Analyzer (GA) (http://www.illumina
.com/) capable to generate tens of millions of 32-bp reads.
Today, the Illumina GAIIx produces 200 million 75–100 bp
reads. The last to arrive in the marketplace was the Applied
Biosystems platform based on Sequencing by Oligo Ligation
and Detection (SOLiD) (http://www3.appliedbiosystems
.com/AB Home/index.htm), capable of producing 400 mil-
lion 50-bp reads, and the Helicos BioScience HeliS-
cope (http://www.helicosbio.com/), the first single-molecule
sequencer that produces 400 millions 25–35 bp reads.

While the individual approaches considerably vary in
their technical details, the essence of these systems is the
miniaturization of individual sequencing reactions. Each of
these miniaturized reactions is seeded with DNA molecules,
at limiting dilutions, such that there is a single DNA molecule
in each, which is first amplified and then sequenced. To be
more precise, the genomic DNA is randomly broken into
smaller sizes from which either fragment templates or mate-
pair templates are created. A common theme among NGS
technologies is that the template is attached to a solid surface
or support (immobilization by primer or template) or indi-
rectly immobilized (by linking a polymerase to the support).
The immobilization of spatially separated templates allows
simultaneous thousands to billions of sequencing reactions.
The physical design of these instruments allows for an
optimal spatial arrangement of each reaction, enabling an
efficient readout by laser scanning (or other methods) for
millions of individual sequencing reactions onto a standard
glass slide. While the immense volume of data generated is
attractive, it is arguable that the elimination of the cloning
step for the DNA fragments to sequence is the greatest benefit
of these new technologies. All current methods allow the
direct use of small DNA/RNA fragments not requiring their
insertion into a plasmid or other vector, thereby removing
a costly and time-consuming step of traditional Sanger
sequencing.

It is beyond a shadow of doubt that the arrival of
NGS technologies in the marketplace has changed the way
we think about scientific approaches in basic, applied and
clinical research. The broadest application of NGS may be the
resequencing of different genomes and in particular, human
genomes to enhance our understanding of how genetic
differences affect health and disease. Indeed, these platforms
have been quickly applied to many genomic contexts giving
rise to the following “Seq” protocols: RNA-Seq for transcrip-
tomics, Chip-Seq for DNA-protein interaction, DNase-Seq
for the identification of most active regulatory regions, CNV-
Seq for copy number variation, and methyl-Seq for genome
wide profiling of epigenetic marks.

3. RNA-Seq

RNA-Seq is perhaps one of the most complex next-
generation applications. Expression levels, differential splic-
ing, allele-specific expression, RNA editing and fusion tran-
scripts constitute important information when comparing
samples for disease-related studies. These attributes, not
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Figure 1: Evolution of DNA revolution.

readily available by hybridization-based or tag sequence-
based approaches, can now be far more easily and precisely
obtained if sufficient sequence coverage is achieved. How-
ever, many other essential subtleties in the RNA-Seq data
remain to be faced and understood.

Hybridization-based approaches typically refer to the
microarray platforms. Until recently, these platforms have
offered to the scientific community a very useful tool to
simultaneously investigate thousands of features within a
single experiment, providing a reliable, rapid, and cost-
effective technology to analyze the gene expression pat-
terns. Due to their nature, they suffer from background
and cross-hybridization issues and allow researchers to
only measure the relative abundance of RNA transcripts
included in the array design [16]. This technology, which
measures gene expression by simply quantifying—via
an indirect method—the hybridized and labeled cDNA,
does not allow the detection of RNA transcripts from
repeated sequences, offering a limited dynamic range,
unable to detect very subtle changes in gene expression
levels, critical in understanding any biological response to
exogenous stimuli and/or environmental changes [9, 17,
18].

Other methods such as Serial, Cap Analysis of Gene
Expression (SAGE and CAGE, resp.) and Polony Multiplex
Analysis of Gene Expression (PMAGE), tag-based sequenc-
ing methods, measure the absolute abundance of transcripts

in a cell/tissue/organ and do not require prior knowledge
of any gene sequence as occurs for microarrays [19]. These
analyses consist in the generation of sequence tags from
fragmented cDNA and their following concatenation prior to
cloning and sequencing [20]. SAGE is a powerful technique
that can therefore be viewed as an unbiased digital microar-
ray assay. However, although SAGE sequencing has been
successfully used to explore the transcriptional landscape
of various genetic disorders, such as diabetes [21, 22],
cardiovascular diseases [23], and Downs syndrome [24, 25],
it is quite laborious for the cloning and sequencing steps that
have thus far limited its use.

In contrast, RNA-Seq on NGS platforms has clear
advantages over the existing approaches [9, 26]. First, unlike
hybridization-based technologies, RNA-Seq is not limited to
the detection of known transcripts, thus allowing the iden-
tification, characterization and quantification of new splice
isoforms. In addition, it allows researchers to determine the
correct gene annotation, also defining—at single nucleotide
resolution—the transcriptional boundaries of genes and the
expressed Single Nucleotide Polymorphisms (SNPs). Other
advantages of RNA-Seq compared to microarrays are the
low “background signal,” the absence of an upper limit for
quantification and consequently, the larger dynamic range
of expression levels over which transcripts can be detected.
RNA-Seq data also show high levels of reproducibility for
both technical and biological replicates.
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Table 1: Selection of papers on mammalian RNA-Seq.

Reference Organism Cell type/tissue NGS platform

Bainbridge et al., 2006 [27] Homo sapiens Prostate cancer cell line Roche

Cloonan et al., 2008 [30] Mus musculus ES cells and Embryoid bodies ABI

Core et al., 2008 [31] Homo sapiens Lung fibroblasts IIlumina

Hashimoto et al., 2008 [32] Homo sapiens HT29 cell line ABI

Li et al., 2008 [33] Homo sapiens Prostate cancer cell line IIlumina

Marioni et al., 2008 [34] Homo sapiens Liver and kidney samples IIlumina

Morin et al., 2008 [35] Homo sapiens ES cells and Embryoid bodies IIlumina

Morin et al., 2008 [36] Homo sapiens HeLa S3 cell line IIlumina

Mortazavi et al., 2008 [37] Mus musculus Brain, liver and skeletal muscle IIlumina

Rosenkran et al., 2008 [38] Mus musculus ES cells IIlumina

Sugarbaker et al., 2008 [39] Homo sapiens Malignant pleural mesothelioma, adenocarcinoma and normal lung Roche

Sultan et al., 2008 [40] Homo sapiens Human embryonic kidney and B cell line IIlumina

Asmann et al., 2009 [41] Homo sapiens Universal and brain human reference RNAs IIlumina

Chepelev et al., 2009 [42] Homo sapiens Jurkat and GD4+ T cells IIlumina

Levin et al., 2009 [43] Homo sapiens K562 IIlumina

Maher et al., 2009 [44] Homo sapiens Prostate cancer cell lines
Roche

IIlumina

Parkhomchuk et al., 2009 [45] Mus musculus Brain IIlumina

Reddy et al., 2009 [46] Homo sapiens A549 cell line IIlumina

Tang et al., 2009 [47] Mus musculus Blastomere and oocyte ABI

Blekhman et al., 2010 [48]

Homo sapiens,

Liver IIluminaPan troglodytes,

Rhesus macaca.

Heap et al., 2010 [49] Homo sapiens Primary GD4+ T cells IIlumina

Raha et al., 2010 [50] Homo sapiens K562 cell line IIlumina

Recent studies have clearly demonstrated the advantages
of using RNA-Seq [27–50]. Table 1 provides a short descrip-
tion of recent and more relevant papers on RNA-Seq in
mammals.

Many research groups have been able to precisely
quantify known transcripts, to discover new transcribed
regions within intronic or intergenic regions, to characterize
the antisense transcription, to identify alternative splicing
with new combinations of known exon sequences or new
transcribed exons, to evaluate the expression of repeat
elements and to analyze a wide number of known and
possible new candidate expressed SNPs, as well as to identify
fusion transcripts and other new RNA categories.

3.1. Sample Isolation and Library Preparation. The first step
in RNA-Seq experiments is the isolation of RNA samples;
further RNA processing strictly depends on the kind of
analysis to perform. Indeed, as “transcriptome” is defined as
the complete collection of transcribed elements in a genome
(see [2]), it consists of a wide variety of transcripts, both
mRNA and non-mRNA, and a large amount (90–95%) of
rRNA species. To perform a whole transcriptome analysis,

not limited to annotated mRNAs, the selective depletion
of abundant rRNA molecules (5S, 5.8S, 18S and 28S) is
a key step. Hybridization with rRNA sequence-specific 5′-
biotin labeled oligonucleotide probes, and the following
removal with streptavidin-coated magnetic beads, is the
main procedure to selectively deplete large rRNA molecules
from total isolated RNA. Moreover, since rRNA—but not
capped mRNAs—is characterized by the presence of 5′

phosphate, an useful approach for selective ribo-depletion
is based on the use of an exonuclease able to specifically
degrade RNA molecules bearing a 5′ phosphate (mRNA-
ONLY kit, Epicentre). Compared to the polyadenylated
(polyA+) mRNA fraction, the ribo-depleted RNA is enriched
in non-polyA mRNA, preprocessed RNA, tRNA, regulatory
molecules such as miRNA, siRNA, small ncRNA, and other
RNA transcripts of yet unknown function (see review [8]).

How closely the RNA sequencing reflects the original
RNA populations is mainly determined in the library prepa-
ration step, crucial in the whole transcriptome protocols.
Although NGS protocols were first developed for the analysis
of genomic DNA, these technical procedures have been
rapidly and effectively adapted to the sequencing of double-
strand (ds) cDNA for transcriptome studies [51].
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A double-stranded cDNA library can be usually prepared
by using: (1) fragmented double-stranded (ds) cDNA and (2)
hydrolyzed or fragmented RNA.

The goal of the first approach is to generate high-
quality, full-length cDNAs from RNA samples of interest to
be fragmented and then ligated to an adapter for further
amplification and sequencing. By the way, since the primer
adaptor is ligated to a fragmented ds cDNA, any information
on the transcriptional direction would completely be lost.
Preserving the strandedness is fundamental for data analysis;
it allows to determine the directionality of transcription and
gene orientation and facilitates detection of opposing and
overlapping transcripts. To take into account and thus to
avoid this biologically relevant issue, many approaches, such
as pretreating the RNA with sodium bisulphite to convert
cytidine into uridine [52], have been so far developed.
Other alternative protocols, differing in how the adaptors
are inserted into ds cDNA, have been recently published:
direct ligation of RNA adaptors to the RNA sample before
or during reverse transcription [30, 31, 53], or incorporation
of dUTP during second strand synthesis and digestion
with uracil-Nglycosylase enzyme [45]. For instance, SOLiD
Whole Transcriptome Kit contains two different sets of
oligonucleotides with a single-stranded degenerate sequence
at one end, and a defined sequence required for sequencing
at the other end, constraining the orientation of RNA in
the ligation reaction. The generation of ds cDNA from RNA
involves a number of steps. First, RNA is converted into first-
strand cDNA using reverse transcriptase with either random
hexamers or oligo(dT) as primers. The resulting first-strand
cDNA is then converted into double-stranded cDNA, further
fragmented with DNAse I and then ligated to adapters
for amplification and sequencing [54]. The advantage of
using oligo dT is that the majority of cDNA produced
should be polyadenylated mRNA, and hence more of the
sequence obtained should be informative (nonribosomal).
The significant disadvantage is that the reverse transcriptase
enzyme will fall off of the template at a characteristic rate,
resulting in a bias towards the 3′ end of transcripts. For long
mRNAs this bias can be pronounced, resulting in an under
representation (or worse in the absence) of the 5′ end of
the transcript in the data. The use of random primers would
therefore be the preferred method to avoid this problem and
to allow a better representation of the 5′ end of long ORFs.
However, when oligo dT primers are used for priming, the
slope which is formed by the diminishing frequency of reads
towards the 5′ end of the ORF can, in some cases, be useful
for determining the strand of origin for new transcripts if
strand information has not been retained [28, 37].

Fragmenting RNA, rather than DNA, has the clear advan-
tage of reducing possible secondary structures, particularly
for tRNA and miRNA, resulting in a major heterogeneity
in coverage and can also lead to a more comprehensive
transcriptome analysis (Figure 2). In this case, the RNA
sample is first fragmented by using controlled temperature or
chemical/enzymatic hydrolysis, ligated to adapters and retro-
transcribed by complementary primers. Different protocols
have been so far developed. Indeed, the adaptor sequences
may be directly ligated to the previously fragmented RNA

molecules by using T4 RNA ligase, and the resulting library
can be reverse transcribed with primer pairs specifically
suited on the adaptor sequences, and then sequenced.
Another approach, recently described in [55], consists in
the in vitro polyadenilation of RNA fragments in order to
have a template for the next step of reverse transcription
using poly(dT) primers containing both adaptor sequences
(linkers), separated back-to-back by an endonuclease site.
The resulting cDNAs are circularized and then cleaved at
endonuclease site in the adaptors, thus leaving ss cDNA
with the adaptors at both ends [55]. A third protocol
described by [33], named double random priming method,
uses biotinylated random primers (a sequencing primer P1 at
the 5′ end, and a random octamer at the 3′ end). After a first
random priming reaction, the products are isolated by using
streptavidin beads and a second random priming reaction is
performed on a solid phase with a random octamer carrying
the sequencing primer P2. Afterwards, second random
priming products are released from streptavidin beads by
heat, PCR-amplified, gel-purified, and finally subjected to
sequencing process from the P1 primer. Moreover, as already
mentioned, in [45] the authors used dUTP—a surrogate
for dTTP—during the second-strand synthesis to allow a
selective degradation of second cDNA strand after adaptor
ligation using a uracil-N-glycosylase. The use of engineered
DNA adaptors, combined to the dUTP protocol, ensures that
only the cDNA strand corresponding to the “real” transcript
is used for library amplification and sequencing, reserving
the strandedness of gene transcription [45].

However, independently on the library construction
procedure, particular care should be taken to avoid complete
degradation during RNA fragmentation.

The next step of the sequencing protocols is the clonally
amplification of the cDNA fragments.

Illumina, 454 and SOLiD use clonally amplified tem-
plates. In particular, the last two platforms use an innovative
procedure, emulsion PCR (emPCR), to prepare sequencing
templates in a cell-free system. cDNA fragments from a
fragment or paired-end library are separated into single
strands and captured onto beads under conditions that
favour one DNA molecule per bead. After the emPCR
and beads enrichment, millions of them are chemically
crosslinked to an amino-coated glass surface (SOLiD) or
deposited into individual PicoTiterPlate (PTP) wells (454)
in which the NGS chemistry can be performed. Solid-phase
amplification (Illumina) can also be used to produce ran-
domly distributed, clonally amplified clusters from fragment
or mate-pair templates on a glass slide. High-density forward
and reverse primers are covalently attached to the slide, and
the ratio of the primers to the template defines the surface
density. This procedure can produce up to 200 million
spatially separated template clusters, providing ends for
primer hybridization, needed to initiate the NGS reaction.
A different approach is the use of single molecules templates
(Helicos BioScience) usually immobilized on solid supports,
in which PCR amplification is no more required, thus avoid-
ing the insertion of possible confounding mutations in the
templates. Furthermore, AT- and GC-rich sequences present
amplification issues, with over- or under-representation bias
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Figure 2: Library preparation and clonal amplification. Schematic representation of a workflow for library preparation in RNA-Seq
experiments on the SOLiD platform. In the figure is depicted a total RNA sample after depletion of rRNA, containing both polyA and
non-polyA mRNA, tRNAs, miRNAs and small noncoding RNAs. Ribo-depleted total RNA is fragmented (1), then ligated to specific adaptor
sequences (2) and retro-transcribed (3). The resulting cDNA is size selected by gel electrophoresis (4), and cDNAs are PCR amplified (5).
Then size distribution is evaluated (6). Emulsion PCR, with one cDNA fragment per bead, is used for the clonal amplification of cDNA
libraries (7). Purified and enriched beads are finally deposited onto glass slides (8), ready to be sequenced by ligation.

in genome alignments and assemblies. Specific adaptors
are bound to the fragmented templates, then hybridized to
spatially distributed primers covalently attached to the solid
support [56].

3.2. Sequencing and Imaging. NGS platforms use different
sequencing chemistry and methodological procedures.

Illumina and HeliScope use the Cyclic Reversible Ter-
mination (CRT), which implies the use of reversible termi-
nators (modified nucleotide) in a cyclic method. A DNA
polymerase, bound to the primed template, adds one fluo-
rescently modified nucleotide per cycle; then the remaining
unincorporated nucleotides are washed away and imaging
capture is performed. A cleavage step precedes the next incor-
poration cycle to remove the terminating/inhibiting group
and the fluorescent dye, followed by an additional washing.
Although these two platforms use the same methodology,
Illumina employs the four-colour CRT method, simultane-
ously incorporating all 4 nucleotides with different dyes;
HeliScope uses the one-colour (Cy5 dye) CRT method.

Substitutions are the most common error type, with a
higher portion of errors occurring when the previous incor-
porated nucleotide is a G base [57]. Under representation of
AT-rich and GC-rich regions, probably due to amplification
bias during template preparation [57–59], is a common
drawback.

In contrast, SOLiD system uses the Sequencing by
Ligation (SBL) with 1, 2-nucleotide probes, based on colour
space, which is an unique feature of SOLiD. It has the
main advantage to improve accuracy in colour and single
nucleotide variations (SNV) calling, the latter of which
requires an adjacent valid colour change. In particular, a
universal primer is hybridized to the template beads, and a
library of 1, 2-nucleotide probes is added. Following four-
colour imaging, the ligated probes are chemically cleaved
to generate a 5′-phosphate group. Probe hybridization and
ligation, imaging, and probe cleavage is repeated ten times
to yield ten colour calls spaced in five-base intervals. The
extended primer is then stripped from the solid-phase-
bound templates. A second ligation round is performed with
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a n − 1 primer, which resets the interrogation bases and the
corresponding ten colour calls one position to the left. Ten
ligation cycles ensue, followed by three rounds of ligation
cycles. Colour calls from the five-ligation rounds are then
ordered into a linear sequence (the csfasta colour space) and
aligned to a reference genome to decode the sequence. The
most common error type observed by using this platform are
substitutions, and, similar to Illumina, SOLiD data have also
revealed an under representation of AT- and GC-rich regions
[58].

Another approach is pyrosequencing (on 454), a non-
electrophoretic bioluminescence method, that unlike the
above-mentioned sequencing approaches is able to measure
the release of pyrophosphate by proportionally converting
it into visible light after enzymatic reactions. Upon incor-
poration of the complementary dNTP, DNA polymerase
extends the primer and pauses. DNA synthesis is reinitiated
following the addition of the next complementary dNTP in
the dispensing cycle. The enzymatic cascade generates a light
recorded as a flowgram with a series of picks corresponding
to a particular DNA sequence. Insertions and deletions are
the most common error types.

An excellent and detailed review about the biotechnolog-
ical aspects of NGS platforms can be found in [15].

3.3. From Biology to Bioinformatics. The unprecedented level
of sensitivity in the data produced by NGS platforms brings
with it the power to make many new biological observations,
at the cost of a considerable effort in the development of new
bioinformatics tools to deal with these massive data files.

First of all, the raw image files from one run of some
next generation sequencers can require terabytes of storage,
meaning that simply moving the data off the machine can
represent a technical challenge for the computer networks
of many research centers. Moreover, even when the data
are transferred from the machine for subsequent processing,
common desktop computer will be hopelessly outmatched
by the volume of data from a single run. As a result, the use of
a small cluster of computers is extremely beneficial to reduce
computational bottleneck.

Another issue is the availability of software required to
perform downstream analysis. Indeed after image and signal
processing the output of a RNA-Seq experiment consists of
10–400 millions of short reads (together with their base-
call quality values), typically of 30–400 bp, depending on the
DNA sequencing technology used, its version and the total
cost of the experiments.

NGS data analysis heavily relies on proper mapping of
sequencing reads to corresponding reference genomes or
on their efficient de novo assembly. Mapping NGS reads
with high efficiency and reliability currently faces several
challenges. As noticed by [60], differences between the
sequencing platforms in samples preparation, chemistry,
type and volume of raw data, and data formats are very
large, implying that each platform produces data affected
by characteristic error profiles. For example the 454 system
can produce reads with insertion or deletion errors during
homopolymer runs and generate fewer, but longer, sequences

in fasta like format allowing to adapt classical alignment
algorithms; the Illumina has an increased likelihood to
accumulate sequence errors toward the end of the read and
produce fasta reads, but they are shorter, hence requiring
specific alignment algorithms; the SOLiD also tends to
accumulate bias at the end of the reads, but uses di-base
encoding strategy and each sequence output is encoded in
a colour space csfasta format. Hence, some sequence errors
are correctable, providing better discrimination between
sequencing error and polymorphism, at the cost of requiring
analysis tools explicitly built for handling this aspect of the
data. It is not surprising that there are no “box standard”
software available for end-users, hence the implementation
of individualized data processing pipelines, combining third
part packages and new computational methods, is the only
advisable approach. While some existing packages are already
enabling to solve general aspects of RNA-Seq analysis, they
also require a time consuming effort due to the lack of clear
documentation in most of the algorithms and the variety
of the formats. Indeed, a much clear documentation of the
algorithms is needed to ensure a full understanding of the
processed data. Community adoption of input/output data
formats for reference alignments, assemblies and detected
variants is also essential for ease the data management
problem. Solving these issues may simply shift the software
gap from sequence processing (base-calling, alignment or
assembly, positional counting and variant detection) to
sequence analysis (annotation and functional impact).

3.4. Genome Alignment and Reads Assembly. The first step
of any NGS data analysis consists of mapping the sequence
reads to a reference genome (and/or to known annotated
transcribed sequences) if available, or de novo assembling to
produce a genome-scale transcriptional map. (see Figure 3
for an illustration of a classical RNA-Seq computational
pipeline). The decision to use one of strategies is mainly
based on the specific application. However, independently
on the followed approach, there is a preliminary step that
can be useful to perform which involves the application of
a quality filtering to remove poor quality reads and to reduce
the computational time and the effort for further analysis.

Analyzing the transcriptome of organisms without a
specific reference genome requires de novo assembling (or a
guided assembly with the help of closely related organisms)
of expressed sequence tags (ESTs) using short-read assem-
bly programs such as [61, 62]. A reasonable strategy for
improving the quality of the assembly is to increase the read
coverage and to mix different reads types. However RNA-Seq
experiments without a reference genome propose specific
features and challenges that are out of the scope of the present
paper; we refer the readers to [63, 64] for further details.

In most cases, the reference genome is available and the
mapping can be carried out using either the whole genome
or known transcribed sequences (see, e.g., [28–30, 32, 34, 37,
40, 46, 47]). In both cases, this preliminary but crucial step is
the most computationally intensive of the entire process and
strongly depends on the type of available sequences (read-
length, error profile, amount of data and data format). It is
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Figure 3: RNA-Seq computational pipeline.

not surprising that such nodal point still constitutes a very
prominent area of research (see, e.g., [65–67] for a review)
and has produced a great number of different algorithms in
the last couple of years (e.g., [68–78]). Clearly, not all of them
completely support the available platforms or are scalable
for all amount of throughput or genome size. Nevertheless,
the sequencing technologies are still in a developing phase
with a very fast pace of increase in throughput, reads length
and data formats after few months. Consequently, the already
available mapping/assembly software are continuously under
evolution in order to adapt themselves to the new data
formats, to scale with the amount of data and to reduce their
computational demand. New softwares are also continuously
complementing the panorama. Moreover, the alignment
phase of reads from RNA-Seq experiments presents many
other subtleties to be considered; standard mapping algo-
rithms are not able to fully exploit the complexity of the
transcriptome, requiring to be modified or adapted in order
to account for splicing events in eucaryotes.

The easiest way to handle such difficulty is to map the
reads directly on known transcribed sequences, with the
obvious drawback of missing new transcripts. Alternatively,

the reads can be mapped continuously to the genome, but
with the added opportunity of mapping reads that cross
splice junctions. In this case, the algorithms differ from
whether they require or not junctions’s model. Algorithms
such as Erange [37] or RNA-mate [79] require library
of junctions constructed using known splice junctions
extracted from data-bases and also supplemented with any
set of putative splice junctions obtained, for instance, using a
combinatorial approach on genes’ model or ESTs sequences.
Clearly, such approaches do not allow to map junctions
not previously assembled in the junctions’ library. On the
other hand, algorithms like the WT [69], QPALMA [80],
TopHat [81], G.Mo.R-Se [63], and PASS [78] potentially
allow to detect new splice isoforms, since they use a more
sophisticated mapping strategy. For instance, WT [69] splits
the reads in left and right pieces, aligns each part to the
genome, then attempts to extend each alignment on the
other side to detect the junction. Whereas TopHat [81]
first maps the reads against the whole reference genome
using [77], second aggregates the mapped reads in islands
of candidate exons on which compute a consensus measure,
then generates potential donor/acceptor splice sites using
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neighboring exons, and finally tries to align the reads,
unmapped to the genome, to these splice junction sequences.

Most of the RNA-Seq packages are built on top of
optimized short read core mappers [68, 69, 72, 77] and
the mapping strategy is carried out by performing multiple
runs or cycles. At the end of each cycle the unmatched
reads are trimmed from one extreme and another step of
alignment is attempted (see, e.g., [79]). Specific tolerances
can be set for each alignment in order to increase the amount
of mappable data. Obviously the simplest core approach is to
map the sequence reads across the genome allowing the user
to specify only the number of tolerated mismatches, although
other methods allow to use also gapped alignment. Such
flexibility can be beneficial for the rest of the analysis since
both sequencing errors, that usually increase with the length
of the sequence, and SNPs may cause substitutions and
insertion/deletion of nucleotides in the reads. On the other
hand, increasing the mapping flexibility also introduces a
higher level of noise in the data. The compromise between
the number of mapped reads and the quality of the resulting
mapping is a very time consuming process without an
optimal solution.

At the end of the mapping algorithm one can distinguish
between three types of reads: reads that map uniquely to
the genome or to the splice junctions (Uniquely Mappable
Reads, UMR), reads with multiple (equally or similarly
likely) locations either to the genome or to the splice
junctions (Multilocation Mappable Reads, MMR) and reads
without a specific mapping location. MMRs arise predomi-
nantly from conserved domains of paralogous gene families
and from repeats. The fraction of mappable reads that are
MMRs depends on the length of the read, the genome under
investigation, and the expression in the individual sample;
however it is typically between 10–40% for mammalian
derived libraries [30, 37]. Most of the studies [28, 34]
usually discarded MMRs from further analysis, limiting the
attention only to UMRs. Clearly, this omission introduces
experimental bias, decreases the coverage and reduces the
possibility of investigating expressed regions such as active
retrotransposons and gene families. An alternative strategy
for the removal of the MMRs is to probabilistically assign
them to each genomic location they map to. The simplest
assignment considers equal probabilities. However, far better
results have been obtained using a guilt-by-association
strategy that calculates the probability of a MMRs originating
from a particular locus. In [82], the authors proposed
to proportionally assign MMRs to each of their mapping
locations based on unique coincidences with either UMRs
and other MMRs. Such a technique was later adopted in [79].
By contrast, in [83], the authors computed the probability
as the ratio between the number of UMRs occurring in a
nominal window surrounding each locus occupied by the
considered MMR and the total number of UMRs proximal
to all loci associated with that MMR. Similarly, in [37] the
MMRs were fractionally assigned to their different possible
locations considering the expression levels of their respective
gene models. All these rescue strategies lead to substantially
higher transcriptome coverage and give expression estimates
in better agreement with microarrays than those using only

UMRs (see, [37, 83]). Very recently, a more sophisticated
approach was proposed in [84]. The authors introduced
latent random variables representing the true mappings,
with the parameters of the graphical model correspond-
ing to isoform expression levels, read distributions across
transcripts, and sequencing error. They allocated MMRs by
maximizing the likelihood of the expression levels using
an Expectation-Maximization (EM) algorithm. Additionally,
they also showed that previous rescue methods introduced
in [37, 82] are roughly equivalent to one iteration of EM.
Independently on the specific proposal, we observe that all
the above mentioned techniques work much better with
data that preserve RNA strandedness. Alternatively, the use
of paired-end protocols should help to alleviate the MMRs
problem. Indeed, when one of the paired reads maps to a
highly repetitive element in the genome but the second does
not, it allows both reads to be unambiguously mapped to the
reference genome. This is accomplished by first matching the
first nonrepeat read uniquely to a genomic position and then
looking within a size window, based on the known size range
of the library fragments, for a match for the second read. The
usefulness of this approach was demonstrated to improve
read matching from 85% (single reads) to 93% (paired
reads) [70], allowing a significant improvement in genome
coverage, particularly in repeat regions. Currently, all of
the next generation sequencing technologies are capable for
generating data from paired-end reads, but unfortunately,
till now only few RNA-Seq software support the use of
paired-end reads in conjunction with the splice junctions
mapping.

One of the possible reasons for reads not mapping
to the genome and splice junctions is the presence of
higher sequencing errors in the sequence. Other reasons can
be identified in higher polymorphisms, insertion/deletion,
complex exon-exon junctions, miRNA and small ncRNA:
such situations could potentially be recovered by more
sophisticated or combined alignment strategy.

Once mapping is completed, the user can display and
explore the alignment on a genome browser (see Figure 4
for a screen-shot example) such as UCSC Genome Browser
[85] (http://genome.ucsc.edu/) or the Integrative Genomics
Viewer (IGV) (http://www.broadinstitute.org/igv), or on
specifically devoted browsers such as EagleView [86],
MapView [87] or Tablet [88], that can provide some highly
informative views of the results at different levels of aggrega-
tions. Such tools allow to incorporate the obtained alignment
with database annotations and other source of information,
to observe specific polymorphism against sequence error, to
identify well documented artifacts due to the DNA amplifi-
cations, as well as to detect other source of problems such as
the not uniformity of the reads coverage across the transcript.
Unfortunately, in many cases the direct visualization of the
data is hampered by the lack of a common format for the
alignment algorithm, causing a tremendous amount of extra
work in format conversion for visualization purposes, feature
extraction and other downstream analysis. Only recently, the
SAM (Sequencing Alignment/Map) format [89] has been
proposed as a possible standard for storing read alignment
against reference sequences.
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Figure 4: Strand-Specific Read Distribution in UCSC Genome Browser and IGV. (a) UCSC Genome Browser showing an example of stranded
sequences generated by RNA-Seq experiment on NGS platform. In particular, the screenshot—of a characteristic “tail to tail” orientation
of two human genes—clearly shows the specific expression in both strands where these two genes overlap, indicating that the strandedness
of reads is preserved. (b) The same genomic location in the IGV browser, showing the reads (coloured blocks) distribution along TMED1
gene. The grey arrows indicate the sense of transcription. The specific expression in both strands where the genes overlap, indicates that the
strandedness of reads is preserved. In (c) a greater magnification of the reads mapping to the same region at nucleotide level, useful to SNP
analysis. The chromosome positions are shown at the top and genomic loci of the genes are shown at the bottom of each panel.

3.5. Quantifying Gene Expression and Isoforms’ Abundance.
Browser-driven analyses are very important for visualizing
the quality of the data and to interpret specific events
on the basis of the available annotations and mapped
reads. However they only provide a qualitative picture of
the phenomenon under investigation and the enormous
amount of data does not allow to easily focus on the most
relevant details. Hence, the second phase of most of the
RNA-Seq pipeline consists of the automatic quantification
of the transcriptional events across the entire genome

(see Figure 4). From this point of view the interest is
both quantifying known elements (i.e., genes or exons
already annotated) and detecting new transcribed regions,
defined as transcribed segments of DNA not yet anno-
tated as exons in databases. The ability to detect these
unannotated regions, even though biologically relevant,
is one of the main advantages of the RNA-Seq over
microarray technology. Usually, the quantification step is
preliminary to any differential expression approach, see
Figure 5.
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Figure 5: Mapping and quantification of the signal. RNA-seq experiments produce short reads sequenced from processed mRNAs. When a
reference genome is available the reads can be mapped on it using efficient alignment software. Classical alignment tools will accurately map
reads that fall within an exon, but they will fail to map spliced reads. To handle such problem suitable mappers, based either on junctions
library or on more sophisticated approaches, need to be considered. After the mapping step annotated features can be quantified.

In order to derive a quantitative expression for annotated
elements (such as exons or genes) within a genome, the
simplest approach is to provide the expression as the total
number of reads mapping to the coordinates of each anno-
tated element. In the classical form, such method weights
all the reads equally, even though they map the genome
with different stringency. Alternatively, gene expression can
be calculated as the sum of the number of reads covering
each base position of the annotated element; in this way the
expression is provided in terms of base coverage. In both
cases, the results depend on the accuracy of the used gene
models and the quantitative measures are a function of the
number of mapped reads, the length of the region of interest
and the molar concentration of the specific transcript. A
straightforward solution to account for the sample size
effect is to normalize the observed counts for the length
of the element and the number of mapped reads. In [37],
the authors proposed the Reads Per Kilobase per Million of
mapped reads (RPKM) as a quantitative normalized measure
for comparing both different genes within the same sample
and differences of expression across biological conditions.
In [84], the authors considered two alternative measures
of relative expression: the fraction of transcripts and the
fraction of nucleotides of the transcriptome made up by a
given gene or isoform.

Although apparently easy to obtain, RPKM values can
have several differences between software packages, hidden
at first sight, due to the lack of a clear documentation of the
analysis algorithms used. For example ERANGE [37] uses
a union of known and new exon models to aggregate reads
and determines a value for each region that includes spliced

reads and assigned multireads too, whereas [30, 40, 81, 90]
are restricted to known or prespecified exons/gene models.
However, as noticed in [91], several experimental issues
influence the RPKM quantification, including the integrity
of the input RNA, the extent of ribosomal RNA remaining
in the sample, the size selection steps and the accuracy of the
gene models used.

In principle, RPKMs should reflect the true RNA
concentration; this is true when samples have relatively
uniform sequence coverage across the entire gene model.
The problem is that all protocols currently fall short of
providing the desired uniformity, see for example [37], where
the Kolmogorov-Smirnov statistics is used to compare the
observed reads distribution on each selected exon model
with the theoretical uniform one. Similar conclusions are
also illustrated in [57, 58], among others.

Additionally, it should be noted that RPKM measure
should not be considered as the panacea for all RNA-
Seq experiments. Despite the importance of the issue,
the expression quantification did not receive the necessary
attention from the community and in most of the cases the
choice has been done regardless of the fact that the main
question is the detection of differentially expressed elements.
Regarding this point in [92] it is illustrated the inherent bias
in transcript length that affect RNA-Seq experiments. In fact
the total number of reads for a given transcript is roughly
proportional to both the expression level and the length of
the transcript. In other words, a long transcript will have
more reads mapping to it compared to a short gene of similar
expression. Since the power of an experiment is proportional
to the sampling size, there will be more statistical power
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to detect differential expression for longer genes. Therefore,
short transcripts will always be at a statistical disadvantage
relative to long transcripts in the same sample. RPKM-
type measures provide an expression level normalized by
the length of the gene and this only apparently solves the
problem; it gives an unbiased measure of the expression
level, but also changes the variance of the data in a length
dependent manner, resulting in the same bias to differential
expression estimation. In order to account for such an
inherent bias, in [92] the authors proposed to use a fixed
length window approach, with a window size smaller than
the smallest gene. This method can calculate aggregated
tag counts for each window and consequently assess them
for differential expression. However, since the analysis is
performed at the window level some proportion of the data
will be discarded; moreover such an approach suffers for a
reduced power and highly expressed genes are more likely to
be detected due to the fact that the sample variance decreases
with the expression level. Indeed, it should be noticed that
the sample variance depends on both the transcript length
and the expression level.

Finally, we observe that annotation files are often
inaccurate; boundaries are not always mapped precisely,
ambiguities and overlaps among transcripts often occur and
are not yet completely solved. Concerning this issue in [93]
the authors proposed a method based on the definition
of “union-intersection genes” to define the genomic region
of interest and normalized absolute and relative expression
measures within. Also, in this case we observe that all
strategies work much better with data that preserve RNA
strandedness, which is an extremely valuable information
for transcriptome annotation, especially for regions with
overlapping transcription from opposite directions.

The quantification methods described above do not
account for new transcribed region. Although several studies
have already demonstrated that RNA-Seq experiments, with
their high resolution and sensitivity have great potentiality
in revealing many new transcribed regions, unidentifiable
by microarrays, the detection of new transcribed regions is
mainly obtained by means of a sliding window and heuristic
approaches. In [94] stretches of contiguous expression in
intergenic regions are identified after removing all UTRs
from the intergenic search space by using a combination
of information arising from tiling-chip and sequence data
and visual inspection and manual curation. The procedure
is quite complex and is mainly due to the lack of strand-
edness information in their experiment. On the contrary,
the hybridization data are less affected by these issues
because they distinguish transcriptional direction and do not
show any 5′ bias (see [94] for further details). Then, new
transcribed regions are required to have a length of at least
70 bp and an average sequence coverage of 5 reads per bp.
A similar approach, with different choices of the threshold
and the window, was proposed in [40], where the authors
investigated either intergenic and intronic regions. The
choices of the parameters are assessed by estimating noise
levels by means of a Poisson model of the noncoding part
of the genome. In [45] the whole genome is split into 50 bp
windows (non-overlapping). A genomic region is defined

as a new transcribed region if it results from the union of
two consecutive windows, with at least two sequence reads
mapped per window. Additionally, the gap between each
new transcribed regions should be at least 50 bp, and the
gap between a new transcribed region and an annotated
gene (with the same strand) at least 100 bp. A slightly more
sophisticated approach is used in ERANGE [37]. Reads that
do not fall within known exons are aggregated into candidate
exons by requiring regions with at least 15 reads, whose starts
are not separated by more than 30 bp. Most of the candidate
exons are assigned to neighboring gene models when they are
within a specifiable distance of the model.

These studies, among others, reveal many of these new
transcribed regions. Unfortunately, most of them do not
seem to encode any protein, and hence their functions
remain often to be determined. In any case, these new
transcribed regions, combined with many undiscovered new
splicing variants, suggest that there is considerably more
transcript complexity than previously appreciated. Conse-
quently further RNA-Seq experiments and more sophisti-
cated analysis methods can disclose it.

The complexity of mammalian transcriptomes is also
compounded by alternative splicing which allows one gene
to produce multiple transcript isoforms. Alternative splicing
includes events such as exon skipping, alternative 5′ or
3′ splicing, mutually exclusive exons, intron retention, and
“cryptic” splice sites (see Figure 6). The frequency of occur-
rence of alternative splicing events is still underestimated.
However it is well known that multiple transcript isoforms
produced from a single gene can lead to protein isoforms
with distinct functions, and that alternative splicing is
widely involved in different physiological and pathological
processes. One of the most important advantages of the
RNA-Seq experiments is the possibility of understanding
and comparing the transcriptome at the isoform level (see
[95, 96]). In this context, two computational problems need
to be solved: the detection of different isoforms and their
quantification in terms of transcript abundance.

Initial proposals for solving these problems were essen-
tially based on a gene-by-gene manual inspection usually
focusing the attention to the detection of the presence of
alternative splicing forms rather than to their quantification.
For example, the knowledge of exon-exon junction reads and
of junctions that fall into some isoform-specific regions can
provide useful information for identifying different isoforms.
The reliability of a splicing junction is usually assessed by
counting features like the number of reads mapping to the
junction, the number of mismatches on each mapped read,
the mapping position on the junction and the mismatches
location in a sort of heuristic approach. Unfortunately, these
techniques cannot be scaled to the genome level and they are
affected by a high false positive and false negative rate.

Following the above mentioned ideas, in [40] the authors
detected junctions by computing the probability of a random
hits for a read of length R on the splice junctions of length J
with at most a certain number of mismatches. In [95], the
authors used several information similar to those described
above to train classifiers based on logistic regression for
splicing junction detection. In [97], the authors introduced



Journal of Biomedicine and Biotechnology 13

(a) (b) (c)

(d) (e)

ATG ATG

(f)

An An

(g)

(h)

Figure 6: Alternative splicing. Schematic representation of the possible patterns of alternative splicing of a gene. Boxes are discrete exons that
can be independently included or excluded from the mRNA transcript. Light blue boxes represent constitutive exons, violet and red boxes
are alternatively spliced exons. Dashed lines represent alternative splicing events. (a) Canonical exon skipping; (b) 5′ or (c) 3′ alternative
splicing; (d) Mutually exclusive splicing event involving the selection of only one from two or more exon variants; (e) Intra-exonic “cryptic”
splice site causing the exclusion of a portion of the exon from the transcript; (f) Usage of new alternative 5′ or (g) 3′ exons; (h) Intron
retention.

a new metric to measure the quality of each junction read.
Then they estimated the distribution of such metric either
with respect to known exon splice junctions and random
splice junctions, and implemented an empirical statistical
model to detect exon junctions evaluating the probability
that an observed alignment distribution comes from a true
junction.

The simple detection of specific isoforms does not pro-
vide useful information about their quantitative abundance.
In principle, the quantification methods described above
are equally applicable to quantify isoform expression. In
practice, however, it is difficult to compute isoform-specific
expression because most reads that are mapped to the
genes are shared by more than one isoform and then it
becomes difficult to assign each read only to a specific
isoform. As a consequence, the assignment should rely on
inferential methods that consider all data mapping to a
certain region.

Several proposed methods for inferring isoforms’ abun-
dance are based on the preliminary knowledge of precise
isoforms’ annotation, on the assumption of uniform dis-
tribution of the reads across the transcript, on Poisson
model for the reads’ counts and equal weight for each read,
regardless the quality of the match. The methods are often
limited to handle only the cases where there is a relative small
number of isoforms without confounding effects due to the
overlap between genes. In particular in [98], the authors
showed that the complexity of some isoform sets may still
render the estimation problem nonidentifiable based on
current RNA-Seq protocols and derived a mathematical
characterization of identifiable isoform set. The main reason
for such an effect is that current protocols with short single-
end reads RNA-Seq are only able to asses local properties of
a transcript. It is possible that the combination of short-read
data with longer reads or paired-end reads will be able to go
further in addressing such challenges.
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Recently, in [90] the authors proposed a statistical
method where, similar to [34], the count of reads falling into
an annotated gene with multiple isoforms is modeled as a
Poisson variable. They inferred the expression of each indi-
vidual isoform using maximum likelihood approach, whose
solution has been obtained by solving a convex optimization
problem. In order to quantify the degree of uncertainty of
the estimates, they carried out statistical inferences about the
parameters from the posterior distribution by importance
sampling. Interestingly, they showed that their method can
be viewed as an extension of the RPKM concept and reduces
to the RPKM index when there is only one isoform. An
attempt to relax the assumption of uniform reads sampling
is proposed in [84]. In this paper, the authors unified the
notions of reads that map to multiple locations, that is,
that could be potentially assigned to several genes, with
those of reads that map to multiple isoforms through the
introduction of latent random variables representing the true
mappings. Then, they estimated the isoforms’ abundance
as the maximum likelihood expression levels using the
EM algorithm. The Poisson distribution is also the main
assumption in [99], where a comprehensive approach to the
problem of alternative isoforms prediction is presented. In
particular, the presence of alternative splicing event within
the same sample is assessed by using Pearson’s chi-square test
on the parameter of a multinomial distribution and the EM
algorithm is used to estimate the abundance of each isoform.

3.6. Differential Expression. The final goal in the majority of
transcriptome studies is to quantify differences in expression
across multiple samples in order to capture differential gene
expression, to identify sample-specific alternative splicing
isoforms and their differential abundance.

Mimicking the methods used for microarray analysis,
researchers started to approach such crucial question using
statistical hypothesis’ tests combined with multiple compar-
isons error procedures on the observed counts (or on the
RPKM values) at the gene, isoform or exon level. Indeed, in
[30] the authors applied the empirical Bayes moderated t-
test proposed in [100] to the normalized RPKM. However
in microarray experiments, the abundance of a particular
transcript is measured as a fluorescence intensity, that can
be effectively modeled as a continuous response, whereas for
RNA-Seq data the abundance is usually a count. Therefore,
procedures that are successful for microarrays do not seem
to be appropriate for dealing with such type of data.

One of the pioneering works to handle such difference
is [34], where the authors modeled the aggregated reads
count for each gene using Poisson distribution. One can
prove that the number of reads observed from a gene
(or transcript isoform) follows a binomial distribution that
can be approximated by a Poisson distribution, under the
assumption that RNA-Seq reads follow a random sampling
process, in which each read is sampled independently and
uniformly from every possible nucleotide in the sample.
In this set-up, in [34] the authors used a likelihood ratio
test to test for significant differences between the two
conditions. The Poisson model was also employed by [40],

where the authors used the method proposed in [101] to
determine the significance of differential expression. On
the contrary, in [83], the authors simply estimated the
difference in expression of a gene between two conditions
through the difference of the count proportions p1 and
p2 computed using a classical Z-test statistics. In [18], the
authors employed the Fishers exact test to better weigh the
genes with relatively small counts. Similarly in [99] the
authors used Poisson model and Fishers exact test to detect
alternative exon usage between conditions.

Recently, more sophisticated approaches have been pro-
posed in [102, 103]. In [102], the authors proposed an
empirical Bayesian approach, based on the negative binomial
distribution; it results very flexible and reduces to the Poisson
model for a particular choice of the hyperparameter. They
carried out differential expression testing using a moderated
Bayes approach similar in the spirit to the one described in
[100], but adapted for data that are counts. We observed
that the method is designed for finding changes between
two or more groups when at least one of the groups has
replicated measurements. In [103], the observed counts of
reads mapped to a specific gene obtained from a certain
sample was modeled using Binomial distribution. Under
such assumption, it can be proved that the log ratio between
the two samples conditioned to the intensity signal (i.e.,
the average of the two logs counts) follows an approximate
normal distribution, that is used for assessing the significance
of the test. All the above-mentioned methods assume that
the quantification of the features of interest under the
experimental conditions has been already done and each
read has been assigned to only one elements, hence the
methods are directly applicable to detect genes or exons
differences provided that overlapping elements are properly
filtered out. By contrast the above described methods are not
directly suited for detecting isoforms’ differences unless the
quantification of the isoform abundance has been carried
out using specific approaches. To handle such difficulties,
in [104], the authors proposed a hierarchical Bayesian
model to directly infer the differential expression level of
each transcript isoform in response to two conditions. The
difference in expression of each isoform is modeled by
means of an inverse gamma model and a latent variable is
introduced for guiding the isoform’s selection. The model
can handle the heteroskedasticity of the sequence read
coverage and inference is carried out using Gibbs sampler.

It should be noticed that although these techniques
already provide interesting biological insights, they have
not been sufficiently validated on several real data-sets
where different type of replicates are available, neither
sufficiently compared each others in terms of advantages
and disadvantages. As with any new biotechnology it is
important to carefully study the different sources of variation
that can affect measure of the biological effects of interest
and to statistically asses the reproducibility of the biological
findings in a rigorous way, and to date this has been often
omitted. Indeed, it should be considered that there are a
variety of experimental effects that could possibly increase
the variability, the bias, or be confounded with sequencing-
based measures, causing miss-understanding of the results.
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Unfortunately, such problems have received little of attention
until now. In order to fill this gap, in [93] the authors
presented a statistical inference framework for transcriptome
analysis using RNA-Seq mapped read data. In particular,
they proposed a new statistical method based on log-
linear regression for investigating relationships between read
counts and biological and experimental variables describing
input samples as well as genomic regions of interest. The
main advantage of the log-linear regression approach is that
it allows to account both for biological effect and a variety of
experimental effects. Their paper represents one of the few
attempts of looking at the analysis of RNA-Seq data from a
general point of view.

4. Challenges and Perspective for NGS

From the development of the Sanger method to the com-
pletion of the HGP, genetics has made significant advances
towards the understanding of gene content and function.
Even though significant achievements were reached by
Human Genome, HapMap and ENCODE Projects [7, 105,
106], we are far from an exhaustive comprehension of the
genomic diversity among humans and across the species,
and from understanding gene expression variations and its
regulation in both physio and pathological conditions. Since
the appearance of first NGS platforms in the 2004, it was
clear that understanding this diversity at a cost of around $5–
10 million per genome sequence [107], placed it outside the
real possibilities of most research laboratories, and very far
from single individual economical potential. To date, we are
in the “$1,000 genome” era, and, although this important
barrier has not yet been broken, its a current assumption
that this target is going to be reached within the end of
2010. It is likely that the rapid evolution of DNA sequencing
technology, able to provide researchers with the ability to
generate data about genetic variation and patterns of gene
expression at an unprecedented scale, will become a routine
tool for researchers and clinicians within just a few years.

As we can see, the number of applications and the great
amount of biological questions that can be addressed by
“Seq” experiments on NGS platforms is leading a revolution
in the landscape of molecular biology, but the imbalance
between the pace at which technology innovations are
introduced in the platforms and the biological discoveries
derivable from them is growing up. The risk is the creation
of a glut of “under-used” information that in few months
becomes of no use because the new one is produced. It is
necessary to invest in an equivalent development of new
computational strategies and expertise to deal with the
volumes of data created by the current generation of new
sequencing instruments, to maximize their potential benefit.

These platforms are creating a new world to explore, not
only in the definition of experimental/technical procedures
of large-scale analyses, but also in the downstream compu-
tational analysis and in the bioinformatics infrastructures
support required for high-quality data generation and for
their correct biological interpretation. In practice, they have
shifted the bottleneck from the generation of experimental

data to their management and to their statistical and
computational analysis. There are few key points to consider.
The first one is the data management: downstream com-
putational analysis becomes difficult without appropriate
Information Technology (IT) infrastructure. The terabytes of
data produced by each sequencing run requires conspicuous
storage and backup capacity, which increases considerably
the experimental costs. The second one regards the protocols
used for the production of raw data: each platform has its
peculiarity in both sample preparation and type and volume
of raw data produced, hence they require individualized
laboratory expertise and data processing pipelines. Third,
beside vendor specific and commercial software, several
other open-source analysis tools are continuously appearing.
Unfortunately, there is often an incomplete documentation
and it is easy to spend more time in evaluating software
suites than in analyzing the output data. Whichever software
is used, the most important question is to understand
its limitations and assumptions. Community adoption of
input/output data standards is also essential to efficiently
handle the data management problem. Till now the effort
has been mainly devoted to the technological development
rather than to the methodological counterpart. The choice
of a careful experimental design has been also not always
adequately considered.

As regards the RNA-Seq, we have still to face several
critical issues either from a biological and computational
point of view. RNA-seq protocols are extremely sensitive and
need a very careful quality control for each wet laboratory
step. For instance, the contamination of reagents with RNAse
and the degradation of RNA, even partial, must be avoided
during all the technical procedures. The quality of total
isolated RNA is the first, and probably the most crucial
point for an RNA-Seq experiment. Poor yield of polyA
enrichment or low efficiency of total RNA ribodepletion are
also critical issues for preparing high-quality RNA towards
the library construction. It is clear that, independently on
the library construction procedure, particular care should
be taken to avoid complete degradation of RNA during the
controlled RNA fragmentation step. Furthermore, in order to
correctly determine the directionality of gene transcription
and to facilitate the detection of opposing and overlapping
transcripts within gene-dense genomic regions, particular
care should be taken to preserve the strandedness of RNA
fragments during the library preparation. In addition, to
provide a more uniform coverage throughout the transcript
length, random priming for reverse transcription proto-
cols, rather than oligo dT priming (with the bias of low
coverage at the 5′ ends), should be done after removal
of rRNA. Finally, it should be considered that for the
platforms based on CRT and SBL, substitutions and under
representation of AT-rich and GC-rich regions, probably due
to amplification bias during template preparation, are the
most common error type. In contrast, for pyrosequencing
platforms, insertions and deletions represent a common
drawback.

For what concern the data analysis, to the above-
mentioned points, we should note that most of the available
software for read alignment are designed for genomic
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mapping hence they are not fully capable to discover exon
junctions. The classical extension for handling RNA-Seq data
involves the preconstruction of junction libraries reducing
the possibility of discovering new junctions. It would be
desirable to develop new methods that allow either new
junction detection and also the use of paired-end reads,
that are particularly promising for more accurate study.
Additionally further developments are required to assess the
significance of new transcribed regions, the construction
of new putative genes and the precise quantification of
each isoform, for which there is still a lack of statistical
methodologies. For what concerns the detection of differ-
ential expression, existing techniques were not sufficiently
validated on biological data and compared in terms of
specificity and sensitivity. Moreover, of potentially great
impact, is the lack of biological replicates which precludes
gauging the magnitude of individual effects in relation to
technical effects. Biological replicates is essential in a RNA-
Seq experiment to draw generalized conclusions about the
“real” differences observed between two or more biological
groups.

Facing such multidisciplinary challenges will be the key
point for a fruitful transfer from laboratory studies to clinical
applications. Indeed, the availability of low-cost, efficient
and accurate technologies for gene expression and genome
sequencing will be useful in providing pathological gene
expression profiles in a wide number of common genetic
disorders including type II diabetes, cardiovascular disease,
Parkinson disease and Downs syndrome. Moreover, the
application of NGS to the emerging disciplines of phar-
macogenomics and nutrigenomics will allow to understand
drug response and nutrient-gene interactions on the basis of
individual patient’s genetic make-up, leading in turn to the
development of targeted therapies for many human diseases
or tailored nutrient supplementation [108].
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