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Swarm shedding in networks 
of self‑propelled agents
Jason Hindes1*, Victoria Edwards1,2, Klimka Szwaykowska Kasraie3, George Stantchev1 & 
Ira B. Schwartz1

Understanding swarm pattern formation is of great interest because it occurs naturally in many 
physical and biological systems, and has artificial applications in robotics. In both natural and 
engineered swarms, agent communication is typically local and sparse. This is because, over a limited 
sensing or communication range, the number of interactions an agent has is much smaller than the 
total possible number. A central question for self‑organizing swarms interacting through sparse 
networks is whether or not collective motion states can emerge where all agents have coherent and 
stable dynamics. In this work we introduce the phenomenon of swarm shedding in which weakly‑
connected agents are ejected from stable milling patterns in self‑propelled swarming networks with 
finite‑range interactions. We show that swarm shedding can be localized around a few agents, or 
delocalized, and entail a simultaneous ejection of all agents in a network. Despite the complexity of 
milling motion in complex networks, we successfully build mean‑field theory that accurately predicts 
both milling state dynamics and shedding transitions. The latter are described in terms of saddle‑node 
bifurcations that depend on the range of communication, the inter‑agent interaction strength, and 
the network topology.

Much attention has been given to the study of multi-agent swarms that can self organize and form complex spa-
tiotemporal patterns from very basic rules governing individual  dynamics1–3. Natural swarms typically involve 
the coupling of large numbers of mobile agents, and can be seen in many fascinating biological systems from 
flocks of  birds4–6, to schools of  fish7,8, crowds of  people9, and colonies of bacteria and  insects10,11. Similar self-
organization phenomena occur in self-propelled, active-matter  systems12–16. Both theoretical and applied research 
has focused on understanding the principles underlying collective  motion1,2,17–24, and how such principles can 
be instantiated in mobile-robotic  systems25–29. Applications for the latter range from  mapping30, to  exploration27, 
and resource  allocation31–33.

Agent interactions in both natural and decentralized robotic swarms are typically sparse and local due to 
finite bandwidth and communication  range29,34,35. Sparse and heterogeneous network effects on swarming are 
understood analytically, mostly within the context of controlling teams of mobile agents through decentralized, 
average consensus  algorithms20,36–38. Typically, such systems involve sharing speed and heading data directly 
among agents, and are somewhat limited in their dynamics, e.g., to flocking, where consensus forms around a 
network-wide velocity. On the other hand, physically inspired models, where collective motion emerges from 
the more basic interplay of position-dependent forces and self-propulsion energy, have typically assumed global, 
homogeneous, or lattice communication  topology39–45. For instance, early robotics experiments based on such 
nonlinear-physics models, also assumed all-to-all  coupling42,46—making them difficult to scale to larger systems 
and less controlled environments. Since the latter class of models derive from basic physical principles, they 
showcase a broader spectrum of emergent motion patterns, and can more easily incorporate, e.g., active-matter 
 dynamics15,43 and collective motion on arbitrary  surfaces47. Recent work has begun to address network structure 
in such physically-inspired swarming systems, including how topology affects robustness to  noise48 and how 
heterogenous topology drives the formation of hybrid motion  states49. Yet, much remains unknown about how 
complex topology influences the dynamical stability of swarms with general nonlinear interactions and under 
what circumstances a sparse swarming network can maintain coherent motion of all its agents—especially in 
the much broader range of collective-motion patterns without rigid velocity consensus.

To make progress, we consider a well known physics-based model of mobile agents moving under the influ-
ence of self-propulsion, damping, and pairwise interaction  forces41,43,48,50, to which we add explicit sparse net-
works that mediate and constrain the inter-agent  interactions42,49. In the absence of interactions, each swarmer 
will tend to a fixed speed, which balances its self-propulsion and damping but has no preferred  direction47. The 
agents are assumed to interact through a network, whose topology is fixed in time, and given by a simple static 
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graph with an adjacency matrix: Aij = 1 , if agents i and j are connected, and zero  otherwise51. The matrix Aij will 
be generated from a variety of standard graph models specified below. In addition to the topology, the interaction 
between two agents will be associated with a strength that is assumed to decay exponentially with their relative 
distance, namely exp{−|rj − ri|/l2} , where ri is the position-vector for the ith agent in three spatial dimensions 
(and similarly for agent j), and l2 is a constant measuring the characteristic length scale for maintaining connec-
tions. The connection strength can be thought of as an edge weight in the corresponding (weighted) interaction 
graph model, which for example is commonly used as a simple approximation for ad-hoc wireless  networks52. 
Altogether, the interaction graph matrix takes the form

for agents i and j.
Given an interaction graph, we assume that there is a force between two agents, either a real physical force 

or a control force, that tends to minimize a scalar potential function of the agent positions. As in many other 
works, we assume that the interaction force is elastic (spring-like) and tends to maintain a characteristic separa-
tion between two agents, l141,43,48,50,53. Combining all of the basic physics-ingredients gives a dynamic model for 
the ith agent

where α is a self-propulsion constant, β is a damping constant, and � is a coupling  constant39–41,50,54; the symbol 
r̈i denotes the acceleration of the ith agent, while ṙi denotes its velocity. Note that the aforementioned weighted 
interaction matrix, Wij = Aij exp{−|rj − ri|/l2} , that appears in the second term of Eq. (2) controls directly the 
dynamics of pairwise interactions among swarming agents, and in that sense it serves as a surrogate for an actual 
communication model. This simplification allows us to build intuition about the behavior of a swarming system 
with heterogeneous sparse connectivity while avoiding the complexity of modeling communication channel 
effects and wireless network implementations.

Our approach in the following is to study the stability of basic swarming patterns in the model Eq. (2), and in 
particular understand how pattern stability is lost in a given network, Aij , as we change the communication range 
l2 , and the strength of inter-agent coupling, � . A successful theory in this regard should predict how strong the 
coupling must be, and how far the communication range, in order to stabilize collective motion states in given a 
network. Such a theory could also provide insights for guiding robotics experiments with autonomous ground, 
surface, and aerial  vehicles42,53,46, which have used Eqs. (2), and similar variants, as an underlying control law. In 
particular, these experiments were effectively all-to-all in terms of communication, and thus, our analysis can 
help scale-up similar experiments to larger robotic swarms in less controlled environments.

Methods
First, when simulating the model Eq. (2) with random initial positions and velocities we find two primary 
collective-motion patterns: flocking and  milling55. In the former, a swarm’s center of mass translates at a steady, 
fixed velocity. Agents move on average with the center-of-mass velocity and undergo slow oscillations around a 
fixed relative formation that is a steady-state solution of the over-damped  dynamics56. In contrast, in the milling 
state (MS) agents rotate around a stationary center of mass with no macroscopic consensus in velocity. Whether 
or not a swarm converges to one of these two states (or possibly others), depends on initial conditions, swarm 
parameters, and network topology. In this work, we focus on the MS since it emerges from the broadest range of 
initial conditions, e.g., random initial headings for the agents. An example MS is shown in Fig. 1 given a Wax-
man random geometric graph of connections for the topology Aij , where nodes are connected according to an 
exponential probability distribution in their initial  separations57. The network had a distribution of connections 
per node (or degree, k) that was somewhat heterogeneous, ranging from k = 4 to k = 42 , with an average and 
standard deviation, �k� = 20 and σ = 7 , respectively; see supplementary material appendix for more network 
details. In terms of spatio-temporal initial conditions, throughout this work, we assign every agent a location 
selected uniformly at random inside a cube with unit side length, centered at the origin. Similarly, the velocities 
are assigned uniformly at random inside a velocity-cube with unit side length, centered at zero-velocity. Then, 
Eq. (2) is integrated to a time t = 1000 , so that the resulting behavior is non-transient. We find that such condi-
tions are sufficient to produce stable milling patterns.

Important features of the MS dynamics can be seen in both panels (a) and (b) of Fig. 1. In the first, a snap-
shot in time shows that agents are arranged at various instantaneous distances from the center of the swarm with 
a broad distribution of velocities (there is no easily discernible pattern in the heading arrows). Qualitatively, 
higher-degree agents wander near the center, while lower-degree agents wander at the periphery. In the second 
panel (b), we plot the normalized Fourier spectra for several example agents, where the peak frequency is set to 
unity. Though the Fourier spectra are non-trivial and broad in general, a basic pattern emerges when we note 
that the peaks follow the ordering of degree, from left to right: low to high degree nodes.

These observations can be made more precise by plotting the time-averaged distance to the swarm center 
of mass and the peak frequency versus the degree. Both are computed by integrating Eq. (2) over an additional 
�t = 200 from the initial conditions specified in the first paragraph of ‘Methods’ section. Examples are shown 
in Fig. 2 for two network topologies (Aij) : a power-law degree distributed network and a Waxman graph. The 
power-law network was constructed using the configuration model and a fraction of nodes with degree k, 
g(k) ∼ k−2.558. The network was also heterogeneous with an average degree �k� = 20 and a standard deviation 
σ = 20 ; further network details are given in the supplementary material. Simulation results are shown with 
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blue and red squares. Despite the instantaneous complexity of the MS dynamics illustrated in Fig. 1, Fig. 2 sug-
gests that the approximate behavior of every agent is to rotate on an orbit with some steady-state distance to 
the swarm’s center at a frequency that depends on its location in the network (and particular, on its topological 
degree k). To further illustrate the rotational dynamics, we show three example trajectories for a k = 10 agent 
(blue), a k = 20 agent (green), and the swarm center of mass (red) in Fig. 1c. The next step is to predict the 
center-of-mass distances r and frequencies ω , and understand their dependence on the model parameters and 
topology in quantitative detail.

Milling state mean field. We can approximate the behavior plotted in Fig. 2 by building a steady-state 
mean-field description of the MS. First, let us adopt spherical coordinates for convenience, e.g., for node i, 
ri = ri cosφi sin θi x̂ + ri sin φi sin θi ŷ + ri cos θi ẑ . Second, let us assume that every node travels on a circular 
orbit (approximately) with fixed radius and frequency, i.e., ri and ωi , respectively for node i. Third, let us ori-
ent our axes such that a test node i oscillates with θi = ωi t and φi = 0 . Fourth, let us substitute the ansatz, 
ri = ri sinωi t x̂ + ri cosωi t ẑ , for node i into Eq. (2). The result is three equations for each node that must be 
satisfied (one for each component of acceleration).

The final mean-field step is to approximate the interaction-sums in Eq. (2), by assuming that there is no corre-
lation between the angles θi , θj , φi , and φj in the MS for any connected nodes i and j—the only correlation is in the 
radii by assumption. Therefore, from the perspective of node i, the angles for node j in the MS are equally-likely 
to take on any values during its orbit, and thus for every interaction-term in Eq. (2) we multiply by the probability 
that the angles are found within a small interval centered around θj and φj , sin θjdθjdφj

/

4π and integrate over θj 
and φj . Repeating the above for every node results in N root equations, e.g., Fi(r1, r2, . . . , rN ) = 0 for node i, where 

Figure 1.  Milling state in self-propelled swarming networks. (a) Snap-shot of milling in which agents are 
drawn with blue circles, velocities with red arrows, and network edges with black-lines. (b) The Fourier spectra 
(normalized, absolute value) of seven randomly selected agents drawn with different colors. For reference, the 
leftmost spectrum corresponds to a k = 8 agent while the rightmost corresponds to k = 40 . (c) Trajectory of 
a k = 10 agent (blue), k = 20 agent (green), and the swarm center of mass (red). The network topology was a 
Waxman geometric random graph with 300 agents and an average degree of 20. Other model parameters are: 
α = 1 , β = 5 , l1 = 0.1 , l2 = 1 , and � = 2.

Figure 2.  Averaged milling state oscillations. The average distance to the swarm’s center of mass versus the 
agent degree for a power-law network (a) and a Waxman geometric random graph (b). Simulation results 
are shown with blue squares and mean-field predictions with black circles from solving Eqs. (3a–3b). Peak 
frequency from the Fourier spectra versus agent degree for the same power-law network (c) and Waxman 
geometric random graph (d). Simulation results are shown with red squares and mean-field predictions with 
black circles. Each network was composed of 300 agents with an average degree of 20. Other model parameters 
are identical to Fig. 1.
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The Eqs. (3a–3b) can be solved by numerically integrating the polar-angle θ-integrals and computing the r’s 
through a quasi-Newton evaluation of Eqs. (3a). We note that in the limit of zero-repulsion, l1 → 0 , each integral 
can be solved in closed-form and written as explicit functions of ri and rj . Numerical solutions of Eqs. (3a–3b) 
are plotted in Fig. 2 alongside simulation values and show good agreement, despite the very different network 
topologies used in each example, and thus demonstrating the robustness of our mean-field predictions to topo-
logical variation.

It is important to note that the behavior implied by Eq. (3a) is a mean-field approximation to the actual 
swarming dynamics in the MS. To get a better sense of this we return to Fig. 1c, which shows sample trajectories 
over a time interval of �t = 10 for a k = 10 agent (blue), a k = 20 agent (green), and the swarm center of mass 
(red). For the first two agents, we can see that instead of rotating around a fixed plane, in fact, each agent wob-
bles and precesses over the course of several periods of its oscillation. However, as long as the precession occurs 
slowly relative to the dominant frequency (as they do in these examples) the mean-field approximation is fairly 
accurate. Another assumption of the mean field is that the swarm center of mass is stationary in time. In actual-
ity, the center of mass fluctuates with a standard-deviation that is O(1/N). Note that in Fig. 1c the red trajectory 
represents a small, finite-size vibration compared to the large amplitude oscillations of individual agents.

Notably, in the limit of long-range communication, l2 ≫ 1 , and weak repulsive force between agents, l1 ≪ 1 , 
solutions approach

and ωi ≈
√
�ki  , implying that the MS radii are expected to scale inversely with the square root of the coupling 

, � , and the degree of  agents42. Note the degree of node i, ki =
∑

j Aij.

Results
In the MS a constant-magnitude centripetal force is supplied to every agent by the sum-total of its network 
interactions, which are weighted by the coupling constant, � . The corresponding centripetal acceleration is 
constrained by the fact that the self-propulsion and damping forces must also balance, and hence the speed of 
every agent is 

√
α/β  within the mean-field approximation. Since, we are interested in the effect of reducing the 

coupling between agents in the network, consider what happens when � is reduced, for example. As � decreases, 
the average distance from the swarm’s center increases, according to Eq. (5), and agents are less tightly held by 
the interaction force. Two examples of this trend are shown in Fig. 3, where radii of the lowest-degree agents in 
two networks are plotted in red as function of � . At some critical point �c , the lowest-degree agents approach 
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α

�βri
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Figure 3.  Distance from a swarm’s center versus coupling for agents with the lowest degree in their network. (a) 
Power-law network where simulation-determined values are plotted with red circles and squares for two agents 
that are directly connected and ejected at the first shedding transition. Mean-field predictions from solving Eqs.
(3a–3b) are drawn for each node with solid and dashed lines: stable (red) and unstable (blue). The inlet panel 
shows the same plot zoomed-in to the bifurcation. (b) Similar plot for a Waxman network topology, where only 
one agent is shed. Other model parameters are identical to Fig. 1.
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the communication length scale, r ∼ l2 , and it becomes stable for the network to simply eject such agents from 
the MS, and zero-out their interactions by letting them fly off to infinity: Wij → 0 for ejected node i. We call this 
transition in general, swarm shedding.

Qualitatively, if the low-degree agents are connected to higher-degree agents, as is typically the case in random 
degree-heterogeneous networks like the Waxman and power-law networks, shedding will only involve isolated 
lowest-degree agents. Both examples in Fig. 3 illustrate this pattern. In such networks, shedding occurs in a dis-
tinct sequence: first the lowest-degree agent is shed at some �c,1 , then the second lowest at some �c,2 < �c,1 , etc. 
We denote these transitions as localized shedding from the MS, since instability is associated with one (or O (1) 
) agents. On the other hand if the lowest-degree agents are connected to other low-degree agents, as in weakly 
connected homogenous networks where most agents have k ∼ �k� ∼ O (1) , then when a low degree agent is 
shed it will cause other agents to effectively go out of communication range and be shed, resulting in a cascade 
of low-degree agent shedding. Because instability involves O (N) agents at the critical point in this case, we call 
such transitions delocalized shedding.

Examples of each kind of shedding are shown in Fig. 4. On the left, a sequence of localized sheddings occurs 
in a swarm with a Waxman network topology. In subpanel (a) we plot the first three transitions as a function 
of the communication length scale. Simulation-determined transition points are drawn with blue markers, and 
correspond to the smallest �(l2) for which a swarm, which is initially prepared in a MS, keeps all agents from 
reaching a distance 10 · l2 from the center-of-mass after an integration time of t = 1000 . In subpanel (a), the top 
series represents shedding of a k = 4 agent, the middle to k = 6 , and the bottom to k = 8 . In the panel (c), we 
show a snapshot of the swarm for � just below the critical point. We can see that one agent flies away from the 
rest of the network (in the bottom right corner), and will continue on to infinity. In contrast, in panels (b) and 
(d) a single delocalized shedding transition occurs given a Watts-Strogatz network topology, where the underly-
ing degree-distribution was sharply peaked around the average �k� = 10 with a standard deviation σ = 1.4 . For 
reference, the Watts-Strogatz model produces “small-world” networks by adding a small fraction of random 
short-cuts to a ring  lattice59. As shown in Fig.4d, all agents fly away from the swarm center, independently, for 
� just below the critical point. The swarm effectively breaks up into a collection of disconnected agents, with 
Wij → 0 for all but a small fraction of interactions with Aij  = 0 . See supplementary material for more network 
details, including degree-distribution plots.

Shedding theory. Using our mean-field theory it is possible to predict the shedding transition in Fig. 4, and 
thus gain a more quantitative understanding. Within the mean-field, shedding corresponds to the disappear-
ance of stable solutions to Eq. (3a) in saddle-node bifurcations (SNs), shown in Fig. 3 where two branches of MS 
radii collide—the red and blue curves. Consequently, we expect a single eigenvalue of the linearized Eq. (3a) to 
approach zero as � → �c . We can find a general condition to determine the critical coupling at the SN through 
the following. First, we compute the derivatives of Eqs. (3a) with respect to the MS radii, ∂Fm/∂rn , which consti-
tute the elements of a Jacobian matrix, J  , where Jmn ≡ ∂Fm/∂rn . Then, we impose that the the largest eigenvalue 
of J  , denoted µN , is zero:

where µ1 ≤ µ2 ≤ · · · ≤ µN are the eigenvalues of J  . When Eq. (6) is added to Eqs.(3a), the result is N + 1 equa-
tions for the first shedding transition point, �c,1 , and the associated MS radii.

Numerical mean-field solutions for shedding transitions in Fig. 4 are plotted with lines and show excellent 
agreement with simulations over a range of communication length scales, l2 . Shedding-transition simulations 
were performed by first integrating Eq. (2) from the initial conditions specified in the first paragraph of ‘Methods’ 
section for fixed parameters, starting at � = 6 . Then, � was reduced by 0.001 and the system was integrated for 
another �t = 1000 . At which point, the number of agents within a distance 10 · l2 from the center of mass was 

(6)µN = 0,

Figure 4.  Shedding of agents from milling states. (a) Critical coupling for localized shedding in a Waxman 
geometric random graph. Points indicate simulation-determined values while lines indicate mean-field 
predictions. Plotted are the first three shedding transitions: k = 4 (circles, solid line), k = 6 (squares, dashed 
line), and k = 8 (diamonds, dotted line). (b) Critical coupling for the single, delocalized shedding transition 
in a Watts–Strogatz random graph. The Watts–Strogatz graph was composed of 100 agents with an average 
degree of 10. Inlet panels in (a) and (b) show the predicted unstable mode associated with the upper mean-field 
bifurcation by solving Eq. (6). Example snapshots for � just below the respective transitions are shown in (c) and 
(d) for the two graphs. Locations for the snapshots within the diagrams (a) and (b) are specified with a green x. 
Other model parameters and plotting conventions are identical to Fig. 1.
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recorded, � reduced again, and the process repeated. Measured transition values corresponded to � at which the 
number of agents within the 10 · l2 range changed from one increment to another. This set of numerical experi-
ments was repeated for multiple values of l2.

In addition, the predicted unstable mode at the SN associated with the eigenvalue µN = 0 , i.e., 0 ≡ JvN , is 
plotted in the inlets of (a) and (b) for both examples; in particular for each agent i, vN , i is plotted versus its degree 
ki . We can see that the non-zero components of the mode predict accurately which agents are shed in Fig. 4c, 
d. In the localized case, the mode in the inlet of (a) is approximately zero for all agents, except one at k = 4 . In 
contrast, for the delocalized case the mode in the inlet of (b) is homogeneously distributed across all agents. We 
note that for predicting the second and third localized transition curves in panel (a), we simply remove nodes 
from the network with non-zero elements in this mode. In fact, for the all three curves in Fig.4a, there is only 
one such node for each transition line. Each subsequent (lower) mean-field transition line is computed from 
Eq. (3a) using the residual network, and deleting edges in Aij that correspond to ejected nodes in the previous 
shedding transition.

An interesting consequence of our SN theory is the prediction that shedding still occurs even in the limit 
of zero-repulsion, l1 → 0 , which one can check by looking for solutions in such cases. The implication is that 
shedding depends on the finite communication range, l2 , and the sparse network topology, �k� ≪ N  . We can 
demonstrate this by performing an explicit calculation for random networks that are approximately degree-
homogeneous, where all nodes are assumed to have the same degree, ki ≈ �k� ∀i , as in the Watts–Strogatz 
example. For such networks, we expect the MS radii to be equal, ri = r ∀i . Consequently, the integral in Eq. (3a) 
can be simply evaluated. By usefully defining a normalized radius, a ≡ r/l2 , Eq. (3a) reduces to

We can calculate the critical threshold, �c , by setting the derivate of the right-hand-side of Eq. (7) with respect 
to a equal to zero, as implied by Eq. (6). The result is a root equation for the critical (normalized) radius ac . The 
radius is independent of all other model parameters and satisfies

It is easy to check that Eq. (8) has a single positive solution, ac = 1.41872271133—quantitatively demonstrat-
ing that shedding occurs when MS radii reach the l2 communication length scale, a ≈ 1 . Finally, by combining 
Eqs. (7–8), the critical coupling reduces nicely to the product of model parameters and a pure number

For reference, the pure number in Eq. (9) is 4.240937302. For the Watts–Strogatz network the prediction 
Eq. (9) is nearly indistinguishable from the more accurate calculation that employs the exact network Jacobian, 
Eq. (6). In fact, the two predictions agree to within 1% for all l2 when l1 = 0.

On the other hand, in degree-heterogeneous swarming networks, such as the power-law and Waxman net-
works, single-node shedding is the most typical, and the general SN condition Eq. (6) reduces to

where the subscript m corresponds to the node with the minimum degree, km = mini{ki} . If multiple agents 
have degree km , and are not directly connected in the network, then Eq. (10) is only satisfied for one node—the 
node with the largest radius. Predictions in Fig. 4a were computed from Eq.(10) in this way.

A related localized shedding case occurs in heterogeneous networks when two (or more generally, n) nodes 
with degree km are directly connected. In this case, all n nodes are shed simultaneously, and it is straightforward 
to generalize Eq. (10). The calculation reduces to setting the determinant of an n-by-n Jacobian sub-matrix to 
zero. For example in the power-law swarming network, the first shedding transition corresponds to the loss 
of two directly connected k = 10 agents in the MS. The radii of both nodes associated with this transition are 
plotted in Fig. 3a.

Discussion
In this work, we provided analytical insights into swarm cohesion under sparse interaction network con-
straints by adding explicit interaction graphs into a well known and general physics model for swarm pattern 
 formation39–41,50,54. Using the more general networked interactions, we introduced the phenomenon of swarm 
shedding whereby weakly-held agents in a swarming network are ejected from collective milling states, where 
there is no velocity consensus and no net motion of the swarm’s center of mass. We distinguished between 
localized and delocalized shedding in degree-heterogeneous and homogeneous networks, respectively. In the 
former, one (or a small number) of agents are ejected from a mill as the coupling-strength or interaction range 
is reduced. In the latter, all nodes are ejected simultaneously as a swarm breaks up into effectively disconnected 
agents. Such transitions were accurately described in terms of saddle-node bifurcations of circular-orbit limit 
cycles within a mean-field approximation, and agreed well with numerical simulations. This network-based 
swarming theory will guide new physics-inspired swarm robotics experiments, where earlier instantiations 
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effectively assumed all-to-all communication, and hence, may not be easily scalable to larger robotic swarms, 
especially in complex  environments42,46.

Though our analysis dealt directly with self-propelled swarming networks with position-dependent, finite-
range interactions, our basic approach could easily be extended to a broader range of models. An important next 
step would be to extend our analysis to network systems with explicit time-dependent topology, and not just 
position-dependent interaction weights—particularly for swarming applications in robotics. Another impor-
tant extension would be to consider noise-induced shedding, since our theory implies the existence of saddle 
milling states through which networks are expected to break-up into smaller swarms in the presence of  noise60. 
Finally, understanding the differences between shedding from milling states and shedding from flocking states 
in swarming networks, represents an interesting question for future comparisons. These and other implications 
of our shedding theory will be explored in future autonomous mobile-robot experiments.

Altogether, this work takes an important step toward further understanding the role of complex network 
topology in facilitating coherent motion in self-organized swarms of mobile agents, and provides insight into 
how such patterns can change stability through the loss of agents.
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