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A b s t r A c t
This paper describes a Bayesian model for the assessment of inhalation exposures in an occupational 
setting; the methodology underpins a freely available web-based application for exposure assessment, 
the Advanced REACH Tool (ART). The ART is a higher tier exposure tool that combines disparate 
sources of information within a Bayesian statistical framework. The information is obtained from 
expert knowledge expressed in a calibrated mechanistic model of exposure assessment, data on inter- 
and intra-individual variability in exposures from the literature, and context-specific exposure meas-
urements. The ART provides central estimates and credible intervals for different percentiles of the 
exposure distribution, for full-shift and long-term average exposures. The ART can produce exposure 
estimates in the absence of measurements, but the precision of the estimates improves as more data 
become available. The methodology presented in this paper is able to utilize partially analogous data, a 
novel approach designed to make efficient use of a sparsely populated measurement database although 
some additional research is still required before practical implementation. The methodology is dem-
onstrated using two worked examples: an exposure to copper pyrithione in the spraying of antifouling 
paints and an exposure to ethyl acetate in shoe repair.

K e y w o r d s :  Bayesian exposure assessment; chemical regulation; occupational exposure; REACH

I n t r o d u c t I o n
Legislation on the Registration, Evaluation, 
Authorization and Restriction of Chemicals 
(REACH) entered into force within the member 
states of the European Union (EU) on 1 June 2007. 
The legislation makes industry responsible for assess-
ing and managing the risk posed by chemicals. Under 

the REACH legislation, it is mandatory for any com-
pany manufacturing or importing chemicals to com-
plete a chemical risk assessment for each chemical 
they handle, for substances produced or imported in 
quantities of 1 tonne or more per year per company. 
Whilst nominally the REACH legislation affects only 
the member states of the EU, in reality, due to global 
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supply, the legislation has a global impact. Due to the 
very large number of chemicals covered by the regu-
lations, phased deadlines for registration have been 
introduced with the recent deadline of 31 May 2013 
addressing chemicals used in volumes of between 100 
and 1000 tonnes.

Exposure assessments are critical to the risk assess-
ment process. Many thousands of exposure scenarios 
need to be assessed under the REACH legislation. In 
comparison, exposure measurements are available for 
only a small fraction of exposure scenarios. It is clear that 
industry will be unable to comply with REACH without 
a significant input from exposure modelling (Tielemans 
et al., 2011). In order to decrease the burden on industry, 
a tiered approach to risk assessment has been proposed. 
Tier one approaches cover broad exposure scenarios 
and progressively more complex and specific exposure 
assessments are performed for substances where there 
is an overlap between the typically wide and conserva-
tive exposure ranges obtained from tier approaches and 
measures of the potential hazard of a substance, quanti-
fied by a metric such as a derived no-effect level.

A number of generic screening tools are avail-
able for assessing occupational inhalation exposures 
(Schinkel et al., 2010) . Screening tools provide con-
servative exposure estimates and are designed to filter 
out exposure scenarios of little concern from those 
that require further investigation. However, whilst 
well-validated and efficient screening tools may sub-
stantially reduce the pool of exposure scenarios to be 
investigated, a case-by-case assessment for every expo-
sure scenario where a tier one tool is insufficient, based 
entirely upon exposure measurements, is impracti-
cal due to the time and expense of such assessments. 
Various authors (Creely et  al., 2005; Hewett et  al., 
2006; Ramachandran, 2008) have proposed the use 
of Bayesian methods so that mathematical models of 
exposure can be combined with the limited data avail-
able from exposure measurements and utilized in risk 
assessments. A Bayesian framework allows the various 
disparate sources of information that are relevant to an 
exposure scenario to be integrated within a statistically 
rigorous framework.

The Advanced Reach Tool (ART) (www.advance-
dreachtool.com) is a higher tier tool for inhalation 
exposures that follows a Bayesian approach, making 
use of mechanistically modelled estimates of exposure 
for a range of substance classifications, information 

on exposure variability from meta-analyses in the lit-
erature, and any available exposure measurements. An 
overview of the ART version 1.0 is given in Tielemans 
et  al. (2011). Technical details on various aspects of 
the ART 1.0 have been published elsewhere (Cherrie 
et  al., 2011; Fransman et  al., 2011; Marquart et  al., 
2011; Schinkel et al., 2011; Van Tongeren et al., 2011). 
Whilst the Bayesian approach was described in broad 
terms in Tielemans et al. (2011), a detailed methodol-
ogy has not been previously published.

Version 1.5 of the ART has recently been released. 
The technical aspects are consistent with the original 
version (Tielemans et al., 2011); however, the software 
currently links to a library of exposure scenarios with 
associated measurements. Summary statistics and a 
brief description of the exposure scenario are provided 
for each scenario in the library and the source of the 
measurements (the relevant study) is referenced. Based 
upon the exposure scenario described by a user, the ART 
identifies related exposure scenarios which a user may 
utilize. Where appropriate, concentration adjustments 
to the exposure measurements are applied [measure-
ments are rescaled such that they are appropriate for use 
in a user’s assessment scenario (AS)]. The development 
of the database is described in Schinkel et  al. (2013) 
where at the point of publication the library consisted of 
1944 measurements relating to 117 exposure scenarios. 
As with version 1.0, the software also accommodates 
measurements on the AS which are uploaded by users.

This paper provides technical details on the sta-
tistical model that underpins the ART version 1.5. 
A Bayesian approach is followed due to the complex 
hierarchical model of exposure, the disparate sources 
of information available, and the technical advantages 
of the approach (a full and complete treatment of 
uncertainty, the ability to resolve problems that are ill-
posed in the classical sense, and treatment of censored 
observations). The technical details within the paper 
go beyond the methodology supported by the current 
version of the software. In particular, we introduce a 
model which accommodates partially analogous (PA) 
data, which is defined as data from exposure scenar-
ios that share some similar characteristics to the AS 
of interest. This is a novel aspect of the model which 
is devised to maximize the information in a sparsely 
populated measurement database. PA data will be sup-
ported by version 2.0 of the ART once the final techni-
cal and programming issues have been resolved.
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M At e r I A l s  A n d  M e t h o d s

Exposure model
The underlying statistical model of the ART assumes 
that every relevant exposure scenario has a distinct 
exposure distribution that is adequately represented 
by a log-normal mixed effects model, with random 
effects representing between-company and between-
worker variability, and a residual error representing 
within-worker variability. The model is written

 l n( )( ) ( ) ( ) ( ) ( )Y c wi jkl i i j i k i jkl= + + +µ ε  (1)

 c Ni j i bc( ) ( )
,∼ 0 2σ( )  (2)

 w Ni k i( ) ( )
, 0 2σ

bw( )  (3)

 ε σ( ) ( )
,i jkl i ww

N∼ 0 2( )  (4)

where Y(i)jkl is the lth observation on the kth worker 
within the jth company for the ith exposure scenario 
with μ(i) the mean natural log exposure, σ(i)bc and σ(i)bw  
between-company and between-worker standard 
deviations, respectively, and σ(i)ww the within-worker 
standard deviation. The AS is the specific exposure 
scenario for which inference is required. Exposure 
measurements for the AS are not necessarily available.

The model assumes that both between- and within-
worker variability are constant over all companies. 
This is a strong assumption as it is possible to infer 
these components using data from a single com-
pany. Whilst a more elaborate model is theoretically 
appealing occupational hygiene data sets are usually 
too sparse to facilitate a hierarchical model for the 
variance components. However, the model assump-
tions are valid for the scenarios within the ART data-
base. Whilst the model may apparently contradict the 
practical experience of some hygienists, model and 
experience can be reconciled with the concept of PA 
scenarios (Specifying analogy section).

Prior specification
A joint prior distribution for the model parameters 
corresponding to the AS is required. A priori the 
parameters are taken to be independent and distribu-
tions are specified for each of the four parameters. The 

parameters of the prior distributions are generated 
based upon user input and are regarded as known for 
any given AS. The form adopted for the mean (natural 
log) exposure is

 µ µ θ( ) ( ) ( )~ ,AS AS ASN 2( )  (5)

The central estimate of equation (5) is µ ( )AS  and is 
provided by a mechanistic model. The mechanistic 
source–receptor model of the ART (Tielemans et al., 
2011) is described in detail elsewhere (Fransman 
et al., 2008, 2011; Marquart et al., 2008). The uncer-
tainty in the mean exposure for the AS is quantified 
by an exposure class-specific standard deviation 
(Schinkel et  al., 2011). The four specific values that 
θ(AS) may take corresponding to the exposure classes 
that are currently supported by the ART are given 
in Table 1. A multiplicative 90% interval for the geo-
metric mean (GM) is also given in Table 1. Example 
scenarios for the different exposure classes are given in 
Table 2 of Marquart et al. (2011).
The prior distributions for the variance components 
are specified using log-normal distributions param-
eterized by a GM and geometric standard deviation 
(GSD); for a concise presentation of the model, the 
subscripts are suppressed and a general form is given

 
ln( )~ (ln( ), ln( ))( ) ( ) ( )σ AS ASGM GSDASN

 
(6)

There are substantial differences in within- and 
between-worker variability for different types of 
exposure scenarios. The components of variability 
may even vary across groups within the same indus-
try (Rappaport et al., 1999; Symanski et al., 2006; Van 

Table 1. Standard deviations representing 
uncertainty in the mechanistic model prediction 
for different substance classifications.

Substance class θµ ( )0
Multiplicative 90%  
interval for GM

Dusts 0.89 0.23, 4.3

Vapours 0.97 0.20, 4.9

Mists (low-volatiles) 1.06 0.17, 5.7

Solid object/abraision 0.46 0.47, 2.1
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Tongeren et al., 2006). Kromhout et al. (1993) found 
that production factors (such as outdoors versus 
indoors, intermittent versus continuous processes) 
had a clear influence on within-worker variability 
but less of an impact on between-worker variabil-
ity. Recent meta-analyses by Symanski et  al. (2006) 
and Spaan et al. (2008) have been informative about 
further factors that influence within- and between-
worker variability. The distinct scenarios supported by 
the ART at present and the parameters of the priors 
are given in Table  2. The priors for between-worker 
and within-worker variability are based upon regres-
sion models fitted to data on variance components 
taken from Kromhout et  al. (1993). There is little 
information in the literature on between-company 
variability. At present a single prior for between-com-
pany variability is common to all scenarios. The prior 
for between-company variability was derived using 
information from Table  4 in Symanski et  al. (2006). 
Technical detail on the derivation of these priors is 
given in supplementary material (available at Annals of 
Occupational Hygiene online).

Based upon the prior alone, a point estimate and 
a distribution that captures the uncertainty in the 
model parameters are available. Furthermore, sum-
mary statistics based upon the model parameters also 
have implied prior distributions. Two important sum-
maries for occupational exposures are the 8-h time 
weighted average (TWA) and the long-term average 
(LTA) exposure distributions given in equations (7) 
and (8) where zα denotes a critical value of the normal 
cumulative distribution function corresponding to a 
particular percentile. These implied prior distributions 

are calculated numerically by substituting values sam-
pled from the prior distributions of μ(AS), σ(AS)bc, σ(AS)bw,  
and σ(AS)ww into equations (7) and (8), respectively. 
This process is illustrated in Fig.  1 for exposure to a 
vapour in an indoor AS. For the example, the mecha-
nistic model is assumed to estimate a GM exposure of 
1 with the remaining parameters of the prior distribu-
tions given in Tables 1 and 2, respectively (‘vapour, 
indoors’). The four panels of the left of Fig. 1 show the 
prior distributions for μ(AS), σ(AS)bc, σ(AS)bw, and σ(AS)ww. 
A total of 10 000 samples were drawn from the prior 
distributions and two summaries calculated. The top 
right panel shows the implied prior distribution for 
the 95th percentile of the TWA. The data for this plot 
were generated by substituting the 10 000 parameter 
sets into equation (7) with zα = 1.645. The bottom right 
plot shows the median and a 90% interval for cumula-
tive TWA exposure distribution evaluated between 
the 0.1 and 99.9 percentiles of exposure. The data in 
this figure were generated by substituting the 10 000 
parameter sets into equation (7) for each percentile 
(and associated value of zα), sorting the resulting val-
ues, and extracting the 5000th, 500th, and 9500th val-
ues (for the median and interval, respectively).

TWA( ) ( ) ( ) ( ) ( )exp( ) exp0 0 0
2

0
2

0
2

α αµ σ σ σ= + +( )× ×z bc bw ww  
(7)

 

LTA( ) ( ) ( )

( ) ( )

exp .

exp

0 0 0
2

0
2

0
2

0 5α

α

µ σ

σ σ

= +( )
+( )

×

× ×

ww

bc bwz
 

(8)

Specifying analogy
In a conventional Bayesian analysis, experimental data 
are observed and combined with parameters through 
the likelihood [defined through equations (2) to (5)], 
and the prior distribution is updated using these meas-
urements. Indeed, this is the current mode of inference 
supported by version 1.5 of the ART. Inference for this 
case is presented in the first two examples in the paper.

The novel feature of the ART, as implemented in 
version 2.0, will be its ability to utilize available expo-
sure measurements from other exposure scenarios 
that share some similarity to the AS, data from such 
scenarios are referred to as PA. Similarity is defined 
within but not across exposure classes; e.g. two pro-
cesses involving dusts and vapours, respectively, would 

Table 2. Hyper-parameters for the variance 
components.

Component Scenario GM GSD

σ(i)bc All cases 0.44 1.29

σ(i)bw Vapours 0.26 2.82

Non-vapours 0.32 2.82

σ(i)ww Vapours, outdoors 1.16 1.64

Vapours, indoors 0.48 1.64

Non-vapours, outdoors 1.57 1.64

Non-vapours, indoors 0.65 1.64
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not be classed as PA, whereas two processes involv-
ing dusts would have some (perhaps small) degree of 
analogy. Analogy is modelled through a second tier to 
the prior specification.

The relationship between the central estimates of 
exposure in the AS and in the ith PA scenario is ini-
tially specified. The central estimates are linked by the 
expression

 
µ µ δ ω( ) ( ) ( ) ( )~ ( , )i i iN− AS  (9)

The motivation for equation (9) is that if the two sce-
narios differ in terms of only a few determinants, it 
might be possible to specify more precise information 
about the ratio of GMs in the two scenarios [which in 
equation (9) is represented as a difference in natural 

1 The propagation of uncertainty in a Bayesian calculation. Panels on the left represent prior distributions for the model 
parameters which are inputs to the calculation for percentiles of the exposure distribution. The panels on the right show 
the implied prior distribution for the 95th percentile of exposure and the central estimate (median) and a 90% interval for 
the TWA exposure distribution.
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logs] than about the GM in either scenario. Bayesian 
inference has the flexibility to support indirect infor-
mation about model parameters. Through equations 
(5) and (9), a bivariate normal distribution for μ(i) and 
μ(AS) is specified.

Briefly, parameter δ(i) represents the difference 
in the natural logs of mean exposure in the AS and 
PA scenarios. The mechanistic model which can be 
applied to both the AS and PA scenarios offers a logi-
cal framework for determining δ(i). Parameter ω(i) con-
veys information about to what extent knowing the 
mechanistic model error in estimating μ(AS) informs 
about the likely error in the estimate of μ(i). The upper 
bound on ω(i) is 2 2θ ( )AS  and occurs if the errors from 
the mechanistic model applied to the two scenarios 
are independent in which case μ(AS) provides no use-
ful information about μ(i). Smaller values of ω(i) infer 
that knowledge about an under (over) estimate from 
the mechanistic model in the AS scenario conveys 
information about the under (over) estimate in the 
mechanistic model estimate for a PA scenario. Smaller 
values of ω(i) result in progressively larger correlations 
between μ(AS) and μ(i).

The relationships between the standard devia-
tions of the AS and the ith PA scenario are modelled 
through bivariate normal distributions; specifically, 
ln(σ(AS)) and ln(σ(i)) have a bivariate normal distri-
bution. Because analogy is only considered within 
exposure classes, ln(σ(AS)) and ln(σ(i)) share a com-
mon marginal distribution [equation (6)] (with class-
specific parameters given in Table 2). A correlation ρ(i) 
quantifies the degree of analogy between the AS and 
PA scenarios and ranges from zero for scenarios that 
are not at all analogous to unity for fully analogous 
scenarios. Using a well-known property of the bivari-
ate normal distribution, the relationship between 
the standard deviation in the AS and PA scenarios is 
modelled using

ln GM

GS
AS AS

AS

( )~ ((ln( ) ( )

ln( ), ln(
( ) ( ) ( ) ( ) ( )

( )

|σ σ ρ ρ

σ
i i iN × −

×

1 +

DD AS( ) ( )) )2 1 2× − ρ i( )  
(10)

At present the correlation between the AS and PA 
data sets is assumed to be common for all the vari-
ance components; individualized correlations may 
be used in further versions of the ART if practical 
experience supports this. In a practical sense ρ(i) 

quantifies a reduction in the uncertainty of σ(i) if σ(AS) 
were known.

Expressions of the forms (9) and (10) for each 
of the PA scenarios complete this second tier to the 
prior specification. The correlations between the 
parameters of the AS and PA scenarios induced in 
this second phase mean that observations on the PA 
scenarios update both the parameters of the PA sce-
nario and those of the AS. The extent to which the 
parameters of the AS are updated depends upon the 
strength of correlations. Whilst this is a conceptually 
sound approach, it is clear that reliable algorithms for 
determining δ(i), ω(i), and ρ(i) are critical; this is an area 
of ongoing research.

Computation
The joint posterior distribution of the model param-
eters, comprising of the parameters of both the AS 
and PA scenarios, cannot be calculated analytically. 
A  Markov Chain Monte Carlo (MCMC) algorithm 
(Brooks, 1998) is used to draw samples from the 
joint posterior distribution of the model parameters. 
Inference about the model parameters is based upon 
these samples. The MCMC routine has been imple-
mented using the OpenBugs software (Lunn et  al., 
2009), executed within the ART. As noted earlier, 
functions of the model parameters have priors and 
posteriors in a Bayesian model. Posterior distribu-
tions of the TWA and LTA exposure distributions 
[equations (7) and (8)], are calculated by the ART by 
repeatedly substituting sampled parameter sets into 
equations (7) and (8).

W o r k e d  e x A M p l e s

Simulated data
The first example is based upon simulated data and 
it demonstrates how the different qualities of infor-
mation available from exposure measurements influ-
ence the precision of the posterior estimates. The 
hypothetical AS is for an exposure to dust in a pro-
cess conducted in an outdoor setting. The assumed 
mechanistic model central estimate is 10 mg m−3. 
Based upon the information presented, the remaining 
parameters of the prior are populated from Tables 1 
and 2 (‘non-vapours, outdoors’). Four cases, each with 
20 measurements, were considered corresponding to 
a) all measurements from a single worker; b) a single 
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measurement on each of 20 workers at a single com-
pany; c) a single measurement on each of 20 workers 
from 20 companies and d) 20 measurements in total 
with two measurements on two workers at five compa-
nies. Data were simulated with μ(0) = log(10) and the 
three standard deviations set equal to their GM values 
for this scenario (Table 2). For each case, the posterior 
distributions of the 50th and 90th percentiles of the 
8-h TWA were calculated [equation (7) with zα  =  0 
and zá = 1.2816, respectively].

The central estimate and a 90% interval from the 
prior distributions for these two summaries and the 
posterior distributions under scenarios a) to d) are 

given in Fig.  2. A  central estimate and 90% credible 
interval for the parameters of the statistical model are 
given in Table 3.

The example demonstrates that the degree of 
uncertainty in summaries depends upon the context 
of the data; all measurements are not of equal value. 
Many measurements on a single worker allow for a 
very precise determination of a personal exposure but 
convey no information about the personal exposure 
of other workers at the same or indeed at other com-
panies. Measurements from a single company convey 
no information about between-company variability. 
A lack of repeat measurements on workers means that 

2 A comparison of the median and 90% credible intervals for the 50th and 90th percentiles of 
the full-shift exposure distribution. Results are shown for the prior and the posterior resulting from 
updates using four different data sets.
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between- and within-worker variability cannot be 
uniquely identified. Cases a) to c) would be ‘ill-posed’ 
in classical statistical analysis, as the data are insuffi-
cient for a likelihood-based approach, whereas the 
Bayesian approach yields a posterior distribution with 
greater uncertainty about the parameters than would 
be the case had information on all sources of variability 
been available. The reduction in uncertainty about the 
model parameters was greatest in scenario d); how-
ever, there was also a large reduction in uncertainty in 
case c) as there was information on all three variance 
components even though the individual components 
could not be identified. A  reduction in uncertainty 
about model parameters does not necessarily translate 
into reduced uncertainty about summaries calculated 
from those parameters. This is particularly important 
for a log-normal model as calculations of summaries 
of interest involve the exponential function [equations 
(7) and (8)].

Antifouling paints
The first real-data AS concerns the spraying of anti-
fouling paints onto boats. The exposure is to a mist 
containing copper pyrithione. Contextual informa-
tion about this AS which is sufficient to reproduce 
our results is provided as supplementary information 
(available at Annals of Occupational Hygiene online). 
Contextual information would be elicited from a user 
of the ART based upon their answers to a series of mul-
tiple-choice questions. This information is used to pro-
duce a central estimate (from the mechanistic model) 
and associated uncertainty (Table  1, ‘mists’) and to 
specify the priors for all the variance components 
(Table 2, ‘non-vapours, indoors’). The estimated GM 
exposure and 90% credible interval were calculated 

by the ART as 0.13 mg m−3 and 0.022–0.74 mg m−3.  
The central estimate and 90% credible interval for the 
cumulative distribution of exposures for full-shift (8-h 
TWA) and LTA exposures based upon the prior alone 
are shown in Fig. 3.

The ART identified 22 exposure scenarios from 
the database which shared some similarities to the 
AS. Two scenarios were selected ‘Spraying operators 
of antifouling paints’ (HSE, 1999) and ‘Antifouling 
spraying’ (Hughson and Aitken, 2004) offering a sin-
gle measurement from each of 21 workers at 11 com-
panies and a measurement from each of four workers 
a single company, respectively. The median exposure 
from measurements alone was 0.14 mg m−3 with 
measurements ranging from 0.01 to 1.3 mg m−3. The 
Bayesian module was executed. The estimated GM 
exposure and 90% credible interval were calculated 
as 0.062 mg m−3 and 0.035–0.11 mg m−3. The central 
estimate and 90% credible interval for the cumulative 
distribution of exposures for the 8-h TWA and LTA 
based upon the prior and measurements are shown 
in Fig. 3.

This example corresponds to a classically ‘ill-posed’ 
problem as the within- and between-worker variabil-
ity components are not estimable from the data; occu-
pational hygiene data sets such as this are common. 
Based on the data alone, the LTA exposure cannot be 
estimated without some judgement as to the relative 
magnitudes of these two components. The Bayesian 
model presented in the paper naturally accommodates 
such scenarios. The unusual shape of the LTA poste-
rior distribution (Fig.  3) is due to the bimodality of 
the posterior distributions for within- and between-
worker variability, which is a consequence of observ-
ing a single measurement per worker.

Table 3. Posterior median and a 90% interval (brackets) for model parameters for the cases in 
example 1.

Parameter Prior Case a Case b Case c Case d

μ(0) 2.29 (0.82, 3.76) 2.56 (1.67, 3.64) 2.36 (1.62, 3.18) 1.92 (1.35, 2.51) 1.99 (1.42, 2.57)

σ(0)bc 0.44 (0.29, 0.68) 0.44 (0.29, 0.68) 0.44 (0.28, 0.68) 0.45 (0.29, 0.75) 0.42 (0.28, 0.64)

σ(0)bw 0.31 (0.06, 1.77) 0.30 (0.06, 1.54) 0.35 (0.07, 1.10) 0.29 (0.05, 1.24) 0.29 (0.06, 0.89)

σ(0)ww 1.56 (0.71, 3.56) 1.29 (1.02, 1.73) 1.29 (0.87, 1.75) 1.54 (1.03, 2.11) 1.33 (1.02, 1.78)

σ(0)total 1.77 (0.92, 3.83) 1.47 (1.16, 2.17) 1.46 (1.17, 1.89) 1.69 (1.35, 2.20) 1.47 (1.17, 1.91)
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Shoe repair
The second of the real-data case studies relates to 
exposure to solvents in glue, in particular ethyl 
acetate, for shoe repair in small and medium-sized 
enterprises. The example is based upon the study 
reported in Hertsenberg et al. (2007); data from this 
study are held within the ART database. Contextual 
information about this AS is provided as supplemen-
tary information (available at Annals of Occupational 
Hygiene online). The example was carefully chosen as 
PA data from a very similar exposure scenario in the 
orthopaedic sector were available. The results from 

using PA data could therefore be compared against a 
well-characterized exposure scenario. In this example, 
results from the mechanistic model are initially pre-
sented, before results from using PA data and finally 
results obtained from the fully analogous data from 
the Hertsenberg study are presented.

This information provided to the ART is used 
to produce a central estimate (from the mechanis-
tic model) and associated uncertainty (Table  1, 
‘vapours’) and to specify the priors for all the variance 
components (Table  2, ‘vapours, indoors’). The esti-
mated GM exposure and 90% credible interval were 

3 A comparison of the prior and posterior distributions for the full-shift and long-term average cumulative 
distributions of exposure for copper pyrithione in the antifouling paints example. The solid line represents 
the central estimate for a given percentile and the shaded region denotes the 90% credible interval.
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calculated using the ART as 17 mg m−3 and 3.5–84 mg 
m−3. The central estimate and 90% credible interval for 
the parameters of the underlying statistical model and 
some summary statistics are given in the first column 
of results in Table 4.

A study from the orthopaedic sector (Van Niftrik 
et  al., 2006) was considered to be PA to the AS. The 
data set consisted of 62 measurements taken from 32 
workers at 12 companies and thus provided informa-
tion on all the variance components. The median and 
the range of these measurements were 139 mg m−3 
and 6.6–990 mg m−3, respectively. These data are con-
tained within the ART library, with the measurements 
within three data sets partitioned by the duration of 
the exposure ‘Spreading of glue [<1.5 h, local exhaust 
ventilation (LEV)]’, ‘Spreading of glue [1.5–3 h, LEV]’, 
‘Spreading of glue [>3 h, LEV]’. However, as the ART 
version 1.5 does not yet support PA data, the ART was 
used to provide the mechanistic model estimate and the 
Bayesian model was executed using OpenBugs (Lunn 
et al., 2009) called from a local environment. At present 
similarity algorithms for automating the generation of 
parameters that link the AS and PA scenarios are not 
available. For this example, the authors therefore deter-
mined the three parameters that linked the PA and AS 
by considering the determinants in the two scenarios in 
the ART mechanistic model. The central estimate in the 
two scenarios was equivalent (hence δ(i) = 0). The ratio 
of GMs was judged to be in the multiplicative interval 
1/3 to 3 with 90% probability (hence ω(i) = 0.67) and 

ρ(i) was taken to be 0.9 [for this value of the correlation, a 
90% interval for the conditional distribution (σ(i)|σ(AS)) 
corresponds to the interquartile range (a 75% inter-
val) of the marginal distribution of σ(i) when σ(AS) takes 
its GM value]. The central estimate and 90% credible 
interval for the parameters of the model and some sum-
mary statistics after updating using these data are given 
in the second column of results in Table 4. The posterior 
median and a 90% interval for the exposure distribution 
are given in Fig. 4.

The ART version 1.5 identified 16 exposure sce-
narios that shared some similarities to the AS. In prac-
tical use of the ART, a user would have to judge the 
most appropriate data for their AS based upon the 
contextual information that supplements each data 
set. For this example, the three data sets correspond-
ing to the study reported in Hertsenberg et al. (2007) 
were selected. These data sets ‘Spreading of glue <1 h, 
LEV’, ‘Spreading of glue 1–2 h, LEV’, and ‘Spreading 
of glue >2 h, LEV’ related to the same study; however, 
the measurements were partitioned by the exposure 
duration. A total of 294 measurements from 16 work-
ers at 16 companies were available. The measurements 
in the three scenarios were from the same small subset 
of workers; the measurements on each worker were 
over varying durations and not all measurements 
on a particular worker appear in the same data set in 
the exposure library. Due to the labelling system in 
the underlying database, the ART correctly recog-
nized and ascribed the exposure measurements to the 

Table 4. Central estimates and 90% intervals for model parameters and selected summary statistics 
from the prior alone, from an update using PA data, and from an update using FA data for the shoe 
repair example.

Summary Prior PA data FA data

Estimate 90% interval Estimate 90% interval Estimate 90% interval

μ(0) 2.8 1.2, 4.4 4.00 3.11, 5.05 3.51 3.09, 3.94

σ(0)bc 0.44 0.29, 0.66 0.70 0.49, 0.96 0.48 0.31, 0.75

σ(0)bw 0.26 0.05, 1.43 0.55 0.28, 0.99 0.77 0.34, 1.17

σ(0)ww 0.48 0.21, 1.08 0.43 0.33, 0.57 0.59 0.55, 0.63

Median 17 3.5, 84 56.2 22.4, 155.7 33 22, 51

90th percentile 52 9.6, 365 101 39, 263 136 90, 239

90th percentile LTA 46 8.6, 342 207.8 82, 568 130 83, 240
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correct worker when pooling the three data sets prior 
to executing the Bayesian update. The pooled data 
were regarded as being fully analogous to the AS and 
the ART was used for inference. A central estimate and 
90% interval for parameters and summaries are given 
in the third column of results in Table 4. The posterior 
median and a 90% interval for the exposure distribu-
tion are given in Fig. 4.

The update using PA data resulted in narrower 
intervals for the model parameters and some move-
ment in the central estimates for the parameters com-
pared with the prior (Table 4, Fig. 4). The intervals for 
the 90th percentile were substantially narrower than 
under the prior, which reflects large uncertainty from 
the mechanistic model alone in calculations of per-
centiles in the upper tail of the exposure distribution. 

4 A comparison of the central estimate and a 90% credible interval for the full-shift cumulative 
distribution of exposure resulting from the prior alone and updates using partially analogous and fully 
analogous data for the shoe repair example.
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Tighter intervals for parameters and summaries were 
achieved when updating the prior using the fully anal-
ogous data, which resulted from the greater volume of 
data in this scenario and the removal of an important 
source of uncertainty (the degree of analogy). Whilst 
the between-company and between-worker variance 
components could not be uniquely identified using 
fully analogous data, their sum could be determined 
with high precision; therefore, the impact on calcu-
lations of the exposure distribution was negligible in 
this example. The central estimate for the cumulative 
distribution of exposures using fully analogous data 
was contained in the 90% interval derived using PA 
data, although the central estimate of the exposure 
distribution was higher when using the PA data.

It should be noted that the example was carefully 
chosen with the AS and PA scenarios sharing a num-
ber of important determinants and a subsequent high 
degree of similarity. In the absence of validated simi-
larity algorithms, the chosen values of δ, ω, and ρ can 
clearly be questioned; however, the example is suffi-
cient to demonstrate an application of the methodol-
ogy. Smaller changes compared with the prior would 
have been achieved with PA data had a lower degree of 
analogy been assumed.

d I s c u s s I o n

Contribution to exposure and risk assessment
The paper has described a methodology for estimating 
inhalation exposures that makes use of data from vari-
ous disparate sources within a Bayesian framework. 
The methodology is implemented in a free web-based 
programme (www.advancedreachtool.com), although 
at present it does not support PA data. The use of 
Bayesian methods so that mechanistic exposure mod-
els and exposure measurements can be utilized in risk 
assessments has been proposed by others (Creely et al., 
2005; Ramachandran, 2008) and implemented in soft-
ware (Sottas et al., 2009) but as far as we are aware, the 
ART application offers the first practical online imple-
mentation. However, alternative Bayesian approaches 
have been used, for example Hewett et al. (2006) pro-
posed the combination of elicited expert judgements 
about likely exposures with exposure measurements. 
This approach suffers from a considerable practical 
difficulty in training occupational hygienists such that 
they can express their beliefs about likely exposures 

using probability. In contrast the ART requires a user 
to describe the process and the calibrated mechanistic 
model automates the generation of priors. The ART is 
considerably more transparent in terms of defining the 
prior compared with Hewett et al. (2006).

The primary limitation of the ART version 1.5 is 
that whilst the software returns exposure scenarios that 
share some analogy with an AS, at present the burden 
of assessing the degree of analogy falls upon the user. 
Summary statistics and a description of the scenarios 
are provided to aid the user although a degree of judge-
ment does need to be applied. Clearly there is some 
scope for error in this process. This can be mitigated 
against to an extent through the selection of a number 
of PA data sets when executing the Bayesian update; in 
the third example presented in this paper, this approach 
was adopted. Whilst at this stage of development the 
scenarios are not ranked by their similarity to the AS, 
the use of multiple scenarios will increase the variabil-
ity in exposure estimates. Moreover, a comparison of 
the prior and posterior, both of which are provided in 
summary assessments generated by the ART, will reveal 
whether the data are consistent with the mechanistic 
model. A further safeguard could be achieved by using 
a conservative upper bound for a high percentile of the 
exposure distribution in risk assessments. In version 2 of 
the ART, the burden of assessing (and parameterizing) 
analogy will fall upon the developers and at this stage an 
important source of uncertainty will be removed.

Testing and robustness
MCMC is a powerful sampling technique; however, 
it is important to test that the sampling algorithm is 
error free, stable, and that it converges to the posterior 
distribution before samples are retained for inference. 
Usually the burden of these checks falls upon the user, 
typically an expert in Bayesian statistics. The MCMC 
algorithm within the ART is executed by a call to the 
OpenBugs software (Lunn et al., 2009) and is hidden 
from the user behind the web-based interface of the 
ART. In this instance, the burden of testing therefore 
falls upon the developers.

Extensive checks took place prior to the launch of 
the ART version 1.0 and a further battery of tests were 
conducted prior to the launch of the ART version 1.5 
to ensure that the MCMC algorithm was correctly gen-
erated, and the data passed to the OpenBugs module 
were correct. The behaviour of the model has been 
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extensively tested using simulated data using a locally 
run version of the Bayesian module so that the behav-
iour of the parameters of the statistical model and 
summaries calculated from these could be evaluated. 
The test programme considered cases where the prior 
distributions were consistent with measurements and 
cases where there were prior-data conflicts. Conflicts 
between two PA data sets were also studied as errors 
in the similarity algorithms that generate the model 
parameters could in principle result in such conflicts. It 
is important to have an understanding of the behaviour 
of the model in such situations so that conflicts can be 
identified and corrected. The challenges presented in 
the testing programme were far more extreme than we 
anticipate in routine use of the ART. In all test cases, 
the changes to parameters were consistent with our 
expectations and supported by statistical theory. In 
cases where some measurement series were inconsist-
ent with each other, or the prior, we developed proce-
dures to identify the conflicts; however, further testing 
is required before these are implemented in version 2.0 
of the ART.

Censoring
Many occupational hygiene data sets contain a pro-
portion of measurements that are below the threshold 
sensitivity of the equipment (the limit of detection). 
Such measurements are referred to as left censored. 
Depending upon the substance (and equipment), 
a large proportion of measurements may be below 
the limit of detection. Hewett and Ganser (2007) 
and Helsel (2010) discussed the merits of various 
simplistic methods for treating such observations. 
A  more advanced imputation method was applied 
in Krishnamoorthy et  al. (2009) and Schinkel et  al. 
(2011). A classical likelihood-based treatment of cen-
sored measurements involves estimating the under-
lying measurement, with the resulting estimated 
measurements being treated as equivalent to observed 
measurements; as a consequence, classical methods 
underestimate the uncertainty in a measurement 
series. A Bayesian approach (Wild et al., 1996; Morton 
et  al., 2010) naturally accommodates left-censored 
measurements as observations on the distribution 
function. The underlying unobserved measurements 
have both prior and posterior distributions, truncated 
at the limit of detection and these data are thus weaker 
than observed measurements. Testing of the Bayesian 

module of the ART in the presence of measurements 
below a limit of detection has considered censoring 
rates of up to 50% of observations at a common limit of 
detection (the poorest quality censored data). Whilst 
there was inevitably some impact on the uncertainty in 
the parameters, explicitly captured within the posterior 
distributions, the central estimates of parameters were 
relatively insensitive to the censoring. The MCMC 
numerical algorithm was stable in all test cases.

Value of measurements
The context of exposure measurements is important 
as this determines how informative a measurement 
series is about the model parameters. There is an inter-
esting counterbalance between the size and scope of 
a measurement series. A  small data set containing 
data from multiple workers at multiple companies 
and repeat measurements on a subset of workers may 
result in a larger reduction in overall uncertainty than 
a much larger data set that conveys weak or indeed 
no information about components of variance ( J. 
Schinkel et al.). The degree of analogy adds an addi-
tional dimension to this comparison as there is a fur-
ther counterbalance between the information in a PA 
data set with which to estimate the parameters spe-
cific to that data set, and the strength of the relation-
ship between the AS and PA scenarios. When data 
from a series of PA data sets are available, those with 
the highest degrees of analogy are the most influen-
tial so long as the size and scope of the measurement 
series are similar.

For the majority of ASs, it is unlikely that a data-
rich PA scenario will be available, although smaller 
measurement series with weaker analogy are likely to 
be available for a large range of exposure scenarios. 
The power of the model is in its ability to effectively 
pool the data from a range of such scenarios in order 
to improve the precision of estimates. The shoe repair 
example highlighted the value of PA data although it 
also demonstrated that observations on the AS pro-
vide a greater reduction in uncertainty; clearly this is 
desirable behaviour. So long as each of the variance 
components can be uniquely identified from at least 
one PA source, all parameters in the AS are updated. 
However, an important feature of the model is that 
exposure estimates are available in the absence of any 
data using the mechanistic model and priors for the 
variance components.
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ART version 2.0
Tielemans et al. (2011) noted that the ART is considered 
to be an evolving system with a firm conceptual basis. 
The development of an exposure database (Schinkel 
et al., 2013) and the launch of version 1.5 of the ART are 
important recent developments; however, the ART does 
not currently support PA data. The conceptual basis for 
determining analogy is justified but is an unexplored 
field within Bayesian exposure assessment. Similarity 
algorithms for automating the process of parameterizing 
analogy are the subject of ongoing research.

In the longer term, there will be an ongoing review 
of the methodology. Large changes to the underpin-
ning methodology are not anticipated, but subtle 
changes such as independent updating of the variance 
components via individualized correlations could 
be implemented and more substance classes will be 
supported. Future developments will be informed by 
extensive testing using real-data measurement series, 
and user feedback. Hence, populating the ART expo-
sure database with high quality data is a priority area 
to actually progress this research field.

s u p p l e M e n tA r y   d AtA
Supplementary data can be found at http://annhyg.
oxfordjournals.org/.
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