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Abstract
Metabolic syndrome (MetS) is associated with alterations in coronary vascular smooth muscle and endothelial function. The 
current study examined the contractile response of the isolated coronary arterioles to serotonin in pigs with and without MetS 
and investigated the signaling pathways responsible for serotonin-induced vasomotor tone. The MetS pigs (8-weeks old) were 
fed with a hyper-caloric, fat/cholesterol diet and the control animals (lean) were fed with a regular diet for 12 weeks (n = 6/
group). The coronary arterioles (90–180 μm in diameter) were dissected from the harvested pig myocardial tissues and the 
in vitro coronary arteriolar response to serotonin was measured in the presence of pharmacological inhibitors. The protein 
expressions of phospholipase A2 (PLA2), TXA2 synthase, and the thromboxane-prostanoid (TP) receptor in the pigs’ left 
ventricular tissue samples were measured using Western blotting. Serotonin (10−9–10−5 M) induced dose-dependent con-
tractions of coronary-resistant arterioles in both non-MetS control (lean) and MetS pigs. This effect was more pronounced 
in the MetS vessels compared with those of non-MetS controls (lean, P < 0.05]. Serotonin-induced contraction of the MetS 
vessels was significantly inhibited in the presence of the selective PLA2 inhibitor quinacrine (10−6 M), the COX inhibitor 
indomethacin (10−5 M), and the TP receptor antagonist SQ29548 (10−6 M), respectively (P < 0.05). MetS exhibited signifi-
cant increases in tissue levels of TXA2 synthase and TP receptors (P < 0.05 vs. lean), respectively. MetS is associated with 
increased contractile response of porcine coronary arterioles to serotonin, which is in part via upregulation/activation of 
PLA2, COX, and subsequent TXA2, suggesting that alteration of vasomotor function may occur at an early stage of MetS 
and juvenile obesity.
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Introduction

Approximately 50 million Americans are affected by meta-
bolic syndrome (MetS), which is described by a cluster of 
metabolic abnormalities including hypercholesterolemia, 

hypertriglyceridemia, and hypertension. These patients 
experience a significantly higher risk for coronary artery 
disease and type 2 diabetes [1–4]. MetS is associated with 
alterations in endothelial function, vasomotor control, and 
the dysregulation of coronary blood flow, which in turn 
could underlie increased cardiovascular morbidity and mor-
tality in these patients [5–11]. Notably, these changes occur 
prior to overt atherosclerotic disease, and have been associ-
ated with left ventricular dysfunction in human and animal 
models of MetS [9–12].

Vascular diseases are the principal contributors to the 
increased morbidity and mortality associated with MetS 
[13, 14]. Endothelial dysfunction is considered to be a major 
risk factor of cardiovascular complications in patients with 
MetS and specifically contributes to the exacerbation of 
vasospasm, myocardial dysfunction, and low cardiac out-
put syndrome. Given that MetS affects as much as 27% of 
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the population of the United States and is increasing dra-
matically in prevalence, this remains a considerable clinical 
problem.

The mechanism behind the alteration in the MetS induced 
microvascular dysfunction is incompletely understood, but 
may involve the dysregulation of chemical and electrical 
signaling in the coronary microcirculation. The endothe-
lium controls the tone of the underlying vascular smooth 
muscle through the release of various vasoactive substances, 
including nitric oxide (NO), prostacyclin (PGI2), thrombox-
ane A2 (TXA2), serotonin (5-hydroxytryptamine, 5-HT), and 
endothelium-dependent hyperpolarizing factors (EDHF) [9, 
10, 15, 16].

Serotonin is a vasoactive amine responsible for alterations 
in vessel contractile response in numerous organs. Previous 
studies by Metais and colleagues have shown that serotonin 
is responsible for mediating the increased coronary contrac-
tion associated with myocardial dysfunction after cardio-
plegic ischemia and cardiopulmonary bypass (CP/CPB), as 
well as with the change from serotonin-induced coronary 
vasodilation before CP/CPB [15, 16]. A possible cause for 
this may be the activation of phospholipase A2 (PLA2) by 
serotonin [16].

It has previously been shown that serotonin activates 
PLA2, which leads to the release of inflammatory media-
tors in the human heart [15–17]. This occurs via serotonin’s 
release of arachidonic acid, which then reacts with cycloox-
ygenase (COX) to form the vasoconstrictive agent TXA2, 
which likely contributes to the subsequent vasoconstriction 
seen following CP/CPB and cardiac surgery [15–17]. There-
fore, we hypothesized that early stage of MetS may cause 
significant increase in the coronary arteriolar response to 
serotonin and the overexpression/activation of PLA2 and 
TXA2 may contribute to altered coronary microvascular 
reactivity. Thus, this study examined the contractile response 
of the isolated coronary arterioles to serotonin in pigs with 
or without MetS and investigated the signaling pathways 
responsible for serotonin-induced vasomotor tone.

Methods

Pig model of metabolic syndrome

Twelve Yorkshire swine (8-week old) arrived at our facility 
and after a week of acclimation, were separated into two 
groups: the normal (lean) diet group (n = 6) and the high-
fat diet group (n = 6). The non-MetS control group (lean) 
received 500 g/day of regular chow for 12 weeks. The high-
cholesterol animals received 500 g/day of high-cholesterol 
chow consisting of 4% cholesterol, 17.2% coconut oil, 2.3% 
corn oil, 1.5% sodium cholate, and 75% regular chow (Sin-
clair Research, Columbia, MO) for 12 weeks. The high-fat 

diet used in our animal model administered for 12 weeks has 
been shown to induce obesity, hyperlipidemia, high blood 
pressure, insulin resistance, and glucose intolerance, all of 
which are components of MetS [18–21]. After 12 weeks, 
the pigs were then euthanized by exsanguination following 
removal of the heart while under deep isoflurane anesthesia. 
The harvested myocardial tissues and segments of the coro-
nary arteries in the LAD were placed in cold (4 °C) Kreb 
solution for vascular physiological study.

All experiments were approved by the Rhode Island Hos-
pital Institutional Animal Care and Use Committee. Animals 
were cared for in compliance with the “Principles of Labo-
ratory Animal Care” formulated by the National Society 
for Medical Research and the “Guide for the Care and Use 
of Laboratory Animals” (NIH publication number 5377-3, 
1996).

Microvessel reactivity

Coronary arterioles (90- to 180-μm internal diameters) of 
the left anterior descending (LAD) territory were dissected 
from the harvested left ventricular (LV) tissue samples. 
Microvessel studies were performed by in vitro organ bath 
video-microscopy as described previously [15, 16]. After 
a 60-min stabilization period, the microvessels were con-
stricted with serotonin (10−9–10−5 M) in the absence or pres-
ence of the selective PLA2 inhibitor quinacrine (10−6 M) or 
the COX inhibitor indomethacin (10−5 M) or the selective 
thromboxane-prostanoid (TP) receptor antagonist SQ29548 
(10−6 M). Some of the microvessels were constricted with 
TXA-2 analog U46619 (10−9–10−6 M). One or three inter-
ventions were performed on each vessel. The order of drug 
administration was random.

Immunoblot

The methods for pig-LV tissue protein purification, Western 
blotting, and imaging quantification have been described pre-
viously [15]. Membranes were incubated overnight at 4 °C 
with primary antibodies against cytosolic PLA2 (cPLA2), 
TXA2 synthase, and TP receptors (abcam, Cambridge, UK). 
After washing with TBST, membranes were incubated with 
the appropriate secondary antibody conjugated to horserad-
ish peroxidase. All membranes were also incubated with 
GAPDH (glyceraldehyde-3-phosphate) or alpha-tubulin 
(Cell Signaling) for loading controls.

Measurement of PLA2 activity

Left ventricular heart tissue (100 mg) was dissected and 
washed with PBS containing 0.16 mg/ml heparin to remove 
any red blood cells and clots. Tissue was homogenized in 
1 ml of cold buffer (50 mM HEPES, pH 7.4, containing 
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1 mM EDTA). After centrifuge at 10,000×g for 15 min at 
4 °C, the 10 μl supernatant was used for assay according to 
the manufacturer’s protocol.

Chemicals

Serotonin, U46619, quinacrine, indomethacin, and SQ29548 
were obtained from Sigma-Aldrich and dissolved on the day 
of the study.

Data analysis

Data are presented as the mean and standard deviation 
(SD) of the mean. Microvessel responses are expressed 
as percent relaxation of the pre-constricted diameter. 
Microvascular reactivity was analyzed using 2-way 
repeated-measures ANOVA with a post hoc Bonferroni 

test. (GraphPad Software, Inc, San Diego, CA). A growth 
model was used to test the degree to which treatment 
groups and MetS affected the degree to which 5-HT-
induced vasoconstriction, P values < 0.05 were considered 
significant.

Results

Pig model of MetS

Phenotypic characteristics of lean and MetS pigs are 
shown in Table 1. Compared to their counterparts, pigs 
with MetS exhibited significant increases in body weight, 
total cholesterol, HDL, LDL/VLDL, triglyceride, blood 
insulin, and blood glucose.

Increased coronary arteriolar constriction 
to serotonin and U46619 in the MetS pig

Both serotonin (10−9–10−5 M) and U46619 (10−9–10−6 M) 
induced dose-dependent contractions of coronary-resist-
ant arterioles in both control (lean) pigs and in pigs with 
MetS. These effects were more pronounced in the MetS 
vessels as compared with those of the control group (lean), 
with a 60% increase of contraction to serotonin (10−5 M, 
Fig. 1a, P = 0.01 vs. lean) and an 86% increase to U46619 
(10−7 M, Fig.  1b, P = 0.001 vs. lean) in MetS vessels 
compared to the 45% contraction to serotonin and 65% to 
U46619 in the control (lean) vessels, respectively.

Table 1   Pig characteristics

HDL high-density lipoprotein, LDL low-density lipoproteins, VLDL 
very low-density lipoproteins (VLDL), mean ± SD

Characteristics Lean MetS P values

Age (weeks) 20 weeks 20 weeks NS
Male 6 6 NS
Body weight (kg) 64 ± 15 75 ± 13 0.02
Blood insulin (pmol/L) 28.5 ± 7.1 38.6 ± 6.8 0.0002
Blood glucose (mg/dL) 92 ± 17 165 ± 35 0.0001
Total cholesterol (mg/dl) 1.12 ± 0.4 6.7 ± 1.7 0.0001
HDL (µg/µl) 0.46 ± 0.1 1.32 ± 0.3 0.001
LDL/VLDL 0.44 ± 0.1 2.72 ± 0.4 0.001
Triglycerides (mg/dl) 59 ± 34 116 ± 14.9 0.01

Fig. 1   Dose-dependent contractile response of coronary-resistant 
arterioles to serotonin (10−9–10−5  M) and U46619 (10−9–10−6  M) 
in control (lean) pigs and pigs with MetS, respectively; a Coronary 
arteriolar contractile response to serotonin (10−9–10−5 M) in the non-

MetS control (lean) vessels and in MetS vessels,*P < 0.05 versus 
lean; b Contractile response to U46619 (10−9–10−6  M) in the lean 
and MetS vessels. *P < 0.05 versus lean
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The blockade of PLA2, COX, and TXA2 
on serotonin‑induced contraction

Pretreatment of the MetS and control (lean) vessels with 
selective PLA2, COX, and TXA2 inhibitors significantly 
diminished serotonin-induced coronary arteriolar con-
traction (Figs. 2, 3, 4). Specifically, administration of 
the selective PLA2 inhibitor quinacrine (10−6 M) signifi-
cantly inhibited serotonin-induced contraction in both the 
MetS and non-MetS control vessels (P = 0.002 vs. sero-
tonin alone of non-MetS control, P = 0.004 vs. serotonin 
alone of MetS, Fig. 2). Inclusion of the COX inhibitor 
indomethacin (10−5 M) also significantly reduced seroto-
nin-induced contraction in both the MetS and non-MetS 

control vessels (P = 0.001 vs. serotonin alone of non-MetS 
control, P = 0.003 vs. serotonin alone of MetS, Fig. 3). 
Furthermore, pretreatment of the vessels with the selec-
tive thromboxane-prostanoid (TP) receptor antagonist 
SQ29548 also significantly inhibited serotonin-induced 
contraction (P = 0.001 vs. serotonin alone of non-MetS 
control, P = 0.002 vs. serotonin alone of MetS, Fig. 4). 
Finally, there were significant differences in the vasocon-
strictive responses to serotonin compared to the relative 
degree of change induced by the selective COX, PLA2, and 
TP receptor inhibitors between control (lean) and MetS 
groups, respectively (P < 0.05 vs. Lean alone, Figs. 2, 3, 
4).

Fig. 2   Administration of the PLA2 inhibitor quinacrine (10−6  M) 
significantly inhibited serotonin (5-HT)-induced contraction in both 
the non-MetS control (lean, a) and MetS vessels [*P < 0.05 vs. 5-HT 

alone of non-MetS control (lean, a) or vs. 5-HT alone of MetS (b)]; 
#P < 0.05 versus non-MetS control (lean)

Fig. 3   Administration of the COX inhibitor indomethacin (Indo) 
significantly reduced serotonin (5-HT)-induced contraction in both 
the non-MetS control (lean, a) and MetS vessels (b) (*P < 0.05 vs. 

5-HT alone of non-MetS control (lean) or vs. 5-HT alone of MetS). 
#P < 0.05 versus non-MetS control (lean)
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Protein expression of PLA2, TXA2 synthase, and TP 
receptors in the pig myocardium

There were no significant differences in the tissue levels of 
PLA2, between the control lean and MetS groups (Fig. 5). 
However, MetS exhibited significant increases in tissue lev-
els of TXA2 synthase and TP receptors (P < 0.05 vs. lean, 
Fig. 5), respectively.

PLA2 activity

MetS significantly increased the PLA2 activity in the LV 
myocardium compared with normal diet control group (lean) 
(P < 0.05, Fig. 5c).

Discussion

There are a number of novel findings in the current study. 
First, early stage of MetS caused an increased contractile 
response of coronary arterioles to serotonin in the juvenile 
pig. Second, the enhanced responses to serotonin were sig-
nificantly prevented in the presence of PLA2, COX, and 
TXA2 inhibitors. Finally, MetS induced activation of PLA2, 
and protein overexpression of TXA2 synthase/TXA2 recep-
tors of heart tissue in the juvenile pigs.

MetS impairs endothelium-dependent relaxations to 
several platelet-derived substances in coronary microvas-
culature [10, 12]. MetS also markedly alters the response 
of coronary microcirculation to serotonin and TXA2 in a 
monkey model [12]. In most blood vessels, if the smooth 
muscle cells are exposed to serotonin, vasoconstriction 
occurs following activation of 5-HT receptors [15, 16]. We 

have recently found that the coronary arteriolar contractile 
response to serotonin was further altered after chronic myo-
cardial ischemia in pigs with MetS [21, 22, 24, 25].

In the current study, we further observed that MetS with-
out myocardial ischemia significantly increased constriction 
of coronary arterioles to serotonin and the TXA2 analog 
U46619 in the juvenile pig. This finding indicates that early-
stage MetS may cause coronary arteriolar spasm, resulting 
in downregulation of myocardial perfusion.

The mechanisms responsible for serotonin-induced coro-
nary constriction have been studied by our group and other 
investigators [12, 15, 16, 21–23, 27]. We have previously 
found that myocardial ischemia/reperfusion causes PLA2 
expression/activation, which contributes to serotonin-
induced coronary vasoconstriction in patients after CP/
CPB and cardiac surgery [15, 16]. In the present study, we 
found that serotonin-induced coronary arteriolar constriction 
was prevented by the selective PLA2 inhibitor quinacrine, 
suggesting that activation of PLA2 contributes to serotonin-
induced vasoconstriction in the setting of early MetS.

High-fat diet alters lipid profiles, which may lead to a pro-
inflammatory state of the vascular wall and increases the risk 
of coronary heart disease. Changes in the arachidonic acid 
(AA) metabolism via COX may affect coronary function in 
MetS and obesity in a rodent model [23]. We have found that 
COX inhibition in pigs with chronic myocardial ischemia 
and hypercholesterolemia improves coronary microvascu-
lar function without effects on collateral-dependent territory 
[21, 22]. We and others have also demonstrated that diabetes 
and cardioplegic ischemia upregulate COX expression in the 
human myocardium and coronary microvasculature, which 
contributes to regulation of coronary microcirculation [15, 
16, 22, 24, 25]. The current study further demonstrates that 

Fig. 4   Pretreatment of the vessels with the selective thromboxane-
prostanoid (TP) receptor antagonist SQ29548 significantly dimin-
ished serotonin (5-HT)-induced contraction (*P < 0.05 vs. 5-HT alone 

of non-MetS control (lean), or vs. 5-HT alone of MetS). #P < 0.05 
versus non-MetS control (lean)



62	 Molecular and Cellular Biochemistry (2019) 461:57–64

1 3

serotonin-induced vasoconstriction was enhanced in the 
MetS microvessels and inhibited in the presence of the COX 
inhibitor indomethacin in the non-ischemic heart tissue/ves-
sels, suggesting that MetS regulation of serotonin induced 
constriction via activation of COX in the juvenile pigs.

Arachidonic acid is mainly metabolized to vasocon-
strictor prostanoids, including TXA2 via COX in coro-
nary arterioles from animals and humans [15, 16, 22–25]. 
We and others have previously reported that diabetic and 
ischemic upregulation of TXA2 contributes to modification 
of coronary arteriolar vasodilation and vasoconstriction in 
humans [15, 16, 22–25]. A high-fat diet impairs tissue per-
fusion in ischemic myocardium of naproxen-treated swine 
by shifting the prostanoid balance to favor production of 
TXA2 over PGI2 [22, 24, 25]. Furthermore, in the present 
study, we observed that the selective TP receptor inhibitor 
markedly diminished the coronary arteriolar contraction 
to serotonin in the pig model of MetS alone in the absence 
of chronic myocardial ischemia and drug pretreatment. In 

support of our physiological study, we also observed that 
early-stage MetS is associated with increased PLA2 activ-
ity protein expression of TXA2 synthase and TP receptors 
in the pig heart tissues.

Impaired microvascular insulin signaling may develop 
before overt indices of microvascular endothelial dys-
function and represent an early pathological feature of 
adolescent obesity [26]. Microvascular insulin resistance 
and endothelial dysfunction in skeletal muscle, brain, and 
heart occur early in the development of juvenile obesity in 
pigs [26, 27]. In the current study, we further observed the 
enhanced vasomotor tone of the coronary microcircula-
tion in 5-month-old juvenile pigs with MetS. These novel 
findings suggest that coronary microvascular dysfunction 
is therefore an early manifestation of obesity/MetS and 
might contribute to the increased cardiovascular risk and 
can partially explain the reduced coronary flow reserve 
and increased minimal vascular resistance in patients with 
MetS. Thus, the present study paves the way for finding 

Fig. 5   a Representative immunoblots of pig left ventricular tissues. 
Lanes 1–8 loaded with 40 µg protein were developed for PLA2, TXA2 
synthase, and TP receptors; b Immunoblot band intensity and analy-

sis; c Bar graph showing cytosolic PLA2 (cPLA-2) activity of the pig 
myocardium in the 2 groups; n = 4–6/group; mean ± SD. *P < 0.05 
versus lean
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new strategies to improve prevention of complications of 
early pediatric obesity [28, 29].

In conclusion, these results indicate that MetS is associ-
ated with the increased contractile response of porcine coro-
nary arterioles to serotonin, which is in part via upregula-
tion/activation of PLA2, COX and subsequent TXA2. These 
novel findings suggest that the alteration of coronary arte-
riolar vasomotor function may occur during early stages of 
metabolic syndrome and juvenile obesity.
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