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Abstract
This work deals with the three-dimensional flow of nanofluid over a bi-directional exponen-

tially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nano-

particles are considered in the mathematical model. The temperature and nanoparticle

volume fraction at the sheet are also distributed exponentially. Local similarity solutions are

obtained by an implicit finite difference scheme known as Keller-box method. The results

are compared with the existing studies in some limiting cases and found in good agreement.

The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature dis-

tribution corresponding to some range of parametric values.

Introduction
Boundary layer flow due to an impulsive motion of a moving extensible surface is involved in
various industrial and technological applications such as metal and polymer extrusion, aerody-
namic extrusion of plastic sheets, glass blowing, crystal growing, paper production etc. Sakiadis
[1] has done the pioneering work on the boundary layer flow over a moving plate in a station-
ary ambient fluid. Crane [2] studied the Sakiadis problem for a stretching sheet and obtained a
closed form exact solution for the velocity distribution. Rajagopal et al. [3] considered the flow
of elasto—viscous fluid boundedby a stretching sheet. He concluded that rate of cooling of the
extruded polymer sheet is larger in viscoelastic fluid when compared with the viscous fluid.
Lawrence and Rao [4] extended this work for heat transfer characteristics. After these funda-
mental studies, stretching sheet problem in two- and three-dimensional flows has been exten-
sively studied by the researchers (see Grubka and Bobba [5], Banks [6], Chen and Char [7], Ali
[8], Pop and Na [9], Magyari and Keller [10],Liao [11,12], Xu et al. [13], Sajid et al. [14], Liu
and Anderson [15], Xu and Liao [16], Hayat et al. [17] and Junaid et al. [18]). These studies
were only confined to the flow over linearly stretching surfaces. However, in industrial
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applications mentioned above, the velocity of the extruded sheet may not be necessarily linear.
Keeping this in view, Magyari and Keller [19] considered the two-dimensional viscous flow
over caused by an exponentially stretching sheet. In this work, the surface heat transfer was
also exponentially distributed. Khan and Sanjayanand [20] examined heat transfer of viscoelas-
tic boundary layer flow over an exponentially stretching sheet and obtained an approximate
analytical solution. Homotopy analytic solutions for two-dimensional flow over an exponen-
tially stretching sheet with thermal radiation were presented by Sajid and Hayat [21]. Radiation
effects on the boundary layer flow of Jeffrey fluid above an exponentially stretching sheet were
described by Nadeem et al. [22]. Recently Liu et al. [23] provided an excellent numerical study
on the three-dimensional viscous flow past an exponentially stretching sheet.

Traditional heat transfer fluids such as water, ethylene-glycol, engine oil, lubricants etc. pos-
sess limited heat transfer capabilities due to their low thermal conductivity and are inadequate
to meet the modern cooling requirements. On the other hand metals possessextremely higher
thermal conductivity in contrast to the conventional heat transfer fluids. Masuda et al. [24] ini-
tially pointed out that viscosity and thermal conductivity of the liquids can be altered by using
nanoparticles (usually made up of metals, oxides, carbides andcarbon nanotubes) in the base
fluids. Choi and Eastman [25] have observed the unexpected increase in the thermal conductiv-
ity through the dispersion of nanoparticles in the base fluid. The enhanced thermal behavior of
nanofluids has vital importance in many industrial fields including power generation, trans-
portation, micro-manufacturing, micro-electronics, pharmaceutical processes,thermal therapy
for cancer treatment, chemical and metallurgical sectors, air-conditioning etc. In automobiles,
the application of nanofluids as coolants would allow for better size and positioning of the radi-
ators and hence this will require less energy for overcoming resistance on the road. Due to a
significant improvement in vehicle aerodynamics, there is higher demand for braking systems
with higher and more efficient heat dissipation mechanisms and properties such as brake
nanofluid. Researchers also suggested the use nanofluid based solar collectors for optimal ab-
sorption of solar radiations (see Trieb and Nitsch [26], Otanicar et al. [27] and Ladjevardi et al.
[28]). The magnetic nanoparticles are important in medicine, construction of loud speakers,
sink float separation, cancer therapy and tumor analysis. The thermal properties of magnetic
nanoparticles are also tunable through the variations in the magnetic field strength. It is also
pointed out recently that magnetic nanoparticles are injected into the blood vessels nearest to
the cancerous tissues [29].

In view of the above mentioned applications, Buongiorno [30] studied the convective trans-
port in nanofluids and concluded the Brownian motion and thermophoresis as the most im-
portant mechanisms for the abnormal heat transfer enhancement. Natural convective
boundary layer flows of nanofluids past a vertical flat plate were explored by Kuznetsov and
Nield [31] and Nield and Kuznetsov [32]. They derived the governing equations for nanofluid
flow through Buongiorno’s model. It is also evident that rate of cooling of the extruded poly-
mer sheet can be improved by using nanofluids. In this regard the classical problem of two-
dimensional flow over alinearly stretching sheet in the presence of nanoparticles was con-
ducted by Khan and Pop [33]. LaterMakinde and Aziz [34] revisited the work of Khan and Pop
[33] by considering convective boundary condition. Mustafa et al. [35] provided analytic solu-
tion for stagnation-point flow of a nanofluid by using homotopy analysis method (HAM).
Mustafa et al. [36, 37] used HAM to explore the two-dimensional exponentially stretching
sheet problem for nanofluids. Rana and Bhargava [38] discussed the flow of nanofluid over a
nonlinearly stretching sheet by finite element method. Bég et al. [39] numerically investigated
the unsteady MHDmixed convective boundary layer flow of a nanofluid induced byan expo-
nentially stretching sheet embedded in a porous medium. Numerical solution for nanofluid
flow past a stretching cylinder with non-uniform heat source was considered by Rasekh et al.
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[40]. Uddin et al. [41] discussed thesteady two-dimensional MHD free convective boundary
layer flow of an electrically conducting nanofluid past a vertical flat plate with Newtonian heat-
ing boundary condition. Ashorynejad et al. [42] investigated nanofluid flow over stretching cyl-
inder in the presence of magnetic field. Mustafa et al. [43] examined the unsteady boundary
layer flow of nanofluid past an impulsively stretching sheet by HAM. Exact analytic solutions
of unsteady convective heat transfer problem for various nanofluids have been derived by Tur-
kyilmazoglu [44]. Numerical solution for non-linear radiation heat transfer problem in nano-
fluids with an application to solar energy was computed by Mushtaq et al. [45]. Flow of
nanofluid due to a rotating disk was discussed by Turkyilmazoglu [46]. Magnetic field effects
on the flow of Cu-water nanofluid were discussed by Sheikholeslami et al. [47]. Safei et. al. [48]
discussed the heat transfer enhancement in nanofluids using nanotubes in forward-facing con-
tracting channel. Malvandi and Ganji[49]examined the flow of water or aluminum based nano-
fluids through circular channel with magnetic field. Mixed convection flow past a vertical
micro-channel was addressed by Malvandi and Ganji [50]. In another paper, Malvandi and
Ganji [51] forced convection flow of nanofluid in a cooled plate micro-channel was considered.
Karimipour et. al. [52]used lattice Boltzmann method to discuss the mixed convection of cu/
water nanofluid inside an inclined lid driven cavity.

To the best of our knowledge the three-dimensional flow of nanofluid over an exponentially
stretching sheet is not considered by the researchers. Thus currentwork is undertaken to extend
the flow analysis of Liu et al. [23] for nanofluid (by incorporating the combined effects of
Brownian motion and thermophoresis). Although we employ a similarity approach to non-
dimensionalize the problem but since coordinates x and y could not be eliminated from the di-
mensionless equations, the solutions are locally similar. Such kind of solutions can be used to
see the variation of parameters at fixed location above the stretching sheet (which is coincident
with the xy—plane). Recent studies concerned with the local similarity solutions of the bound-
ary layer equations can be found in refs. [53–59]. The equations are solvedfor the numerical so-
lutions by Keller-box method [60, 61]. Graphs are presented to investigate the underlying
physics of the problem.

Problem Formulation
Consider the steady three-dimensional incompressible boundary layer flow of nanofluid over a
sheet stretched exponentially in two lateral directions. The sheet is located at z = 0 and the flow

is confined to z� 0. LetUwðx; yÞ ¼ U0e
xþy
L and Vwðx; yÞ ¼ V0e

xþy
L be the velocities of the

sheet along x—and y—directions respectively. The sheet is maintained at temperature

Twðx; yÞ ¼ T1 þ T0e
AðxþyÞ

2L while Cwðx; yÞ ¼ C1 þ C0e
AðxþyÞ

2L is the nanoparticle volume fraction at
the sheet where T1 and C1are the ambient values of temperature and nanoparticle volume
fraction respectively (see Fig. 1). Under the usual boundary layer assumptions, the equations
governing the conservations of mass, momentum, energy and nanoparticles mass are(see Liu
et al. [23], Kuznetsov and Nield [31], Khan and Pop [33] etc.)
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where u,v and w are the velocity components along the x-, y- and z—directions respectively,
v is the kinematic viscosity, T is the fluid temperature, C is the nanoparticlevolume fraction, α
is the thermal diffusivity, DB is the Brownian diffusion coefficient, DT is the thermophoretic
diffusion coefficient and τ (= (ρc)p/(ρc)f) is the ratio of the effective heat capacity of the nano-
particle material to the effective heat capacity of the base fluid(see Table 1). The boundary con-
ditions for the considered problem are:

u ¼ Uwðx; yÞ; v ¼ Vwðx; yÞ;w ¼ 0;T ¼ Twðx; yÞ;C ¼ Cwðx; yÞ at Z ¼ 0;

u ¼ 0;T ! T1;C ! C1asz ! 1; ð6Þ

Using the following dimensionless variables [23]
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Fig 1. Physical configuration and coordinate system.

doi:10.1371/journal.pone.0116603.g001
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Equation (1) is identically satisfied and Equations (2)−(7)take the following forms

f ‴ � 2ðf 0 þ g 0Þf 0 þ ðf þ gÞf @ ¼ 0; ð8Þ

g‴ � 2ðf 0 þ g 0Þg 0 þ ðf þ gÞg@ ¼ 0; ð9Þ

1

Pr
y00 � A ðf 0 þ g 0Þyþ ðf þ gÞy0 þ Nb�

0y0 þ Nty02 ¼ 0; ð10Þ

�@ � ScA ðf 0 þ g 0Þ�þ Scðf þ gÞ�0 þ Nt

Nb

y@ ¼ 0; ð11Þ

f ð0Þ ¼ gð0Þ ¼ 0; f 0ð0Þ ¼ 1; g0ð0Þ ¼ l; yð0Þ ¼ 1; �ð0Þ ¼ 1; f 0ðþ1Þ ! 0; g0ðþ1Þ
! 0; yðþ1Þ ! 0; �ðþ1Þ ! 0; ð12Þ

where λ = V0/U0 is the velocity ratio, Nb = τDB(Cw − C1)/v the Brownian motion parameter,
Nt = τDT(Tw − T1)/T1v is the thermophoresis parameter, Pr = v/α is the Prandtl number,
Sc = v/DB is the Schmidt number. The quantities of practical interest are the skin friction coeffi-
cients Cfx,Cfy and local Nusselt number Nux defined below:
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tzx

1
2
rU2

0

;Cfy ¼
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1
2
rV2

0

;Nu ¼ xqw
kðTw � T1Þ

; Sh ¼ xjw
DBðCw � C1Þ

; ð13Þ

Table 1. List of symbols.

(x, y, z) Cartesian coordinate system Sh local Sherwood number

u, v, w velocity components along the x-, y-,
z- directions

qw wall heat flux

Uw, Vw velocity of the stretching sheet along
x- and y- directions

jw wall mass flux

T fluid temperature DB Brownian diffusion coefficient

Tw wall temperature DT thermophoretic diffusion coefficient

T1 ambient fluid temperature Nb Brownian motion parameter

C nanoparticle volume fraction Nt thermophoresis parameter

Cw nanoparticle volume fraction at wall ’ 1st order derivative with respect to η

C1 ambient nanoparticle volume fraction ” 2nd order derivative with respect to η

U0, V0, T0, C0 positive constants ‴ 3rd order derivative with respect to η

L reference length Greek symbols

A temperature exponent parameter τ ratio of effective heat capacity of the nanoparticle
material to that of the base fluid

Cp specific heat of the nanoparticle material v kinematic viscosity

Cf specific heat of the base fluid α thermal diffusivity

Pr Prandtl number η similarity variable

SC Schmidt number λ ratio of the stretching rates

f, g dimensionless x- and y- components of
velocity

μ dynamic viscosity

Re local Reynolds number ϕ dimensionless nanoparticle volume fraction

k thermal conductivity ρ density of the fluid

Cfx, Cfy skin friction coefficient along x- and y-
direction

τwx, τwy wall shear stress along x- and y- direction

Nu local Nusselt number θ dimensionless temperature

doi:10.1371/journal.pone.0116603.t001
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where τwx and τwy are the wall shear stress along the x- and y- directions respectively, qw is the
wall heat flux and jw is the wall mass flux. These are as under:
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Using the dimensionless variables (7), Equation (13) becomes
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Table 2. Comparison of values of wall temperature gradient θ’ (0)with previous studies for the case of regular fluidNb = Nt = 10–5when λ = 0.

Pr A θ’ (0)

Magyari and Keller [19] Liu et al. [23] Present (Keller-Box)

1 -1.5 0.377413 0.37741256 0.377393

0 -0.549643 -0.54964375 -0.549641

1 -0.954782 -0.95478270 -0.954763

3 -1.560294 -1.56029540 -1.560175

5 -1.5 1.353240 1.35324050 1.353250

0 -1.521243 -1.52123900 -1.521662

1 -2.500135 -2.50013157 -2.500653

3 -3.886555 -3.88655510 -3.886678

10 -1.5 2.200000 2.20002816 2.200456

0 -2.257429 -2.25742372 -2.259142

1 -3.660379 -3.66037218 -3.662782

3 -5.635369 -5.62819631 -5.630445

doi:10.1371/journal.pone.0116603.t002

Table 3. Numerical values of wall temperature gradient θ’ (0)in the case of regular fluid (Nb =Nt = 10-5). Paranthesis show the corresponding re-
sults of Liu et al. [23].

λ Pr θ’ (0)

A = −2A A = 0 A = 5

0.0 0.7 0.6235675 -0.42582871 -1.641474

(0.62361839) (-0.42583804) (-1.64165922)

7 5.9319133 -1.8474565 -5.8975891

(5.94094442) (-1.84660569) (-5.89780378)

0.5 0.7 0.76367407 -0.52152683 -2.0102735

(0.76378454) (-0.52154103) (-2.01061361)

7 7.2596204 -2.2631841 -7.2229124

(7.27614126) (-2.26162085) (-7.22330493)

1.0 0.7 0.88177213 -0.6022019 -2.3211331

(0.88194314) (-0.60222359) (-2.32165661)

7 8.3764364 -2.6139021 -8.3401528

(8.40176423) (-2.61149481) (-8.34075409)

doi:10.1371/journal.pone.0116603.t003
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where Re = U0L/v is the local Reynolds number. The z− component of velocity at far field
boundary can be expressed as below:

wðx; y;1Þ ¼ � n
L

ffiffiffiffiffi
Re
2

r
e
ðxþyÞ
2L ½f ð1Þ þ gð1Þ� ð16Þ

Numerical Results and Discussion
Keller box method has been widely applied for the solutions of boundary layer equations in
fluid mechanics. This method has several attractive features such as simplicity and ease of pro-
gramming, unconditional stability, second order accuracy and ability to use extrapolation as
step size approaches to zero. Moreover it applies in a simple fashion to both linear and non-lin-
ear differential equations. Unlike shooting method, it can also be applied for solving non-linear
partial differential equations. We solve the governing Equations (8)-(11) subject to the bound-
ary conditions (12)by using Keller-box method. A detailed description of the method can be
found in the book by Cebeci and Bradshaw [60]. The equations are transformed to first-order
system by using appropriate substitutions and then reduced to difference equations using cen-
tral difference. The resulting algebraic equations are linearized by using Newton’s method and
written in matrix-vector form. At the end, the linear system is solved by using block-tridiagonal
elimination technique. For the validation of numerical procedure, the results are compared
with Magyari and Keller [19] and Liu et al. [23] inthe case of regular fluid. The numerical val-
ues are in decent agreement as can be seen from tables 2 and 3. Fig. 2 shows the profiles of di-
mensionless x- and y-components of velocity for different values of velocity ratio λ. An

Fig 2. Variation in the velocity fields with λ.

doi:10.1371/journal.pone.0116603.g002

Exponentially Stretching Sheet in Nanofluid

PLOS ONE | DOI:10.1371/journal.pone.0116603 March 18, 2015 7 / 18



augmentation in λ indicates a larger stretching rate in the y-direction and thus the velocity in
the y-direction increases whereas the velocity in the original stretching x-direction decreases
correspondingly. In this Fig. λ = 0 corresponds to the two-dimensional flow case (previously
reported by Mustafa et al. [36]). Fig. 3 indicates that shear stress in both the x-and y- directions
increase with an increase in λ. As a result the entrainment velocity f(1)+g(1)is also an in-
creasing function of λ. Thus an increase in λ is expected to enhance the intensity of cold ambi-
ent fluid towards the hot fluid closer to the sheet which decreases the temperature in the
vicinity of the sheet.

Fig. 4 shows the variation in temperature distribution with an increase in parameters Nb
and Nt. Brownian motion is the randommotion of small colloidal particles suspended in a
fluid, caused by the collision of the fluid molecules with the particles. For thermophoretic effect
the motion of particles occurs due to the temperature gradient towards a cold surface and away
from a hot one. An increase in the Brownian motion effect yields significant movement of
nanoparticles which gives rise to the fluid kinetic energy and hence temperature increases. The
difference in the temperature θ with Nb is similar for any considered value of Nt. Thermal
boundary layer thickens when both Nb and Nt are simultaneously increased. Fig. 5 perceives
the effects of Pr and Sc on temperature θ. For small Prandtl number fluids such as electrolyte
solution the thermal conduction is dominant compared to convection. However, in high
Prandtl number fluids such as water, ethylene glycol, engine oil etc. the convectionis effective
in transferring energy from the sheet, compared to pure conduction. It may be noted here that
values of Pr between 6 and 13 are for Al2O3 /water nanofluid (seeMaïga et al. [62] for details).
Schmidt number is the analog of Prandtl number for mass transfer. It is observed that increas-
ing values of Prcorresponds to weaker thermal diffusivity and thinner thermal boundary layer.

Fig 3. Variations in wall shear stresses and entrainment velocity with λ.

doi:10.1371/journal.pone.0116603.g003
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This reduction accompanies with the bigger rate of heat transfer at the sheet. It is also noticed
that temperature distribution only deviates near the stretching sheet when Sc is increased.
Fig. 6 depicts the influence of velocity ratio λ on the temperature distribution for different val-
ues of temperature exponent parameter A. We notice that temperature θ decreases with an
increase in λ for any considered value of A. In contrast to the problem of regular fluid [23],
A = −1A does not correspond to the adiabatic case (which indicates no heat transfer between
the sheet and the fluid) due to the presence of two additional effects in the energy equation. In
fact, for A = −1, the profiles exhibit a reverse heat flow near the stretching sheet by forming
“Sparrow—Gregg-type hill” (SGH).

Fig. 7 elucidates the Brownian motion and thermophoresis effects on the nanoparticle vol-
ume fraction ϕ. Increasing values of Nt indicatesstronger thermophoretic force(due to tem-
perature gradient) which shifts the nanoparticles from the hot sheet to the quiescent fluid
thereby increasing the nanoparticle volume fraction boundary layer. Interestingly the increase
in ϕ with Nt reduces when the Brownian motion effect intensifies i.e when Nb changes from
0.1 to 0.3. Fig. 8 shows the simultaneous effects of velocity ratio λ and temperature exponent A
on the nanoparticle volume fraction boundary layer. Irrespective of the chosen value of A, ϕ in-
creases as we move from unidirectional stretching sheet problem to the bidirectional one. Fur-
ther volume fraction ϕ is a decreasing function of A. In other words an increase in the
temperature and concentration distributions across the sheet results in the less penetration
depth for ϕ. Fig. 9 shows the nanoparticle fractiondistribution ϕ for different values of Sc and
Pr. It is found that bigger values of Sc indicates a weaker Brownian diffusion coefficient DB

and hence it corresponds to thinner concentration boundary layer. The profiles indicate the oc-
currence of SGH (even for positive values of A)when the Prandtl number is sufficiently large

Fig 4. Effect of Nb andNt on θ.

doi:10.1371/journal.pone.0116603.g004
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Pr� 5. A minor decrease in ϕ with an augmentation in Pr is found just away from the
stretching surface.

The combined behavior of Brownian motion and thermophoresis parameters on the re-
duced Nusselt number Nur can be described from the Fig. 10. For some fixed value of λ, the
surface heat transfer rate (|θ0(0)|) decreases with an enhancement of Brownian motion and
thermophoresis effects. On the other hand |θ0(0)| is an increasing function of λ for any chosen
value of Nb and Nt. Fig. 11 shows the variations in Nur with an increase in Pr and Sc. Increasing
values of Pr corresponds to an increase in the wall slope of temperature function (earlier seen
in Fig. 4) which eventually enhances the rate of heat transfer from the sheet. Moreover there is
a decrease in Nur with an increase in Sc and this reduction is negligible for sufficiently large
Schmidtnumber (Sc� 5). Figs. 12 and 13 plot the data given in Figs. 10 and 11 for different val-
ues of temperature exponent A by keeping λ fixed. Here the reduced Nusselt number is nega-
tive for A = −1 which is an indicator of the heat flow from the fluid to the sheet (as also noticed
from Fig. 6). Figs. 14 and 15 are sketched to perceive the effects of different parameters on re-
duced Sherwood number Shr. For A� 0, bigger values of Nt corresponds to stronger thermo-
phoretic force which drives the nanoparticles from the hot surface to the quiescent fluid
thereby forming a nanoparticle free layer near the sheet. As a result Shr decreases with an in-
crease in Nur nd this reduction becomes significant when the Brownian motion strengthens.
On the other hand when A = −1 (i.e when there is reverse heat flow) the wall mass flux becomes
directly proportional to Nt for any chosen value of Nb. It is quite obvious from Fig. 5 that re-
duced Sherwood number escalates when Sc is increased for positive values of A and opposite
trend is noticed for A� −1.

Fig 5. Effect of Pr and Sc on θ.

doi:10.1371/journal.pone.0116603.g005
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Fig 6. Effect of A and λ on θ.

doi:10.1371/journal.pone.0116603.g006

Fig 7. Effect of Nb andNt on ϕ.

doi:10.1371/journal.pone.0116603.g007
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Fig 8. Effect of A and λ on ϕ.

doi:10.1371/journal.pone.0116603.g008

Fig 9. Effect of Pr and Sc on ϕ.

doi:10.1371/journal.pone.0116603.g009
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Fig 10. Effect of λ,Nb andNt onNur.

doi:10.1371/journal.pone.0116603.g010

Fig 11. Effect of λ, Pr and Sc onNur.

doi:10.1371/journal.pone.0116603.g011
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Fig 12. Effect of A,Nb andNt onNur.

doi:10.1371/journal.pone.0116603.g012

Fig 13. Effect of A, Pr and Sc onNur.

doi:10.1371/journal.pone.0116603.g013
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Fig 14. Effect of A,Nb andNt on Shr.

doi:10.1371/journal.pone.0116603.g014

Fig 15. Effect of A, Pr and Sc on Shr.

doi:10.1371/journal.pone.0116603.g015
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Conclusions
A numerical study is presented for the three-dimensional flow of nanofluid driven bya bi-
directional exponentially stretching sheet. The temperature and nanoparticle concentration at
the sheet are also exponentially distributed. The solutions are computed by an implicit finite
difference scheme known as Keller-box method. The important points of this work may be
summarized as follows:

1. The velocity increases in the y-direction and decreases in the x-direction when velocity ratio
λ is increased. The entrainment velocity (f(1)+g(1))is an increasing function of λ.

2. For some negative values of temperature exponent A, the profiles reveal “Sparrow—Gregg-
type hill” phenomenon. As a consequence, when A = −1, the behavior of parameters on the
wall temperature gradient is opposite to that accounted for A� 0.

3. Temperature θ increases when both Brownian motion and thermophoresis parameters in-
crease. However the rate of heat transfer from the sheet reduces when the strengths of
Brownian motion and thermophoresis effects are increased.

4. Nanoparticle fraction ϕ increases and rate of mass transfer from the sheet decreases when
Nt is increased.
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