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Biological as well as advanced artificial intelligences (AIs) need to decide which goals to

pursue. We review nature’s solution to the time allocation problem, which is based on a

continuously readjusted categorical weighting mechanism we experience introspectively

as emotions. One observes phylogenetically that the available number of emotional states

increases hand in hand with the cognitive capabilities of animals and that raising levels

of intelligence entail ever larger sets of behavioral options. Our ability to experience a

multitude of potentially conflicting feelings is in this view not a leftover of a more primitive

heritage, but a generic mechanism for attributing values to behavioral options that can

not be specified at birth. In this view, emotions are essential for understanding the mind.

For concreteness, we propose and discuss a framework which mimics emotions on

a functional level. Based on time allocation via emotional stationarity (TAES), emotions

are implemented as abstract criteria, such as satisfaction, challenge and boredom,

which serve to evaluate activities that have been carried out. The resulting timeline

of experienced emotions is compared with the “character” of the agent, which is

defined in terms of a preferred distribution of emotional states. The long-term goal of

the agent, to align experience with character, is achieved by optimizing the frequency

for selecting individual tasks. Upon optimization, the statistics of emotion experience

becomes stationary.

Keywords: emotion theory, feelings (emotions), theory mind, artificial intelligence, decision making

1. INTRODUCTION

Humans draw their motivations from short- and long term objectives evolving continuously with
new experiences (Huang and Bargh, 2014). Here we argue that this strategy is dictated in particular
by the fact that the amount of information an agent disposes about the present and the future state
of the world is severely constraint, given that forecasting is intrinsically limited by successively
stronger complexity barriers (Gros, 2012). Corresponding limitations hold for the time available
for decision making and for the computational power of the supporting hard- or wetware (Zenon
et al., 2019; Lieder and Griffiths, 2020), independently of whether the acting agent is synthetic or
biological. A corollary of this observation is that the time allocation problem, which goals to pursue
consecutively, cannot be solved by brute force computation. Instead, nature disposed us with an
emotional control system. It is argued, in consequence, that an improved understanding of the
functional role of emotions is essential for theories of the mind.
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Emotions have emerged in the last decades as indispensable
preconditions for higher cognition (Panksepp, 2004; Gros, 2010).
It has been pointed out, in particular, that the core task of an
emotional response is not direct causation of the type “fleeing
because one is afraid,” but the induction of cognitive feedback,
anticipation, and reflection (Baumeister et al., 2007). Being afraid
will in general not result in a direct behavioral reaction, but in the
allocation of cognitive resources to the danger at hand. If there
is chance, it is better to attempt to solve an existing problem.
It has been shown in this context that emotional and cognitive
processes form a tight feedback system in terms of emotional
priming of cognition (Beeler et al., 2014), and cognitive control
of emotions (Ochsner and Gross, 2005). Cognitive emotion
regulation (Inzlicht et al., 2015), such as the attempt to restrain
one’s desire for unhealthy food, is present to such a stage (Cutuli,
2014), that it can be regarded as a defining characteristics of our
species. The advanced cognitive capabilities that are paramount
to efficiently pursue a given goal, like winning a game of Go, will
hence leave their imprints also on the cogno-emotional feedback
loop (Miller and Clark, 2018).

On a neuronal level it has been observed (Pessoa, 2008)
that the classical characterization of brain regions as “affective”
and “cognitive” is misleading (Pessoa, 2019). The reason is
that complex cogno-emotional behaviors are based rather on
dynamic coalitions of networks of brain areas (Pessoa, 2018),
than on the specific activation of a single structure, such as
the amygdala (Phelps, 2006). The same holds for the neural
representations of the cognitive control mechanisms regulating
emotional responses, which are found to be distributed within
a network of lateral frontal, temporal, and parietal regions
(Morawetz et al., 2016).

The interconnection of cognitive and emotional brain states
suggests a corresponding dual basis for decision making (Lerner
et al., 2015). Logical reasoning would then be responsible to
analyze alternative choices, with the outcome of the different
choices being encoded affectively as values (Reimann and
Bechara, 2010). An equivalent statement holds for the weighting
of the associated risks (Panno et al., 2013), in particular when it
comes to long-term, viz strategic decision taking (Gilkey et al.,
2010). One feels good if a specific outlook is positive and certain,
and uneasy otherwise. The consequence is hence that intelligence
is needed to rationalize decision options, but that intelligence
alone, if existing in terms of a pure logical apparatus, cannot solve
the time allocation problem. Logic is not enough to decide which
long-term goals to pursue one after another. It has been argued,
in analogy, that self-control is intrinsically not a purified rational,
but a value-based decision process (Berkman et al., 2017).

The picture emerging is that the brain uses deductive and
other types of reasoning for the analysis of behavioral options, see
(Shepard and Metzler, 1971; Johnson-Laird, 2010; Papo, 2015),
and emotional states for the weighting of the consequences. One
observes that distinct types and combination of emotional states,
like anger, envy, trust, satisfaction, etc, are attributed to specific
types of behavioral options (Pfister and Böhm, 2008; Schlösser
et al., 2013), which implies that the number of emotional states
an agent needs for the weighting of its options increases hand
in hand with the complexity of decision making. A consequence

of this interrelation between emotional and cognitive complexity
shows up in daily life, to give an example, when it comes to
handle adversity effectively, which has been shown to benefit
from emotional diversity (Grossmann et al., 2019).

As an intriguing corollary of here discussed scenario we
note that an hypothetical artificial intelligence of human and
transhuman level should dispose, as a conditio sine qua non,
of a palette of emotional states containing ever finer shades of
states. Synthetic emotions would be in this framework equivalent
to human emotions on a functional level, but not necessarily
in terms of corresponding qualia. The reason for the increased
emotional sensibility of advanced AIs is that the number
of available weighting categories has to match the increased
number of behavioral and cognitive options accompanying high
intellectual capabilities. The challenge to guarantee the long term
dynamical stability of the corresponding feedback loop between
motivations, goal selection and introspective cognitive analysis,
viz the task to control advanced AIs, will hence increase in
complexity with raising intelligence levels.

It has been observed that one obtains an improved level
of understanding if working principles for the brain are
not only formulated, but also implemented algorithmically
(Cauwenberghs, 2013; Hawkins, 2017). In this spirit we will
present, after discussing the relation between emotions and
feelings, a simple but operational cogno-emotional framework.
The goal is to show that the concept of emotional stationarity
allows to select varying timelines of subsequent tasks. Cognitive
abilities are in this view important to complete a given task, with
emotional values being responsible for task selection in first place.

For our discussion, a multi-gaming environment will be used
as a reference application. Within this protocol, agents have
two qualitatively different tasks. First to select what to do, the
time allocation problem at its core, and then to complete the
selected job. Having finished a game, say Go or chess, agents will
evaluate the acquired experience emotionally, with the timeline
of experiences shaping in turn the decision process of what to
do next.

1.1. Life-Long Utility Maximization
From the perspective of Darwinian evolution, life-long utility
maximization is directly proportional to the number of
offsprings. For most humans, this is nowadays not the goal,
if it ever has been. As mentioned before, we presume here
that the aim is instead to align character and experiences
and that this process is mediated by emotions. Support from
neuropsychological research will be discussed further below. As a
matter of principle one could imagine, alternatively, that life-long
utility maximization is achieved by calculating at any moment
the optimal course of action, while discounting the entirety of
future rewards. For a variety of reasons this is however not
possible, even if exceedingly large computational powers would
be at one’s disposal.

In machine learning, the scaling of performance with the
amount of dedicated resources has been investigated. Within
the domain of language processing, it has been shown that the
performance of deep-learning architectures scales as a power-
law of any of the three primary scarce resources, time, model-
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and training-data size (Kaplan et al., 2020), if not bottlenecked
by one of the others. It is good news that exponentially larger
amounts of resources are not needed to boost the performance
within a well specified application domain. The computational
demands needed by top deep architectures increases in contrast
exponentially with time (Agneeswaran, 2020), at a rate that
outpasses Moore’s law by far (Geifman, 2020). From the
perspective of complex systems theory (Gros, 2015), this is
not a surprise, given that state-of-the-art machine learning
architectures are applied to increasingly complex problems
and domains. For example, when forecasting horizons are
extended, the intrinsically chaotic nature of most complex
systems demands exponentially increasing computing times.
This difficulty has been termed “complexity barrier” (Gros, 2012).

In societies, complexity barriers arise in addition from the
need to predict and to interpret the behavior of the other
members, which is of course a reciprocal task. Indeed, the “social
brain hypothesis” (Dunbar, 2009) states that a core evolutionary
driver for the development of our brains has been the need
to deal with the complexity of human social systems, with the
latter evolving in parallel with increasing brain sizes. From an
evolutionary perspective, a cognitive intra-species arms race with
progressively increasing computational resources leads to a “red-
queen phenomenon” Dieckmann et al. (1995), namely that it
takes “all the running to stay in place.” These two factors, the
eventual occurrence of an intra-societal cognitive arms race, and
the intrinsic complexity of the environment, makes it impossible
to predict the future via brute force computations, in particular
for the purpose to maximize life-long utilities. It is to be seen if
an analogous line of arguments holds for societies of advanced
artificial intelligences.

2. EXPERIENCING EMOTIONS AS
FEELINGS

Before delving further into the analysis of the functional role
of emotions, we take a step back and ask a deceivingly simple
question. Why do we have feelings in first place?

At any given point of time, a myriad of neural, chemical
and electrical processes take place in our brains. For the
overwhelming part, consciously we are however not aware of
what our supporting wetware is doing (Van Gaal and Lamme,
2012; Dehaene et al., 2014). In contrast, we are able to experience
as feelings (Wang and Pereira, 2016) the class of processes
corresponding to emotional states (Colibazzi et al., 2010). Why
then has evolution developed neural circuits allowing our brain to
experience feelings? The alternative would be that the functional
role of emotions would be performed by neural processes we
could not register consciously. In this case we would be akin to
what has been called at times a “zombie” (Koch and Crick, 2001),
viz a human-like being which is not aware of its emotional drives
(Winkielman and Berridge, 2004). A zombie would just go for the
food, when hungry, without being able to restrain itself. Defined
as such, zombies are not able to close the cogno-emotional
loop (Inzlicht et al., 2015; Miller and Clark, 2018), lacking the
capability to control emotions cognitively. The human condition

is based, in contrast, on emotional control as a defining trait.
This is the underlying reason why people with reduced impulse
control skills, e.g., when intoxicated or drunk, are considered
more often than not to be less accountable for their doings
(Penney, 2012), at times to the extent that they are exempted from
criminal liability.

It is presently not fully settled how we are able to experience
the feelings arising in conjunction to emotional brain states.
A series of experiments point in this regard to a feedback
loop involving the response of the body (Levenson, 2014).
The prospect would be that emotional brain states invoke
bodily reactions, like an increased heart-beating rate, that
would be transmitted back as “gut feelings” to the brain via
propriosensation (Nummenmaa et al., 2014), that is through
visceral and other peripheral sensors (Kreibig, 2010). Of interest
is here that the cortical region responsible for channeling the
afferent propriosensation, the anterior insular cortex, is fully
developed only in higher apes and hence phylogenetically young
(Craig and Craig, 2009). Animals unable of self recognition seem
to lack the spindle-shaped economo neurons characteristic of the
anterior insular cortex. Deactivating the brain regions allowing
us to sense our own body would bring us hence one step closer
to losing the ability to experience emotional states as feelings
(De Sousa, 2010). Given that evolution has taken care to equip
us with feelings, they must improve Darwinian fitness, entailing
hence important functionalities.

A vast number of studies has shown that emotional processes
regulate the attributing of values to stimuli (Cardinal et al., 2002)
and that they bind conceptual information through affective
meaning (Roy et al., 2012). Being able to experience these brain
processes consciously in terms of feelings is therefore a necessary
condition for the conscious control of the brain’s value system.
Feelings are in this view the keystone closing the feedback circle
between cognitive information processing and the emotional
value system. Our preferences and disinclinations would be fully
subconscious, and not controllable, if we would not be able to
perceive them introspectively as feelings. This line of arguments,
which relates the introspective experience of emotional states
to the ability to be aware of one’s own value system, is in our
view likely to be the rationale for the phylogenetic emergence
of feelings.

2.1. Emotions in Non-human Animals
Emotions are not unique to humans (LeDoux, 2012), but
functional states of the nervous system that can be studied across
species (Anderson and Adolphs, 2014; Perry and Baciadonna,
2017). An emerging consensus in the field is that animal and
human emotions have functional equivalent roles with regard
to decision making (Mendl and Paul, 2020). Going down the
phylogenetic tree, the decreasing complexity of the nervous
system entails however that the range of possible affective states
narrows progressively. For example, it has been observed that
fish may appraise environmental stimuli cognitively (Cerqueira
et al., 2017), that flies can express anxiety (Mohammad et al.,
2016), and that the decision-making behavior in bumblebees
seems analogous to optimism in humans (Perry et al., 2016), at
least on an operational level (Baracchi et al., 2017). It is however
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difficult to imagine that a fly could take pride in her doings, or
experience any other of the myriads of human emotional state
that obtain their significance from social context.

Humans are set apart from the other animals populating earth
not only because of their cognitive capabilities, but also because
of their ability to experience not just a few, but a vast variety
of emotional states. Studies of heartbeat perception tasks have
found, as discussed in the previous section, that the substrate for
subjective feeling states is provided by a phylogenetically young
brain region, the anterior insular cortex (Craig and Craig, 2009),
via a representation of evoked visceral responses (Critchley et al.,
2004). The anterior insular cortex plays however not only a
prominent role in the experience of emotions, but also in the
value attribution system, enabling behavioral flexibility (Ebitz
and Hayden, 2016; Kolling et al., 2016). During decision-making,
the dorsal anterior cingulate cortex is thought to regulate the
tradeoff between exploring alternative choices, and persistence.
A related viewpoint links the dorsal anterior cingulate cortex
to the allocation of computational resources to decision making
(Shenhav et al., 2016). From a somewhat philosophical point of
view one may hence ask whether it is a coincidence, a caprice of
nature (Gros, 2009), to say, that humans are at the same time the
most intellectual and the most emotional species (Mendl et al.,
2011; Maximino et al., 2015). It may alternatively be a conditio
sine qua non. Higher cognitive powers would be in the latter case
dependent on an equally evolved emotional system (Vitay and
Hamker, 2011).

3. AN EXEMPLARY COGNO-EMOTIONAL
FRAMEWORK

In the following we provide an example for a bare-bone
cogno-emotional architecture. The aim is to demonstrate
that our proposed concept, emotions as abstract evaluation
criteria, is valid in the sense that it can be implemented
algorithmically. No claims are made that the framework
examined, TAES (“time allocation via emotional stationarity”),
has direct correspondences to specific brain states or processes.
For illustrational purposes, an application scenario frommachine
learning is used (Rumbell et al., 2012; Jordan andMitchell, 2015).
Specifically, we discuss a multi-gaming environment, viz the case
that the agent, f.i. a machine-learing AI, decides on its own which
game to play next.

3.1. Multi-Gaming Environments
Modern machine-learning algorithms based on deep-neural nets
are able to play a large variety of distinct games (Schrittwieser
et al., 2020), such as Go, chess and Starcraft, or console games like
Atari. We consider a setup where the opponents may be either
human players that are drawn from a standard internet-based
matchmaking system, standalone competing algorithms, or
agents participating in a multi-agent challenge setup (Samvelyan
et al., 2019). Of minor relevance to the question at hand is
the expertise level of the architecture and whether game-specific
algorithms are used. A single generic algorithm (Silver, 2017),
such as standard Monte Carlo tree search supplemented by a

FIGURE 1 | Illustration of a general time-allocation framework. The different

options, here to play Go, to play chess and to chat, are evaluated emotionally

once completed, with the evaluation results feeding back into the decision

what to do next. TAES, time allocation via emotional stationarity, is a

specification of the general framework.

value and policy generating deep network (Silver et al., 2017),
would do the job. For our purpose, the key issue is not the
algorithm actually playing, but the question whether the process
determining which task to select, viz which game to play at any
given time, is universal. In particular, we demand that the task
selection process can be adapted in a straightforward manner
when the palette of options is enlarged, f.i. when the possibility
to connect to a chat room is added.

We stress that the framework introduced here, TAES,
is rudimentary on several levels. A fully developed cogno-
emotional feedback loop is not present, which is in part because
present-day agents are neither able to reflect on theirselves,
no to reason rationally on a basic level. TAES serves however
as an implementable illustration of emotional task selection
and evaluation.

3.2. Emotional Evaluation Criteria
In a first step one needs to define the qualia of the emotional states
and how they are evaluated, viz the relation of distinct emotions
to experiences. The following definitions serve as examples.

– Satisfaction.Winning a game raises the satisfaction level. This
could hold in particular for complex games, that is for games
that are characterized, f.i., by an elevated diversity of game
situations.

– Challenge. Certain game statistics may characterize a game
as challenging. An example would be games for which the
probability to win dropped temporarily precariously low.

– Boredom. Games for which the probability to win remains
constantly high could be classified as boring or, alternatively,
as relaxing. The same holds for overly long games.

The key point of above examples is that they can be implemented
algorithmically. Once a task is performed, which means that the
game is played till the end, the history of moves can be analyzed
and the game classified algorithmically along above emotional
criteria. See Figure 1 for an illustration.

The implementation of the evaluation procedure depends on
the computational framework used. Consider f.i. the generic
deep architectures AlphaGo (Silver et al., 2017) and AlphaZero
(Silver et al., 2018), which consist of layered networks with
two heads, one for the policy and one for the value, together
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with a Monte-Carlo tree search for valuable game positions.
For a given game position, the value head outputs an estimate
for the probability to win. A game could be classified hence
as boring when the chance to win, as predicted by the value
head, remains constantly high, say above 70%. The policy head
suggests likewise possible high yielding moves, which helps to
guide the generation of the Monte Carlo search tree. A tree
characterized by a single main stem proposes only a limited
number of possible good moves. A complex and widely branched
tree would in contrast be equivalent to a challenging situation,
with larger numbers of possible moves. An elevated frequency
of complex search trees would classify a game therefore as
challenging. These two examples of evaluation criteria abstract
from the semantic content of what the agents is actually doing,
a defining property. They are hence suitable to evaluate if any
full-information two-player game without random components,
the application domain of AlphaGo and AlphaZero, is boring
or challenging.

Emotions correspond to value-encoding variables, denoted
for above example with S, C and B, respectively for satisfaction,
challenge and boredom. Alternative emotional qualia would be
defined equivalently. It is important note to keep in mind that
the aim of our framework is to model the core functionality of
human emotions, but not necessarily their affective meanings,
which implies that it is not mandatory for the evaluation criteria
to resemble human emotions in terms of their respective qualia.
The latter is however likely to make it easier, f.i., to develop an
intuitive understanding of emotionally-driven robotic behavior.

3.3. Direct Emotional Drivings vs.
Emotional Priming
Standard approaches to modeling synthetic approaches often
assume that emotional state variables are explicit drivers of
actions (Rodríguez and Ramos, 2015), either directly or via a set
of internal motivations (Velsquez, 1997). This means that a state
variable corresponding f.i. to being ’angry’ would be activated
by specific events, with the type of triggering stimuli being hard
coded, viz specified explicitly by the programmer. Here we are
interested in contrast in frameworks that are generic, in the
sense that behavior is only indirectly influenced by emotional
states (Beeler et al., 2014). This implies, as illustrated in the
previous section, that emotional evaluation abstracts in its basic
functionality from semantic content.

Within TAES, the agent updates in a first step its experience.
For every type of activity, say when playing Go, the probability
that a game of this type is challenging, boring or satisfying is
continuously updated. It could turn out, e.g., that Go games are
typically more challenging and less boring than chess games.
Based on this set of data, the experience, the next game will be
selected with the aim to align experience as close as possible with
the “character” of the agent, which is defined in the following.

3.4. Aligning Experience With Character
We define the character CA of the agent as a preset probability
distribution of emotional states,

CA =
{

PS, PC, PB
}

, PS + PC + PB = 1 , (1)

where PS, PC, PB ≥ 0 are the target frequencies to experience a
given emotional state. The character is hence defined as the set
of individual preferences. Agents with large PC / PB would prefer
for example challenging / boring situations. The overall objective
function of the agent is to align experience with its character. This
means that agent aims to experience satisfying, challenging and
boring situations on the average with probabilities PS, PC and PB.

On a basic level, experience can be expressed as a set of N
probability distribution functions,

Eα =
{

pα
S , p

α
C, p

α
B

}

, α = 1, . . . ,N , (2)

where N is the number of possible activities (playing Go,
chess, connecting to a chat room,...). For every option α the
agent records, as illustrated in Figure 2, the probability pα

i for
the activity to be satisfying/challenging/boring (i = S/C/B).
Defining with qα the likelihood to engage in activity α, the overall
experience EA is given as

EA =
∑

α

qαE
α ,

∑

α

qα = 1 , (3)

where the Eα are defined in Equation (2). The global objective,
to align character CA and experience EA, can be achieved by
minimizing the Kullback-Leibler divergence between CA and
EA with respect to the qα . This strategy, which corresponds to
a greedy approach, could be supplemented by an explorative
component allowing to sample new opportunities (Auer, 2002).
Modulo exploration, an activity α is hence selected with
probability qα .

TAES is based on aligning two probability distribution
functions, EA and CA, an information-theoretical postulate that
has been denoted the “stationarity principle” (Echeveste et al.,
2015) in the context of neuronal learning (Trapp et al., 2018) and
critical brain activity (Gros, 2021). It states that not the activity
as such should be optimized, but the distribution of activities.
The resulting state is consequently varying in time, but stationary
with respect to its statistical properties. The underlying principle
of the here presented framework corresponds to “time allocation
via emotional stationarity” (TAES). Within this approach, the
character of the agent serves as a guiding functional, a stochastic
implementation of the principle of guided self-organization
(Gros, 2014).

3.5. Motivational Drives
Up to now we considered purely stochastic decision making,
namely that activities are selected probabilistically, as determined
by the selection probabilities qα . An interesting extension are
deterministic components corresponding to emotional drives.
Considering finite time spans, we denote with pi(Na) the relative
number of times that emotion i = S, C, B, ... has been
experienced over the course of the last Na activities. Ideally, the
trailing averages pi(Na) converge to the desired frequencies Pi,
see Equation (1). Substantial fluctuations may however occur, for
example when the agent is matched repeatedly to opponents with
low levels of expertise, which may lead to an extended streak of
boring games. The resulting temporary discrepancy,

Mi = Pi − pi(Na) , (4)
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FIGURE 2 | Aligning experience with character. Behavioral options (playing chess, playing Go, joining a chat) are evaluated along emotional criteria, such as being

satisfying (S), challenging (C) or boring (B). The corresponding probability distributions are superimposed with weights qα = q(α), where α ∈ {chess,Go, chat}. See

Equation (3). The goal is to align a predefined target distribution of emotional states, the character, with the actual emotional experience. This can be achieved by

optimizing the probabilities qα to engage in activity α.

between desired and trailing emotion probabilities can then be
regarded as an emotional drive. Stochastically, Mi averages out
for appropriate probabilities qα to select an activity α. On a
shorter time scales one may endorse the agent with the option to
reduce excessive values ofMk by direct action, viz by selecting an

activity β = Go, Chess, ... characterized by large/small pβ

k
when

Mk is strongly positive/negative. This is meaningful in particular

if the distribution {p
β
i } is peaked and not flat. Emotional drives

correspond to an additional route for reaching the overall goal,
the alignment of experience with character.

3.6. Including Utility Maximization
In addition to having emotional motivations, agents may want
to maximize one or more classical reward functions, like gaining
credits for wining games, or answering a substantial number of
questions in a chat room. Without emotional constraints, the
program would just select the most advantageous option, once
the available options have been explored in sufficient depth for
their properties, in analogy to the multi-armed bandit problem
(Vermorel and Mohri, 2005). An interesting constellation arises
when rewards are weighted emotionally, e.g., with the help of
the Kullback-Leibler divergence Dα between the character and
the emotional experience of a given behavioral option (Gros,
2015),

Dα =
∑

i

Pi log

(

Pi

pα
i

)

. (5)

Credits received from a behavioral option α that conforms
with the character of the agent, having a small Dα , would
be given a higher weight than credits gained when engaging
in activities characterized by a large Dα . There are then two
conflicting goals, to maximize the weighted utility and to align
experience with character, for which a suitable prioritization
or Pareto optimality may be established (Sener and Koltun,
2018).

Instead of treating utility as a separate feature, one
may introduce a new emotional trait, the desire to
receive rewards, viz to make money, and subsume utility
under emotional optimization on an equal footing.
Depending on the target frequency PU to generate
utility, the agent will select its actions such that the full
emotional spectrum is taken into account. A separate
weighting of utility gains, as expressed by (5), is then
not necessary.

4. DISCUSSION

Computational models of emotions have focused traditionally
on the interconnection between emotional stimuli, synthetic
emotions and emotional responses (Rodríguez and Ramos,
2015). A typical goal is to generate believable behavior of
autonomous social agents (Scherer, 2009), in particular in
connection with psychological theories of emotions, involving
f.i. appraisal, dimensional aspects or hierarchical structures
(Rodríguez and Ramos, 2015). Closer to the scope of the
present investigation are proposals relating emotions to learning
and with this to behavioral choices (Gadanho, 2003). One
possibility is to use homeostatic state variables, encoding
f.i. “well-being,” for the regulation of reinforcement learning
(Moerland et al., 2018). Other state variables could be
derived from utility optimization, like water and energy
uptake, or appraisal concepts (Moerland et al., 2018), with
the latter being examples for the abstract evaluation criteria
used in the TAES framework. One route to measure well-
being consist in grounding it on the relation between short-
and long-term trailing reward rates (Broekens et al., 2007).
Well-being can then be used to modulate dynamically the
balance between exploitation (when doing well) and exploration
(when things are not as they used to be). Alternatively,
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emotional states may impact the policy (Kuremoto et al.,
2013).

Going beyond the main trust of research in synthetic
emotions, to facilitate human-computer interaction and and
to use emotions to improve the performance of machine
learning algorithms that are applied to dynamic landscapes, the
question that has been asked here regards how an ever ongoing
sequence of distinct tasks can be generated by optimizing
emotional experience, in addition to reward. Formulated as a
time allocation problem, the rational of our approach is drawn
mainly from affective neuroscience (Gros, 2009), and only to
a lesser extent from psychological conceptualizations of human
emotional responses. Within this setting, the TAES framework
captures the notion that a central role of emotions is to serve
as abstract evaluation tools that are to be optimized as a set,
and not individually. This premise does not rule out alternative
emotional functionalities.

Emotions are considered to be grounded in “affect,” viz in the
brain states mediating pleasant and unpleasant arousal (Wilson-
Mendenhall et al., 2013). This seems at first a contradiction to
the notion that emotions correspond to “abstract” evaluation
criteria, as advocated here. It is worthwhile to point out in
this context that emotions are intrinsically related to “domain-
general” neural processes (Barrett, 2009; Chen et al., 2018),
and that moral judgments seem to recruit, on a related
note, domain-general valuation mechanisms on the basis of
probabilistic representations (Shenhav and Greene, 2010). One
can be frustrated when failing to perform while playing violin, to
illustrate this point, or when getting a ticket for driving too fast.
Frustration may arise, like any other emotional state, in highly
diverse domains. In this sense, domain-general processes and
valuation mechanisms can be termed to be abstract.

4.1. Testing of Functional Emotional
Frameworks
For living beings, capabilities are selected ultimately when they
contribute to evolutionary success. This holds in particular also
for emotional regulation. A closely related area is the formation
of moral preferences, an issue that is examined by a rapidly
growing body of game-theoretical approaches (Capraro and Perc,
2021). Engaging in seemingly unselfish behavior comes in this
viewwith personal benefits. In this context, rational choice theory
presumes that agents act rationally, given their personal resource
limitations and preferences (Dietrich and List, 2013).

Classical game-theoretical concepts can be tested using
suitable laboratory protocols (Camerer and Ho, 2015). Evidence
becomes somewhat more indirect when the direct maximization
of monetary utility is complemented by personal preferences
that are hypothesized to include moral components, like fairness
and retaliation (Fehr and Gächter, 2000). Testing conceptual
frameworks for game-theoretical settings in which moral
preferences are allowed to evolve is even less straightforward
(Chandan, 2016). This observation holds also for the here
proposed framework, TAES, in which preferences, f.i. to engage
in challenging tasks, may fluctuate strongly, being defined only

by their long-term average. Any protocol for testing emotional
frameworks will be bounded by this caveat.

Detailed testing protocols for TAES are yet to be developed.
They would be based in any case on a setting, in which
participants are given not one, but several different tasks to
perform. It would be up to the participants to select the relative
frequency, viz the number times they engage in any one of
the possible tasks. The individual tasks would be conceptually
similar, differing however quantitatively along several feature
dimensions. For example one task could be complex, but mildly
challenging, another seemingly simple, but somewhat difficult.
In order to include variability, one could include a simple but
strongly varying type of task. The timeline of task selection would
then be compared with a previously taken character evaluation
of the participant. The outcome of the experiment would be in
agreement with TAES if character and the statistics of the timeline
of actions would align.

5. CONCLUSIONS

The here developed concept, time allocation via emotional
stationarity (TAES), can be seen from two viewpoints. On
one side as a guiding hypothesis for studies of the brain.
TAES serves in this context as an example for the working
of emotions in terms of abstract evaluation criteria. On the
other side, TAES can be seen as a first step toward the
implementation of truely synthetic emotions, viz emotions that
mirror human emotion not only on a phenomenological, but on
a functional level.

Frameworks for synthetic emotions are especially powerful
and functionally close to human emotions if they can be
extended with ease along two directions. Firstly, as argued
in this study, when the protocol for the inclusion of new
behavioral options is applicable to a wide range of activity
classes. This is the case when emotions do not correspond
to specific features, but to domain-general evaluation criteria.
Essentially any type of activity can then be evaluated, f.i.,
as being boring, challenging, risky, demanding, easy, and so
on. It is also desirable that the framework allows for the
straightforward inclusion of new traits of emotions, such as
longing for monetary rewards.

Frameworks for the understanding of the emotional
system should be able to explain that humans dispose
of characteristic personalities (DeYoung and Gray, 2009;
McNaughton and Smillie, 2018). For theories of emotions
this implies that there should exist a restricted set of
parameters controlling the balancing of emotional states in
terms of a preferred distribution, the functional equivalent
of character. As realized by the TAES framework, the
overarching objective is consequently to adjust the relative
frequencies to engage in a specific task, such that the
statistics of the experienced emotional states aligns with
the character.

Human life is characterized by behavioral options, such
as to study, to visit a friend, or to take a swim in a
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pool, that have strongly varying properties and multi-variate
reward dimensions. It is hence questionable whether utility
optimization in terms of a univariate money-like credit, e.g.,
as for the multi-armed bandit problem, would suffice for
an understanding of human motivational drives. A resolution
of this conundrum is the concept of emotions as domain-
general evaluation criteria. In this perspective, life-long success
depends not only on the algorithmic capability to handle
specific tasks, but also on the alignment of experiences
and personality.
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