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Stochastic optimization on 
complex variables and pure-state 
quantum tomography
A. Utreras-Alarcón1,2, M. Rivera-Tapia1,2, S. Niklitschek1,3 & A. Delgado1,2*

Real-valued functions of complex arguments violate the Cauchy-Riemann conditions and, 
consequently, do not have Taylor series expansion. Therefore, optimization methods based on 
derivatives cannot be directly applied to this class of functions. This is circumvented by mapping 
the problem to the field of the real numbers by considering real and imaginary parts of the complex 
arguments as the new independent variables. We introduce a stochastic optimization method that 
works within the field of the complex numbers. This has two advantages: Equations on complex 
arguments are simpler and easy to analyze and the use of the complex structure leads to performance 
improvements. The method produces a sequence of estimates that converges asymptotically in mean to 
the optimizer. Each estimate is generated by evaluating the target function at two different randomly 
chosen points. Thereby, the method allows the optimization of functions with unknown parameters. 
Furthermore, the method exhibits a large performance enhancement. This is demonstrated by 
comparing its performance with other algorithms in the case of quantum tomography of pure states. 
The method provides solutions which can be two orders of magnitude closer to the true minima or 
achieve similar results as other methods but with three orders of magnitude less resources.

Optimization plays an important role in quantum information theory. Quantum tomography of an unknown 
pure state |ψ〉 can be formulated as the minimization of the Infidelity ψ φ= − |〈 | 〉|I 1 2 with respect to φ| 〉, where 
the minimizer is given by φ ψ| 〉 = | 〉1. Similarly, the geometric measure of entanglement2,3 of a pure n-partite state 
|ψ〉 is defined as the minimum value of I with respect to the set of separable pure states4. Bell-like inequalities5 are 
functions of a quantum state, pure or mixed, and of measurement settings, typically observables. The highest 
violation for a fixed state is obtained by maximizing with respect to the set of observables to be measured.

The previous examples correspond to the optimization of real-valued target functions that are natively defined 
on the field of the complex numbers. Interestingly, this problem is still far from a complete understanding. 
Real-valued functions of complex variables do not satisfy the Cauchy-Riemann conditions, that is, there exists 
no Taylor series for this class of functions. Consequently, optimization with respect to complex variables usually 
requires to split these into their real and imaginary parts followed by an optimization with respect to real vari-
ables. This procedure has two unwanted effects. First, in the case of Taylor series based optimization methods, 
the gradient of the target function to be optimized is calculated with respect to the real and imaginary parts. The 
elements of this real-valued gradient are in general more convoluted than would be those of a complex gradient 
formed by first order derivatives with respect to the initial complex variables, as for instance, in Wirtinger cal-
culus6. Second, any inherent structures present in the complex derivatives of the target function, which might 
be exploited to enhance the performance of optimization methods, are hidden. Thus, optimization methods 
designed to natively work on complex variables might lead to a performance improvement7. This is the case of 
neural networks, whose formulation on the field of complex numbers exhibits a performance boost8,9.

Here, we introduce the Complex simultaneous perturbation stochastic approximation (CSPSA), a numerical 
stochastic minimization method that can be directly applied to real-valued target functions of complex variables. 
These functions do not satisfy the Cauchy-Riemann conditions and, consequently, there exists no Taylor series 
for this class of functions.
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The method is based on an estimation of the Wirtinger complex gradient of the target function, which is sub-
sequently used to generate a sequence of complex estimates approaching the minimizer. Magnitude and direction 
of the gradient's estimate are calculated as the difference between the target function evaluated at two different 
points and as a complex vector whose components are randomly, independently generated, respectively. Thereby, 
all calculations are carried out within the field of complex numbers. The estimation of the complex gradient is 
asymptotically unbiased and the sequence of complex estimates converges to the solution of the minimization 
problem.

CSPSA enables the optimization of functions with unknown parameters, since the only input it requires are 
evaluations of the target function. For instance, in quantum tomography the value of the infidelity I can be 
obtained by measuring, on the system described by state |ψ〉, an observable that contains in its spectral decompo-
sition the state φ| 〉. Thus, we can obtain the values of I for any φ| 〉 as long as |ψ〉 is an unknown but fixed parameter. 
Determining the amount of geometric entanglement3,4 of an unknown state is also within reach of CSPSA. In this 
case the infidelity of an unknown multipartite pure quantum state is minimized with respect to the set of separa-
ble states, which requires the measurement of local observables. The violation of the Claus-Horne-Shimony-Holt5 
(CHSH) inequality with an unknown state, pure or mixed, can also be studied. In this case CSPSA maximizes the 
violation by driving the measurement bases to the optimal measurement setting.

CSPSA exhibits a large performance boost, in comparison to stochastic optimization algorithms for func-
tions of real variables. We show this by applying CSPSA to the tomography of pure quantum states. Extensive 
numerical simulations via random sampling show that CSPSA achieves values of the mean infidelity orders of 
magnitude smaller than the ones provided by Self guided quantum tomography (SGQT), a quantum tomographic 
scheme based on a stochastic minimization method for functions of real variables1. These simulations consider 
the same amount of resources for both methods, that is, number of equally prepared quantum systems and total 
number of measurement outcomes or, equivalently, number of iterations and evaluations of the target function. 
Consequently, CSPSA leads to a considerable reduction in the resources required to estimate an unknown pure 
quantum state and provides a clear indication that optimization on complex variables can lead to higher perfor-
mance methods. Furthermore, it has been shown that the use of resources by SGQT compares favorably to other 
quantum tomographic schemes10. Thus, CSPSA based quantum tomography provides a further improvement in 
the search for the efficient use of resources11–16 in the determination of quantum states.

Method
The problem of optimizing a real-valued function of complex variables →⁎ Cf z z( , ): , where the set C is given 
by  = = … … ∈ ×⁎ ⁎ ⁎C z z z zz z: {( , ) ( , , , , , ) }n

n n
n n

1 1  with n = 1, can be completely stated within the field of 
complex numbers. This requires the definition of Wirtinger derivatives6 ∂ = ∂ − ∂f f i f( )z x y

1
2

 and 
∂ = ∂ + ∂⁎f f i f( )z x y

1
2

, where = + ∈z x iy  and ∈x y, . The Cauchy-Riemann equations establish necessary 
and sufficient conditions for the existence of the complex derivative ′ = + ∆ − ∆∆ →f z f z z f z z( ) lim [ ( ) ( )]/z 0  
with ∈f z, . Given the function f(z) = u(x, y) + iv(x, y) of = + ∈z x iy  with x, y, u and ∈v , the 
Cauchy-Riemann conditions are ∂xu = ∂yv and ∂yu = −∂xv. Thus, in terms of the Wirtinger derivatives, the 
Cauchy-Riemann conditions are equivalent to ∂ =⁎f 0z , in which case the (standard) complex derivative f′(z) 
agrees with the definition of ∂zf. However, Wirtinger derivatives ∂zf and ∂ ⁎fz  might exist even when the 
Cauchy-Riemann conditions do not hold. For example, for f = |z|2 we have ∂zf = z* and ∂ ⁎fz  = z, while in this case 
the function f is non-holomorphic. Let us note that one of the advantages of Wirtinger derivatives is that they can 
be manipulated as real partial derivatives, where z and z* are treated as independent variables since ∂zz* = 0 = ∂z*z.

The search for stationary points of real-valued functions of complex variables cannot be carried out with the 
help of the standard complex derivative, which in this case does not exist. Therefore, the problem is studied at the 
level of the field of the real numbers by calculating the points at which the real gradient vanishes. Nevertheless, it 
is possible to define a complex vector gradient operator which allows for the search of stationary points easily and 
with mathematical rigor. For a complex-valued function f(μ) with µ = ∈⁎ Cz z( , ) n and an infinitesimal change 
δμ = (δz, δz*), the change δf in the value of the function f is given by17

δ δµ= ∂µf f( ) , (1)
t

with the complex-valued gradient operator ∂μ = (∂z, ∂z*) = (∂z1, …, ∂zn, ∂z1*, …, ∂zn*). In the case of a 
real-valued function f, we have that

δ δ= ∂ .⁎Rf f z2 [( ) ] (2)t
z

Thereby, stationary points are completely characterized by the vanishing of the gradient ∂ ⁎fz = 0 or, equiva-
lently, by ∂zf = 018,19. Furthermore, for a given magnitude of δz, the maximum increase in f arises when δz is in the 
direction of ∂ ⁎fz . This approach to the optimization of functions of complex variables, holomorphic or not, allows 
to keep all manipulations within the field of complex numbers as well as to obtain simpler expressions.

The Complex simultaneous perturbation stochastic approximation generates a sequence of estimates ẑk of the 
minimizer z of →⁎ Cf z z( , ): n , that is, = ∂ =   

⁎ ⁎
⁎fg z z z z( , ) ( , ) 0z . The estimate ẑk of z at the k-th iteration is 

updated according to the iterative rule

= −+ˆ ˆ ˆ ˆ ˆ⁎az z g z z( , ), (3)k k k k k k1

with ak a positive gain coefficient. Equation (3) resembles the Gradient (or Steepest) descent method, an iterative 
optimization algorithm for real functions of real variables that takes steps proportional to the negative direction 
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of the real-valued gradient. Instead, CSPSA is based on an estimation ĝk of the gradient g of f with respect to z*. 
The i-th component ĝk i,  of ĝk is calculated as

ε ε
=

+ − +

∆
+ + + − − −ˆ ˆ ˆ ˆ

ˆ
⁎ ⁎

⁎g
f f

c
z z z z( , ) ( ( , ) )

2
,

(4)k i
k k k k k k

k k i
,

, ,

,

with Δ= ±±ˆ ˆ cz zk k k k and ck a positive gain coefficient. The vector Δ ∈k
n is randomly generated and ε ±k ,  

describe the presence of noise in the values of ± ±ˆ ˆ⁎f z z( , )k k .
The estimation of g by means of evaluations of f becomes an advantage when g is not readily available. For 

instance, the evaluation of g is computationally resource intensive, g cannot be directly inferred from measure-
ments in real-time applications, the exact functional relationship between f and z is unknown, or f depends on a 
set of unknown parameters. The estimation gk̂ requires the evaluation of f at two different vectors ±ẑk  regardless 
of the underlying dimension of the optimization problem. These evaluations are carried out by simultaneously 
varying all components of the vector ẑk through the addition and subtraction of the randomly generated compo-
nents of the vector Δk. CSPSA also allows for the presence of noise in the evaluations of f, which might occur due 
to experimental inaccuracies in the acquisition of the values of f or due to finite sample size effects. Other optimi-
zation methods have similar properties, for instance Simultaneous perturbation methods (SPM)20 and the Finite 
difference stochastic approximation (FDSA)21, which unlike CSPSA work on the field of the real numbers. SPM 
and FDSA are employed to optimize real-valued functions f(x) with ∈x n and are based on the update rule 
xk+1 = xk − ak ĝk(xk), where ĝk(xk) is an estimation of the real-valued gradient ▽xf(xk). This estimation is calcu-
lated on a point xk, which is generated by means of a stochastic process. However, CSPSA maintains all calcula-
tions and updates of ẑk, f and ĝk within the field of complex numbers.

Stochastic optimization algorithms, such as SPM and FDSA, which are characterized by an iterative rule as in 
Eq. (3) but on the field of the real numbers, have been intensively studied22,23 and conditions to guarantee local 
convergence have been firmly established. This can be suitably extended to encompass optimization on the field 
of the complex numbers by means of CSPSA. This is introduced in detail in the Supplementary Information by 
means of two theorems. In particular, it is possible to show that the sequence − ẑ zk  as well as the conditional 
mean  |−ˆ ˆ ˆ ˆg z g z z( ) ( )[ ]k k k k  vanish asymptotically. Thereby, the sequence of estimates ẑk provided by Eq. (3) con-
verges almost surely to the minimizer z of the optimization problem and gk̂ defined by Eq. (4) is an asymptotically 
unbiased estimation of the gradient g of f. A property is satisfied almost surely if it is satisfied with probability one. 
Equivalently, the property does not hold for a null measure set.

Convergence and unbiasedness of CSPSA require conditions on Δk, ak, ck and f that can be fulfilled with par-
ticular choices. The components of Δk are independent and identically generated by selecting at each iteration 
with equal probability values in the set νe{ }i2 p  with p = 0, …, K such that ∑ =νe 0p

i2 p . There is still, however, a con-
siderable freedom in the choice of Δk which also allows for improving the rate of convergence. Our choice of Δk 
is given by νp = {0, π/4, π/2, 3π/4}. This corresponds to a vector in  n2  with vanishing components, which does 
not satisfy the conditions for the convergence of SPM and thus it cannot be employed as the direction of the esti-
mation of a real gradient. The gain coefficients ak and ck control the convergence of CSPSA and are chosen as

=
+ +

=
+

.a a
k A

c b
k( 1 )

,
( 1) (5)k s k r

This choice is also employed in SPM. The values of a, A, s, b and r are adjusted to optimize the rate of conver-
gence and depend on the target function. These are chosen in the case of CSPSA as the values which optimize 
the convergence of SPM in the asymptotic regime, that is, for a large number of iterations. Interestingly, these 
values lead to a much higher rate of convergence of CSPSA in the regime of a few iterations, when compared to 
SPM with standard (s = 0.602, r = 0.101, A = 0, a = 3, b = 0.1) or asymptotic (s = 1, r = 0.166, A = 0, a = 3, b = 0.1) 
gains. In the case of SPM, standard gains provide in the regime of a small number of iterations a faster conver-
gence than the asymptotic gains.

An unknown pure quantum state |ψ〉 can be completely determined by minimizing the infidelity 
ψ φ= − |〈 | 〉|I z z( ) 1 ( ) 2 with respect to the complex variables zi that define the known pure quantum state 

φ| 〉 = ∑ | 〉 ∑ | |z i zz( ) /i i i i
2 . The complex coefficients of state |ψ〉 entering in I(z) are considered to be unknown but 

fix parameters and the global minimum I = 0 is achieved when φ| 〉 = |ψ〉, for any |ψ〉. The optimization of I(z) by 
means of CSPSA, Eqs (3) and (4), requires at each iteration the values I(zk,±), which are experimentally obtained 
by projecting the system in the unknown state |ψ〉 onto a base containing the state φ| 〉±z( )k , . The values I(zk,±) are 
then estimated as 1 − nk,±/N where nk,± is the number of times the state φ| 〉±z( )k ,  is detected and N is the total 
number of detections. Thereby, the total number of available copies Ntot of the quantum system in the unknown 
state is distributed among the total number of experiments for estimating two values of I at each iteration and the 
total number of iterations k, that is, Ntot = 2Nk. Noise tolerance of CSPSA guaranties convergence even when 
projecting onto states slightly different than φ| 〉±z( )k , .

The optimization of the infidelity can also be carried out on the field of the real numbers. In this case, the com-
ponents of z are mapped onto the real numbers with the help of polar angles entering in hyper-spherical coordi-
nates and arguments of complex phases. The infidelity becomes I(x) and now is possible to apply an optimization 
algorithm in the SPM family, for instance the Simultaneous perturbation stochastic approximation (SPSA)24. 
This employs an estimation of the real gradient and is described by Eqs (3) and (4) but replacing the complex 
vector zk by the real vector xk. The components of Δk are independently and identically distributed and randomly 
selected from the set {+1, −1}. The application of SPSA to the determination of pure states has been introduced 
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in the literature as SGQT and experimentally demonstrated10. Since CSPSA and SPSA (or SGQT) require at each 
iteration of exactly the same number and type of measurements, they are a perfect match for a comparative per-
formance analysis.

Results
Figure 1 shows the mean infidelity Ī, obtained by sampling according to the Haar distribution an ensemble of 104 
pairs of unknown states and initial guess states, as a function of N and k for the quantum tomography of a single 
qubit via CSPSA and SPSA. CSPSA achieves for k = 100 a mean infidelity which is at least 1 order of magnitude 
smaller than SPSA for a fixed amount of resources Ntot. Thus, CSPSA clearly leads to an enhancement of the per-
formance. The best mean infidelity achieved by SPSA at k = 100 is I ̄≈ 5 × 10−4 with N = 104, that is, Ntot = 2 × 106. 
This mean infidelity value can be achieved by CSPSA at k = 40 with N = 102, that is, Ntot = 8 × 103. Thereby, CSPSA 
offers a performance comparable to SPSA but with a large reduction in the amount of resources. The inset in 
Fig. 1 reproduces our performance analysis by means of the median and the interquartile range for both methods, 
where CSPSA still exhibits a performance boost over SPSA. At this point we note that there is no known proof for 
the convergence of the median for SPSA or CSPSA. In the case of CSPSA median and mean infidelity exhibit close 
values while SPSA shows a large difference between these figures. This is an indication that SPSA produces an 
asymmetric distribution for the infidelity which is much wider than the one generated by CSPSA. Figure 2 shows 
the mean infidelity generated by CSPSA as function of the number of iterations and the dimension. To achieve a 
predefined mean infidelity the number of required iterations increases with the dimension. Numerical simula-
tions indicate that in the regime of a small number of iterations, that is, k ≤ 100, and for the inspected dimensions, 
that is, d ≤ 32, CSPSA surpasses SPSA, both in mean and in median.

CSPSA has other feasible applications to target functions with unknown parameters. For instance, the geomet-
ric measure of entanglement2 of a pure n-partite state |ψ〉 defined as ψ φ= − |〈 | 〉|φ| 〉E min (1 )sin

2
2 4, where the 

optimization is carried out onto the set of separable states φ φ φ φ| 〉 = | 〉 | 〉 …| 〉z z z( ) ( ) ( )n n1 1 2 2 . CSPSA can be 
employed, likewise quantum tomography via the optimization of I, to obtain the value of Esin2 for an unknown 
pure n-partite state by independently varying the local variables zi. Violation of Bell-like inequalities5 also provide 
an interesting application of CSPSA. These are functions of a quantum state ρ, pure or mixed, and of measure-
ment settings, typically observables. The maximal violation is obtained by optimizing with respect to the observ-
ables to be measured, which assumes the state ρ is known. If this is not the case, then we can apply CSPSA to the 
bases defining the observables in order to optimize the violation of the inequality. Thereby, the measurement of 
entanglement and the violation of Bell-like inequalities with unknown states can be implemented with the help of 
local measurements driven by CSPSA. The determination of ground state energy of complex physical systems25 
and the post-processing of quantum tomographic data via maximum-likelihood estimation26–28 are difficult opti-
mization problems due the large number of variables involved. Since CSPSA requires two evaluations of the target 
function independently of the number of complex variables, these problems might benefit from CSPSA. The 
utility of this methods goes beyond quantum mechanic and quantum information theory. Radio interferometric 

Figure 1.  Mean infidelity Ī, averaged over the Hilbert space with 104 pairs of unknown state and initial guess 
state, as function of the number k of iterations for single qubit quantum tomography via CSPSA (red continuous 
line) and SPSA (blue dashed line). Shaded areas indicate variance around mean. Inset exhibits median and 
interquartile range. From top to bottom red (blue) lines for N = 10, 102, 103 and 104. For CSPSA s = 1 and 
r = 0.166 and for SPSA s = 0.602 and r = 0.101. For both methods A = 0, a = 3 and b = 0.1.
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gain calibration29 is naturally stated as a non-linear least squares optimization problem onto the complex field. 
Here, for an interferometer array of antennas the measured pairwise visibilities dp q,  between antennas p and q are 
employed to estimate the values of the complex gains gp entering in the model = ⁎d g m gp q p p q q, ,  by optimizing the 
quantity ∑ | − |d dp q p q p q, , ,

2 with respect to the set of gains30, where where mp,q is the sky coherency. Other prob-
lems formulated in terms of optimization on the field of complex numbers are Coherent diffractive imaging31 and 
Multiple-input Multiple-out systems32.

Discussion
In summary, CSPSA allows to optimize real-valued functions of complex variables. This makes unnecessary to 
recast the problem as the minimization of a more convoluted function of real variables. CSPSA shares several 
properties with the family of SPM: no need to evaluate the gradient of the target function, a reduced number 
of evaluations of the target function, noise tolerance, asymptotic unbiasedness and convergence in mean to the 
minimizer. However, CSPSA can achieve a large performance enhancement when compared with methods within 
this family, as for instance SPSA. We show this at hand of an important problem: Tomography of pure quantum 
states. Here, CSPSA outperforms SPSA when employing the same resources, or provides a similar performance 
but with far less resources. Thus, CSPSA constitutes a clear indication that optimization methods formulated 
within the field of complex numbers can lead to higher performances and provides a guideline for generalizing 
other optimization methods to the field of complex numbers, such as for instance preconditioned gradient meth-
ods33. There are several scenarios where the performance of quantum tomography via CSPSA can be enhanced. 
For instance, CSPSA requires two values of the Infidelity at each iteration. These are obtained by projecting onto 
two orthonormal bases, which generates 2d − 2 probabilities. Only two of them are employed by CSPSA. It is 
thus possible that the concatenation of CSPSA to an inference method, such as maximum likelihood estimation 
or bayesian inference, leads to a further speed up of the convergence of the tomographic method. This a very 
interesting possibility. As Fig. (1) suggests, the mean Infidelity provided by CSPSA seems to enter into an asymp-
totic regime, that is, I ̄ ≈ α(d)/N, where α(d) is a function of the dimension d. A suitable choice of the inference 
method might lead to α(d) ≈ d − 1. Thereby, the tomographic method would reach the Gill-Massar lower bound 
for the estimation accuracy of pure states34–38. We have based the tomographic method on the measurement of 
the Infidelity. It is, however, possible to employ other metrics, such as, for instance, mean squared error, that 
can be measured in interferometric experiments. We can also consider an extension of the present results to the 
case of reconstructing unknown coherent states and Schrödinger cat states of the electromagnetic field, where 
the Infidelity can be measured as the probability of projecting a displaced coherent state onto the vacuum state. 
Finally, we mention that an experimental demonstration of CSPSA in higher dimensions is within reach of cur-
rent experimental setups11,39–41 based on single photons and concatenated spatial light modulators.
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