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Single-cell Transcriptome Mapping 
Identifies Common and Cell-type 
Specific Genes Affected by Acute 
Delta9-tetrahydrocannabinol in 
Humans
Ying Hu1, Mohini Ranganathan2,3, Chang Shu   2,3, Xiaoyu Liang   2,3, Suhas Ganesh2,3, 
Awo Osafo-Addo2,3, Chunhua Yan1, Xinyu Zhang   2,3, Bradley E. Aouizerat4,5, 
John H. Krystal2,3, Deepak C. D’Souza2,3 & Ke Xu2,3*

Delta-9-tetrahydrocannabinol (THC) is known to modulate immune response in peripheral blood 
cells. The mechanisms of THC’s effects on gene expression in human immune cells remains poorly 
understood. Combining a within-subject design with single cell transcriptome mapping, we report 
that THC acutely alters gene expression in 15,973 blood cells. We identified 294 transcriptome-wide 
significant genes among eight cell types including 69 common genes and 225 cell-type-specific genes 
affected by THC administration, including those genes involving in immune response, cytokine 
production, cell proliferation and apoptosis. We revealed distinct transcriptomic sub-clusters affected 
by THC in major immune cell types where THC perturbed cell-type-specific intracellular gene expression 
correlations. Gene set enrichment analysis further supports the findings of THC’s common and cell-type-
specific effects on immune response and cell toxicity. This comprehensive single-cell transcriptomic 
profiling provides important insights into THC’s acute effects on immune function that may have 
important medical implications.

With the increasing rates of cannabis use for recreational and medical purposes, it is important to address a gap 
in our understanding of its impact on immune and inflammatory functions1,2. Delta-9-tetrahydrocannabinol 
(THC), the principal psychoactive constituent of cannabis, powerfully modulates immune function in peripheral 
blood cells3, in part, through activating cannabinoid receptor 2 (CBR2)1,3–6. In vitro studies of cannabis exposure, 
which contains over 450 compounds, show that it modulates immune function7–10, changes cytokine produc-
tion8,11,12, inhibits cell proliferation2, and induces apoptosis13,14. However, little is known about the mechanisms 
of in vivo THC exposure on the transcriptomes of distinct types of peripheral blood mononuclear cells (PBMCs) 
in humans.

Single cell RNA-seq (scRNA-seq) offers an unprecedented resolution to detect drug effects on cell-specific 
gene expression15,16 and enables the evaluation of molecular aspects of immune cell heterogeneity17. Few studies 
have applied scRNA-seq to detect differentially expressed genes (DEGs) induced by drug exposure, and none have 
evaluated the effects of THC in humans. This limitation is due mostly to high inter-individual transcriptomic 
variability and types of cells that confound the assessment of the impact of environmental factors. Most recently, 
a scRNA-seq study identified a large number of common and cell-type-specific DEGs for Alzheimer disease, 
suggesting the improvement of analytical methods to overcome the challenge of high transcriptomic variability18. 
Here, we report the first scRNA-seq study using within-subject combined with linear mixed model (LMM) analy-
sis to detect genes affected by intravenous (IV) THC at single cell resolution. It is conceivable that other routes of 
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administration of THC, e.g., pulmonal inhalation or oral ingestion, may affect gene expression differently than IV 
THC. However, in this first study attempting to analyze the effects of cannabinoids on gene expression in humans, 
we chose to administer THC intravenously in order to control for a number of potential confounders such as 
inter- and intra-individual variability in the bioavailability of smoked cannabis or THC19–22.

Results
Single cell RNA-seq profiling identifies cell types and sub-cell clusters in peripheral blood mon-
onuclear cells (PBMCs).  In this study, samples of blood were drawn and PMBCs were extracted prior to 
(pre-THC) and 70 minutes following (post-THC) a single 0.03 mg/kg intravenous dose of THC in two healthy 
individuals. The selected THC dose reliably produces effects consistent with cannabis intoxication23,24. The tim-
ing of the blood samples was selected to maximize the likelihood of detecting changes in drug-induced gene 
expression. A battery of subjective and cognitive assessments was administered to capture the effects and safety 
of THC23,25,26 (See Methods).

We profiled the four PBMC samples (two pre-THC and two post-THC) on the 10X Genomics platform27. 
Quality control processing yielded a total of 15,973 cells and 21,430 genes for analyses (Fig. 1a). Before batch 
effect removal, cells (n = 15,973) were clustered by participant, not by experimental condition (Fig. 1b), indi-
cating that transcriptomic variability between individuals is greater than variability introduced by a single THC 
dose. We then removed batch effects using Seurat28 and surrogate variable analysis29 methods and all 15,973 cells 
clustered into 21 groups (Figs. 1c and S1). To assign cell clusters to cell types, we used a generalized linear model 
(GLM)-based cell mapping approach with cell-type “marker” genes curated from the literature (see Methods). 
Briefly, we selected a reference gene panel based on known cell-type-specific gene profiles27,30, then used GLM to 
test the association of gene expression in each cell with the known marker genes (Fig. S2, Table S1). Each cluster 
was assigned a cell type based on the highest percentage of significant cells (Table S2). Expression of marker 
genes differed significantly in cell types (Figs. 1d and S2). This approach deconvoluted the 15,973 cells among 
21 clusters into eight cell subtypes: CD4+ T-cells (34.6%), IL7RCD4+ T-cells (8.4%), CD8+ T-cells (17.4%), B 
cells (13.2%), natural killer (NK) cells (12.3%), CD14+ monocytes (10.0%), FCGR3A monocytes (3.9%), and 
dendritic cells (DC) (0.3%) (Fig. 1e). The proportions of each cell type among the participant samples pre- and 
post-THC infusion are presented in Fig. 1f and Table S3. This robust cell type identification allowed us to examine 
THC-regulated gene expression in each cell type.

Delta-9-tetrahydrocannabinol (THC) alters gene expression shared in multiple cell types 
of PBMCs.  We next applied LMM to detect individual genes affected by THC infusion, with participant 
included as a random variable to limit confounding effects by individual’s genomic background. We identi-
fied 294 transcriptome-wide significant genes in eight cell types affected by THC infusion (false discovery rate, 
FDR < 0.05) (Fig. 2a). DCs and FCGR3A monocytes were excluded from further analyses because no gene 
reached transcriptome-wide significance in DCs and both cell types had low cell numbers. Among the 294 DEGs, 
69 were observed in at least two cell types while 225 were significant in only one cell type (Fig. 2b; Tables S4–S11). 
Overall, THC infusion resulted in more upregulation than downregulation in gene expression.

We sought to identify THC-regulated genes common across the six common cell types. We found 28 DEGs 
in at least three cell types (Fig. 2c). The majority (89%) of the DEGs showed consistent directions of gene expres-
sion changes by THC in different cell types; only three genes displayed opposing direction in CD14+ monocytes 
compared to other cell types (TMSB4X, JUNB, TXNIP). A group of THC-regulated gene functions are in the 
domains of immune response and inflammatory process. For example, expression of S100A9 and S100A8, which 
play prominent roles in the regulation of proinflammatory processes and immune response31–33, decreased in 
response to THC infusion in five cell types. A major HIV-1 suppressive gene, CCL4, showed increased expression 
after THC infusion. THC decreased expression of GNLY that is involved in activating antigen presentation34. 
The altered expression of genes involved in humoral immunity were also observed (IGLC2, IGKC). Changes 
in expression of these genes suggest that THC activated the adaptive immune system shortly after administra-
tion, consistent with findings showing an immunomodulatory effect by THC and more complicated than solely 
immunosuppression3,8,35–38.

Among the 28 DEGs shared by at least three cell types, a subset of DEGs supports previous findings that acute 
THC exposure inhibits cell proliferation and induces apoptosis. Genes responsible for cell death were upreg-
ulated (BTG139, DDIT440, GZMB) and genes involving in cell growth and differentiation were down-regulated 
(TMSB1041, RPS2142, RPL4143 by THC exposure. The alteration of these genes in distinct cell types may indicate 
potentially deleterious effects of THC on cell differentiation and survival.

We carried out RT quantitative PCR (qPCR) in attempt to validate gene expression differences of common 
DEGs in at least four cell types using the PBMCs from the same blood samples. Using bulk RNA extracted from 
the PMBCs, we found that the fold changes of 13 DEGs were highly correlated between bulk PBMCs and CD8+ 
T-cells (r = 0.76, p = 0.002), and marginally correlated with CD4+ T-cells (r = 0.48, p = 0.09). Figure S3 is a 
heatmap showing the fold change of gene expression induced by THC by scRNA-seq in six cell types and the fold 
change of gene expression in bulk RNA by qPCR. This result suggests that THC altering gene expression in 13 
common genes is consistent between PBMCs and subtypes of cells. To compare fold changes of DEGs between 
CD8+ T-cells and PBMCs, we found that expression changes by THC in 9 out of 13 DEGs were concordant. 
Differential expression of pre- and post-THC in two genes, TMSB4X and MT-ND5, were in opposite direction 
between bulk RNA in PBMCs and scRNA-seq in CD8+ T-cells. Two genes, ID2 and ZFP36L2, were differentially 
expressed between pre-THC and post-THC by scRNA-seq method, but not by qPCR. Therefore, this experiment 
validates 70% of DEGs regulated by acute THC administration in PBMCs.

To explore potential mechanisms of THC-regulated gene expression of 294 genes, we performed upstream 
regulator analysis. We identified more than 2,000 genes that may be involved in regulating 294 gene expression, 
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Figure 1.  A flow chart illustrating the study design and data analysis strategy. (a) Two participants were 
infused with delta-9-tetrahydrocannabinol (THC). Blood samples were drawn before and 70 minutes after 
THC infusion. Peripheral blood mononuclear cells (PBMCs) were isolated from each sample and 5,000 cells 
subjected to single cell RNA-seq using the 10X Genomics platform (figure created with BioRender.com). (b) 
t-SNE plot showing cell transcriptomic clusters of 15,973 PBMCs in four samples pre- and post-THC infusion: 
pre-THC-S1; post-THC-S1; pre-THC-S2; and post-THC-S2. Cell number in each sample are presented. 
The plot indicates a batch effect by participants. (c) After removal of batch effects by participant, 15,973 cells 
were clustered into 21 groups by single cell transcriptomic profile. (d) Examples of differentially expressed 
marker genes in each cell cluster. The clusters with similar marker gene profiles in a given cell type were 
assigned to the same cell type: CD4+ T-cells Clu(2,3,8,13,15,16,19); IL7RCD4+ T-cells Clu(4); CD8+ T-cells 
Clu (1,7,18,20,21); B cells Clu(6,12,14); NK cells Clu(5) CD14+ monocytes Clu(10,17); FCGR3A monocytes 
Clu(9) DCs Clu(11). (e) Cell type identification by generalized linear modeling (GLM) cell mapping approach 
and t-SNE plot. A panel of reference genes for each cell type were selected from previously published studies. 
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including genes in cytokine, transcription regulation, signaling pathways (Table S12). Figure S5 presents an exam-
ple of inferred mechanistic TNF gene network involving in THC-regulated gene expression.

THC perturbs gene expression and KEGG-based gene network in unique cell type and sub-cell 
clusters.  Given that the majority of THC-regulated DEG are unique to each cell type, we then focused on 
DEGs and gene-gene networks in each cell type. DEGs were determined both in individual clusters in each 
cell type and among all clusters in each cell type. Here, we conducted a gene network analysis by leveraging 
gene-gene relationships cataloged in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database44. The 
rationale is to identify gene networks within the biologically known genes or pathways. Thus, the KEGG-based 
gene network is defined as the inferred gene-gene relationships by KEGG in each cell type. We constructed 
gene networks independently in pre- and post-THC samples in each cell type (FDR < 0.05). Hub genes in each 
cell-type based network were defined as a node (gene) with at least four edges (gene links) in at least one con-
dition (pre-, post-THC, or both). We then performed Gene Ontology (GO) term enrichment analysis for each 
cell-type-specific KEGG-based gene network (FDR < 0.05).

In CD4+ T-cells, significant DEGs are involved in cytotoxic T-cell activation (IL7R45), histone modification 
(H3F3B46), and transcriptional regulation (MYC47). We observed three cell sub-groups (cluster 3, 8, and 16; 
Fig. 3a; Table S13). Cluster 8 showed a distinct DEG pattern from clusters 3 and 16. KEGG-based gene network 
analysis identified 40 nodes with 33 edges enriched on 14 GO terms including immune response, cell surface 
receptor signaling pathway, cellular response to stimulus. Two hub genes in the network, CCR7 (significantly 
connected with CCR [CCR2, CCR6, CCR10] and CXCR [CXCR3, CXCR4] family genes) and HLA-A (significantly 
correlated with three other HLA genes [HLA-B, HLA-E, HLA-F], were significantly affected by THC infusion 
(Fig. 3b), showing that acute THC exposure perturbed gene-gene relationships in CD4+ T-cells and appears to 
increase the gene-gene statistical correlation involving cell-mediated immunity.

In CD8+ T-cells, we identified 18 unique DEGs that are involved in immune response and inflammation in 
response to THC (e.g. IL3248, SOCS149, and IRF150). Of note, THC infusion resulted in the differential expression 
of CXCR4, TSC22D3, DDIT4, BTG1, JUN in cluster 18 of CD8+ T-cells (Fig. 3c), suggesting that cells in cluster 18 
may function differently in response to THC as compared to the other CD8+ T-cell sub-group. The KEGG-based 
gene network included 35 nodes that enriched on 12 GO terms (e.g., immune system process), similar to the 
CD4+ T-cell network. One hub gene, HLA-A (strongly correlated with HLA-B and HLA-C in pre-and post-THC 
samples), was observed in the network (Fig. 3d; Table S14).

In B cells, genes unique to B cells were observed that are involved in B cell maturation (VPREB351), MHC 
function (HLA-DQA1, HLA-DQA2), calcium signaling (CALM252), Toll-like receptors (CD18053), and response 
to environmental stress via activating MAP kinase MAPK1/ERK2 (DUSP154). Consistent with in vitro findings, 
we found that acute THC exposure reduced expression of BCL2 in B cells45. The majority of DEG originated 
from cluster 14 (Fig. 3e; Table S15), with only 8 DEGs from cluster 12, which were all upregulated by THC. In 
the KEGG-based gene network, we found 34 nodes with 28 edges (Fig. 3f) enriched on GO pathways including 
MHC protein complex, immune response, peptide antigen binding. Four hub genes were identified that differed 
in response to THC (HLA-A and HLA-BQA1) HLA-DPA1 [became more strongly correlated with HLA-DQB1 
post-THC], ANX1 [connected to CXCL1, CXCR4, XOL2 in pre-but not post-THC samples]). Notably, two B cell 
marker genes (BLNK, CD79B) were correlated in post- but not pre-THC samples.

In NK cells, which is defined by one cluster, many DEGs (e.g. DDIT4, CCL4, BTG1 ID2) are involved in 
immune response and cell proliferation. One DEG unique to NK cells, CD53, was downregulated by THC. 
Genes in the NK cell network (17 nodes and 12 edges; Fig. 3g) were enriched on 17 pathways including 
chemokine-mediated signaling pathway, inflammatory response, and chemokine receptor activity. Notably, 
KLRC1 regulates specific humoral and cell-mediated immunity and is implicated in the recognition of the MHC 
class I HLA molecules in NK cells and was correlated with HLA-C, which increased in post-THC samples. No 
hub genes were observed.

In CD14+ monocytes, which were composed of two subgroups (cluster 10 and 17; Fig. 3h; Table S16), THC 
infusion resulted in unique 44 DEGs, including genes regulating cell fate (e.g. MCL1, FOSB, MYADM). Genes 
in the CD14+ monocyte KEGG-based gene network (18 nodes and 13 edges; Fig. 3i) were enriched on path-
ways including MHC class II protein complex, antigen processing, immune response, and cellular response to 
interferon-gamma. One hub gene, HLA-DQB1, was observed.

These observations from individual gene and KEGG-based gene networks in different cell types suggest a 
diverse functional response to acute THC exposure in heterogenous immune cells.

Significant pathways for all KEGG-based gene networks in each major cell type are presented in Tables S17–S22.

Common biological pathways including immune response and cell survival/apoptosis are asso-
ciated with THC administration.  We subsequently performed a cell-type based gene set enrichment 
analysis (GSEA). We found 39 significant KEGG pathways in at least two cell types (Fig. 4; Tables S24–S31); 
significant pathways were involved in the domains of immune response, inflammation, and cell survival and 

GLM tested the association of cell type and marker gene expression in each cell. Significance threshold is set at 
p < 0.01. Each individual cell is assigned to a cell type based on the predominant proportion of marker genes 
in a given cell type. Small cell clusters are merged into the closest cell type in the t-SNE plot. The cell mapping 
deconvolutes cells to eight PBMC cell types: CD4+ T-cells, ILR7+/CD4+ T-cells, CD8+ T-cells, B cells, natural 
killer cells, CD14+ monocytes, FCGR3A monocytes, and DCs. (f) Percentage of cell numbers from each sample 
in a given cell type: pre-THC-S1, post-THC-S1, pre-THC-S2, post-THC-S2.
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Figure 2.  Single cell transcriptome profiling revealed gene expression affected by a single dose of delta-9-
tetrahydrocannabinol(THC). (a) Linear Mixed Regression analysis identified differential expression of genes 
affected by THC infusion in eight cell types of peripheral blood mononuclear cells: CD4+ T-cells, ILR7CD4+ 
T-cells, CD8+ T-cells, B cells, natural killer cells, CD14+ monocytes, FCGR3A monocytes, and DCs. 
Differentially expressed genes were identified by applying linear mixed model (false discovery rate, FDR < 0.05). 
Each inset box denotes the number of up-regulated (right box) and down-regulated (left box) genes. No 
differentially expressed genes(DEGs) were found in DCs. (b) Violin plots showing common DEGs between 
pre-THC and post-THC in at least three cell types. X-axis represents cell type; Y-axis represents expressionlevel 
for each gene. Blue: pre-THC samples; pink: post-THC samples. (c) Number of DEGs in six major cell types. 
X-axis represents DEGs in each cell type; Y-axis represents number of DEGs. A total of 69 DEGs are shared in 
at least two cell types, while 225 DEGs are unique for individual cell type (FDR < 0.05). Among shared DEGs in 
multiple cell types, up(red)- or down(blue) -regulated genes by THC are in the same direction across cell types 
except three DEGs (purple).
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Figure 3.  Cell-type cluster based differential gene expression, gene-gene correlation, and biological pathways 
influenced by delta-9-tetrahydrocannabinol(THC). (a) Heatmap showing three subtypes of CD4+ T-cells 
affected by THC. Color bar represents log2 fold change between post-THC and pre-THC samples. Each row 
represents significant genes for top 20 genes in each cell cluster. Cluster 8 shows a distinct pattern of differential 
gene expression from those observed in clusters 3 and 6. (b) KEGG-based gene network in CD4+ T-cells. 
Genes with nominal p < 0.001 from linear mixed regression model are selected to construct a gene network. 
Gene-gene links were derived from KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet. 
Significance is set at false discovery rate (FDR) < 0.05. Two hub genes, CCR7 and HLA-A, are differentially 
expressed genes influenced by THC. (c) Heatmap showing three subgroups of CD8+ T-cells affected by THC. 
(d) KEGG-based gene network in CD8+ T-cells. Genes with nominal p < 0.001 in CD8+ T-cells are selected 
to construct a KEGG-based gene network. In CD8+ T-cells, we observed 35 nodes and 31 edges. One hub 
gene, HLA-A, is differentially expressed by THC. (e) Heatmap showing two subtypes of B cells affected by THC. 
Each row represents significant differentially expressed genes in B cells. Cluster 12 shows a distinct differential 
gene expression pattern from that of cluster 14. (f) KEGG-based gene network in B cells. Genes with nominal 
p < 0.001 in B cells are selected to construct a gene network based on gene-gene relationship in KEGG. A 
total of 34 nodes and 28 edges were constructed. Three hub genes, HLA-A, HLA-DQA1, and HLA-DPA1 were 
identified. (g) KEGG-based gene network in natural killer (NK) cells. We observed 17 nodes and 12 edges. 
One hub gene, CCL4, was significantly differentially expressed following THC infusion. (h) Heatmap showing 
two distinct subtypes of CD14+ monocytes (cluster 10 and cluster 17) affected by THC. Color bar represents 
log2 fold change between pre-THC and post-THC samples. Each row represents significant genes in CD14+ 
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apoptosis. Several pathways associated with autoimmune disease (e.g., rheumatoid arthritis) were significant in 
multiple cell types. The ribosomal pathway, which plays a role cell growth and cellular response to stress, was the 
most significantly enriched pathway across all five cell types. These results further support the effects of THC on 
functional domains in immune regulation that have also been associated with immunological disease, although 
the causality of these relationships is unknown.

THC changes CNR2 co-expression network in B cells.  Finally, we were interested in understanding 
how cannabinoid receptor genes co-expressed with other genes in each cell type following THC administration. 
As expected, CNR2, encoding for CBR2, was highly expressed in B cells, followed by NK cells, then CD8+ T-cells, 
and lowest in CD4+ T-cells (Fig. 5a)55. Little CNR1 expression was detected in any of the cell types. GPR55 (can-
nabinoid receptor 356) showed the highest expression in CD4+ T-cells. We observed gene co-expression between 
CNR2 and 84 and 74 genes in pre- and post-THC samples, respectively (Tables S31–S32). The co-expressed 
genes in post-THC B cells were enriched on functional domains of immune processes, biological regulation, cell 
proliferation, signaling, and response to stimulus (Fig. 5b). Interestingly, little overlapped genes in two CNR2 
co-expressed network, suggesting that THC significantly reorganizes CNR2 connected gene-gene relationships 
in B cells (test of overlapping genes between two group p = 0.302).

Discussion
Our results from a well-controlled human study demonstrate transcriptomic regulation in distinct immune 
cells following administration of a single dose of THC. In our model, THC increased subjective effects (“high”, 
“stoned”) and heart rate consistent with the known effects of cannabis. Thus, THC altered gene expression at a 
dose that produces effects consistent with the known effects of cannabis. Our study design and analytical approach 
enabled the identification of common and cell-type-specific DEGs regulated by THC. The cell-type-specific gene 
and co-expression patterns revealed by scRNA-seq showed little overlap across cell types, which would have been 
obscured by bulk RNA-seq analysis. Cell type-based DEGs, co-expression networks, and GSEA revealed impor-
tant THC effects on immune function, cytokine production, signal transduction, and cell apoptosis and survival.

We used within-subject design and mixed regression model to minimize confounding factors on THC’s effects 
and to control high individual transcriptome variability. The approach also reduces potential batch effects across 
different individuals and experimental batches. Subjective, behavioral and cognitive tests confirm that the dose of 
THC was relevant to but limited the confounding effects of other compounds in cannabis. These strengths ena-
bled us to reveal differentially expressed genes from highly variable transcriptomes. In addition, we applied GLM 
method for cell-type identification combining with knowledge-based cell markers. The approach identified bio-
logically meaningful cell-types sub-clusters in major cell types in PBMCs. The sub-clusters present specific DEG 
patterns altered by THC and different co-expression networks regulated by THC, suggesting that the sub-clusters 
may be functionally distinct cell types. The biological verification of sub-clusters is warranted in a future study.

Although the majority DEGs were cell-type-specific, we observed top significant differentially expressed 
genes shared across multiple cell types. Importantly, we validated the top 18 common genes affected by THC 
in at least four cell types in bulk RNA from PBMCs by RT q-PCR in the same samples. The functions of com-
mon DEGs were relevant to the biological pathways shared in multiple cell types as well. These common DEGs 
present almost identical direction by THC regulation, suggesting that THC’s immune response is involved in 
important genes to maintain immune response across different cell types. We identified more up-regulated genes 
than down-regulated genes by THC, which is expected after acute THC administration. Importantly, the large 
number of DEGs shows cell-type-specific fashion and a single low dose of THC perturbates cell-type-specific 
co-expression network. The complexity of THC’s cell-type-specific effect raises a challenge of therapeutic treat-
ment using cannabis for medical diseases.

Limitations.  The results of this exploratory, pilot study should be considered in the context of its limitations 
and strengths. First, the findings need to be validated in a larger sample. Second, while the IV THC paradigm 
offers excellent experimental control, it has limited ecologically validity. Therefore, the effects of acute admin-
istration of smoked or vaporized cannabis should be studied. Third, while the effects of a single dose of THC 
were studied, given the known biphasic effects of cannabinoids, the dose-related effects of cannabinoids on gene 
expression need to be investigated. Furthermore, while we demonstrated the changes in gene expression at one 
time point after the administration of THC, the full temporal profile of changes in gene expression need to be 
studied. Fourth, while the effects of a single dose of THC were demonstrated, the effects of chronic exposure to 
medicinal and recreational cannabinoid need to be studied. Fifth, while the effects of THC in healthy subjects 
was demonstrated, how cannabinoids people with altered immune function (e.g., HIV) or chronic inflamma-
tory conditions (e.g., rheumatoid arthritis) needs to be studied. Sixth, the next logical step is to investigate the 
precise mechanisms underlying THC altered gene expression observed in the exploratory study. For example, 
CHIP-qPCR analysis to detect histone markers may further enhance our understanding of the mechanism of the 
identified immune/inflammation-related genes function57. Finally, while the effects of THC on transcriptomic 
profiling and differential gene expression has been demonstrated, the effects of the other constituents of cannabis 
needs to be studied.

monocytes. (i) KEGG-based gene network in CD14+ monocytes. Genes with nominal p < 0.001 in CD4+ 
T-cells were selected to construct a KEGG-based network. We observed 18 nodes and 13 edges. One hub gene, 
HLA-DQB1, was identified in both pre-THC and post-THC samples.
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Nevertheless, the study provides a foundation for future studies of cell-type-specific immunologic effects 
of cannabis and cannabinoid constituents. These findings highlight the complexity of cannabinoid effects on 
immune function and nuance of immune cell types that may have medical relevance.

Methods
The study was conducted at the Neurobiological Studies Unit (VA Connecticut Healthcare System, West Haven, 
CT) with the approval of the Institutional Review Boards at VA Connecticut and Yale University, and the Protocol 
Review Committee of the Department of Psychiatry, Yale University. The study was amended to include prospec-
tive measures addressing safety. All methods were performed according to the relevant guidances and regulations 
by Yale University and VA Connecticut Healthcare System.

Participants.  Two healthy participants were recruited from the community by advertisements. Both partic-
ipants were male, 21-year old, and of European American descent. Subjects were informed about the potential 
for psychosis, anxiety, and panic. After obtaining informed consent, subjects underwent a structured psychiatric 
interview for DSM-IIIR58 and were carefully screened for any DSM-IV Axis I or Axis II lifetime psychiatric or 
substance abuse disorder (excluding nicotine) and family history of major Axis I disorder. The history provided 
by subjects was confirmed by a telephone interview conducted with an individual (spouse or family member) 
identified by the subject prior to screening. In order to avoid exposing cannabis-naïve individuals to a poten-
tially addictive substance, only subjects who had been exposed to cannabis but did not meet lifetime criteria for 
a cannabis use disorder were included. Past month cannabis use was quantified using a time-line-follow-back 
approach. Finally, subjects underwent a general physical and neurologic examination, EKG, and laboratory tests 
(serum electrolytes, liver function tests, complete blood count with differential and urine toxicology). Subjects 
were instructed to refrain from caffeinated beverages, alcohol, and illicit drugs from 2 weeks prior to testing 
until study completion. Urine toxicology was conducted on the morning of each test day to rule out recent  
illicit drug use.

Procedure.  Subjects received 0.03 mg/kg of THC, the principal active ingredient of cannabis23,24. This dose 
equivalent to 2.1 mg in a 70 kg individual has been shown in previous studies to produce effects consistent with 
the known effects of cannabis, in a safe manner59–61. THC was administered on its own, without the >450 other 
chemical constituents of cannabis because THC is the principal active constituent of cannabis and the other 
chemical constituents could render the results challenging to interpret. The intravenous route of administration 
was chosen to reduce inter and intraindividual variability in plasma THC levels with the inhaled route62. Timeline 
of behavioral assessment and blood draw is presented in Fig. S5. Subjects were attended to by a research psychi-
atrist, a research nurse, and a research coordinator. Clear ‘stopping rules’ were determined a priori and rescue 
medication (lorazepam) was available if necessary. Medical condition and psychiatric status of participants were 
monitored closely during and after THC challenging. Subjective and clinical ratings were repeatedly assessed.

Figure 4.  Circus plot showing gene set enrichment analysis using KEGG annotations reveal 39 biological 
pathways shared in at least 2 cell types. KEGG: Kyoto Encyclopedia of Genes and Genomes – GenomeNet. 
Significant pathway is declared at false discovery rate (FDR) < 0.05. The legend is the name of each pathway 
corresponding to each spoke of the circular plot.
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Figure 5.  THC receptor gene expression and co-expression network in B cells. (a) t-SNE plot showing THC 
receptor gene expression in distinct cell types of peripheral blood mononuclear cells. Small amount of CNR1 
expression is observed in any of the cell types. CNR2 is highly expressed in B cells, followed by nature killer cells, 
CD8+ T-cells, and minimally expressed in CD4+ T-cells. GPR55 is highly expressed in CD4+ T-cells more 
than other cell types. GPR18 is widely expressed in peripheral blood mononuclear cells. (b) CNR2 expression is 
significantly correlated with 74 genes in B cells. The genes co-expressed with CNR2 are involved in functions of 
biological regulation, cellular process, immune system process, metabolic process, and signal functions.
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Medical and behavioral assessment.  Vital signs, Cannabis intoxication, Psychotic symptoms, Perceptual 
alteration, and Cognitive test battery were measured prior, during, and post THC infusion as illustrated in Fig. S5.

Physiological and psychoactive assessments of two participants are presented in Table S33.

Single cell RNA sequencing in 10X genomics platform.  PBMCs from pre-THC (N = 2) and post-THC 
samples (N = 2) from fresh whole blood were isolated at the same time using a standard protocol. The cells were 
washed twice with phosphate-buffered saline containing 0.04% bovine serum albumin, and the final cell con-
centration was adjusted to 1000 cells/mL for library preparation. 5000 cells/sample were prepared for single cell 
capture.

Sequencing data processing and quality control.  We used the 10X Genomics Chromium Single Cell 3′ v2.0 
platform to prepare individually barcoded single cell RNA-Seq libraries following the manufacturer’s protocol. 
Library size was confirmed with Agilent Bioanalyzer High Sensitivity DNA assay (PN: 5067–4626), Invitrogen 
dsDNA HS qubit assay to evaluate dsDNA quantity (PN: Q32854), and KAPA qPCR analysis (KAPA Biosystems 
LIB Quant Kit, Illumina/LC480, PN: KK4854) to evaluate the quantity of sequencable transcripts.

Flow cell preparation and sequencing.  Sample concentrations are normalized to 10 nM and loaded onto Illumina 
Rapid flow cell at a concentration that yields 150 M passing filter clusters per lane. Samples are sequenced using 
paired-end sequencing on an Illumina HiSeq. 2500 according to Illumina protocols. The 8 bp index is read dur-
ing an additional sequencing read that automatically follows the completion of read 1. Data generated during 
sequencing runs are simultaneously transferred to the YCGA high-performance computing cluster. A positive 
control (prepared bacteriophage Phi X library) provided by Illumina is spiked into every lane at a concentration 
of 0.3% to monitor sequencing quality in real time.

Data analysis and storage.  Signal intensities are converted to individual base calls during a run using the system’s 
Real Time Analysis (RTA) software. Base calls are transferred from the machine’s dedicated personal computer to 
the Yale High Performance Computing cluster via a 1 Gigabit network mount for downstream analysis. Primary 
analysis - sample de-multiplexing and alignment to the human genome - is performed using Illumina’s CASAVA 
1.8.2 software suite. The Cell Ranger Single-Cell Software Suite (versions 2.0.0 and 2.1.0 for the discovery and 
validation patients respectively) were used to perform sample demultiplexing, barcode processing and single-cell 
gene counting (http://10xgenomics.com/). The gene-cell matrix was generated for the following analysis.

Data normalization.  Only genes with at least one UMI count detected in at least one cell were retained for 
analysis Single cells were excluded when >10% of reads mapped to mitochondrial RNA to ensure that all of the 
single cells originated from nucleated cells. The cells with fewer than 370 expressed genes or possible doublet 
cells (>100,000 reads) were also discarded. Applying these three criteria resulted in retention of 21,430 genes and 
15,973 single cells for downstream analysis.

Data normalization was performed using a standard protocol in Seurat28. An exploratory analysis showed cells 
clustered by each participant. Batch effects were then removed using an empirical Bayesian framework (ComBat 
function in R package sva) with the individual labeled as the random variable. The normalized data was dimen-
sionally reduced in two dimensions using t-distributed stochastic neighbor embedding (t-SNE) with a perplexity 
parameter of 20 and 3000 iterations after an initial principle component analysis. The distance matrix of the single 
cells was computed with the output of t-SNE and converted into a graph. Cluster_louvain function was used by 
default options (https://igraph.org/r/doc/cluster_louvain.html). Then, the graph was clustered with the cluster_
louvain function in R package igraph, which implements the multi-level optimization of modularity algorithm 
for finding community structure.

Cell type identification.  A gene set of the cell type markers in PBMC was manually curated from the literature. 
A binary cell type matrix with cell types as columns and genes as rows was generated with value 1 representing a 
marker in a cell type and value 0 denoting non-markers for a cell type. The generalized linear model (GLM) was 
constructed by deciding on one vector, representing one cell type as a response, of the binary matrix and corre-
sponding gene expressions as explanatory variables in one cell. In details, = ×Y y( )gc G C is the binary cell type 
matrix of G marker genes of C cell types and = ×X x( )gs G S is the gene expression matrix of G marker genes of S 
single cells. For the gth gene, y 0gc =  or 1 denotes the cell type-specific gene indicator of cth cell type and xgs denotes 
the gene expression of sth single cell, where = …g G1, , , = …c C1, , , and s S1, ,= … . The linear probability 
model (LPM) was conducted for our study, εβ β= + +y xc s cscs cs0 1 , where y y y( , , )c c Gc

T
1= …  and 

= …x x x( , , )s s Gs
T

1  are the columns of matrix Y  and X , represent binary cell type vector and single cell gene 
expression vector, respectively. ( , , )cs cs Gcs

T
1ε ε ε= …  is a random error vector, where ~ε σN(0, )gcs

2 . The hypoth-
esis of interest to be tested is β =H : 0cs cs0 1 vs β ≠H : 0cs cs1 1 . One statistical value (t value) and p value is 
obtained for each cell and cell type; tcs and pcs denote the test statistic value and P-value, respectively for the cth cell 
type of sth single cell.

We used the cutoff, p < p0 and t value >0 to assign one cell to one cell type, where p0 is a predefined cut-off 
value (p0 = 0.01 in this study). Then, the proportion of each assigned cell type was calculated for every cluster. The 
dominant proportions are used to assign one cluster to one cell type.
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where Pc
k denotes the proportion of the cth cell type in the kth cluster. Sk is the set of cell indices for clustering k, 

with N Sk k=  being the total number of cells in the kth cluster. Finally, the cell type for each cluster was confirmed 
manually by cell type marker gene expressions mapping on the 2D t-SNE plot. The cell clusters mapping to the 
same cell type were merged for downstream analysis.

Statistics.  All statistical analyses were performed using R version 3.5.1 (R Foundation, https://www.r-project.
org) and RStudio version 1.1.453 (https://www.rstudio.com).

Differential gene expression.  We applied a linear mixed regression model to identify genes associated with THC 
infusion. To control transcriptomic variation between two participants, we used participant as a random effect. 
Transcriptome-wide significance was set at false discovery rate (FDR) < 0.05.

KEGG-based gene network analysis.  Here, gene network was defined as significant gene-gene correlation in each 
given cell type leveraging the relationship among genes in KEGG database. Using this supervised gene network 
analysis approach, we tested whether gene links in KEGG were significant in each cell type using linear regres-
sion model. Significant KEGG-based network was set at FDR < 0.05. The analysis was performed separately in 
pre-THC and post-THC samples to test if THC alters gene-gene correlation.

Gene Ontology (GO) enrichment analysis.  Genes in each co-expression network in major cell types were tested 
the enrichment on GO terms using The DAVID Gene Functional Classification Tool63. Significant level was set 
at FDR < 0.05.

Cell type-based gene set enrichment analysis.  We separately analyzed gene set enrichment in each cell type 
using KEGG database. Differentially expressed genes in a given cell type with nominal p < 0.001 were selected. 
Significant pathway was set at FDR < 0.05.

Co-expression of cannabinoid receptor genes with other genes Four cannabinoid receptor genes, CNR1, 
CNR2, CPR18, and GPR55 were tested differential expression across seven major cell types using linear mixed 
regression model. Correlation of CNR2 with other genes in B cells was performed in pre- and post-THC samples 
independently. Significant correlation was set at FDR < 0.05. We tested for statistical significance of the overlap 
between the two groups (pre- and post-THC) of genes (http://nemates.org/MA/progs/overlap_stats.cgi).

Data availability
Single cell transcriptome data have been deposited in Gene Expression Omnibus and are available under project 
number GSE130228.
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