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Abstract: Long non-coding RNAs (lncRNAs) are a large class of gene transcripts that do not code
proteins; however, their functions are largely unknown and many new lncRNAs are yet to be
discovered. Taking advantage of our previously developed, super-fast, novel lncRNA discovery
pipeline, UClncR, and rich resources of GTEx RNA-seq data, we performed systematic novel lincRNA
discovery for over 8000 samples across 30 tissue types. We conducted novel detection for each major
tissue type first and then consolidated the novel discoveries from all tissue types. These novel
lincRNs were profiled and analyzed along with known genes to identify tissue-specific genes in
30 major human tissue types. Thirteen sub-brain regions were also analyzed in a similar manner.
Our analysis revealed thousands to tens of thousands of novel lincRNAs for each tissue type. These
lincRNAs could define each tissue type’s identity and demonstrated their reliability and tissue-specific
expression. Tissue-specific genes were identified for each major tissue type and sub-brain region.
The tissue-specific genes clearly defined each respective tissue’s unique function and could be used
to expand the interpretation of non-coding SNPs from genome-wide association (GWAS) studies.

Keywords: long intergenic non-coding RNA; lincRNA; GTEx; RNA sequencing; tissue-specific gene
expression; human normal tissue; bipolar disease; GWAS SNPs

1. Introduction

Long non-coding RNAs (lncRNAs) are a large class of gene transcripts that do not code
proteins (vs. mRNAs that translate to proteins). Reports suggest up to 68% of transcribed
genes could be from lncRNAs [1,2]. Based on their location with respect to protein-coding
genes, there are at least five categories of lncRNAs: antisense lncRNAs, which intersect
any exon of a protein-coding locus but on the opposite strand; long intergenic non-coding
RNA (lincRNAs), which are coded in an intergenic region with a length > 200 bp; sense
overlapping lncRNAs, which contain a coding gene within an intron on the same strand;
sense intronic lincRNAs, which sit in introns of a coding gene but do not overlap any exons;
and processed transcripts, which do not contain an open reading frame [3,4]. LncRNAs
interact with DNA, mRNA, protein, or miRNA and play an important role in gene ex-
pression regulation and processing at multiple levels [5,6]. They are found to be involved
in multiple diseases such as cancer [3,7,8], autoimmune diseases [9,10], and neurological
disorders [11]. Traditional RNA sequencing analysis is mostly based on known gene anno-
tation and lncRNAs that are not annotated would not show up in downstream analysis,
which could potentially miss a lot of useful information. However, identifying unchar-
acterized lncRNAs is computationally challenging for most researchers. We previously
developed integrated and super-fast novel lncRNA discovery pipeline UClncR [12], which
is fully automated starting from fastq files or aligned bam files to novel lncRNA reports
across samples. Depending on RNA-seq library protocols, UClncR can detect all lncRNAs
as described above for stranded RNA-seq or lincRNAs only for unstranded RNA-seq.
This is because stranded RNA-seq retains coding strand information in sequenced reads
so that overlapping lncRNAs with protein-coding or other genes can be distinguished
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using the strand information. On the other hand, unstranded RNA-seq does not have
this information (reads equally mapped to both forward and reverse strands) so that only
lincRNAs without any overlap with other genes can be reliably detected.

The Genotype-Tissue Expression (GTEx) project provides a large resource for the
research community to study human gene expression and regulation and its relationship
with genetic variation on tens of thousands of samples across over 30 major human tissue
types [13,14]. Gene expression data for this project are obtained from unstranded RNA-seq
with GENCODE annotation (v26 for release V8 and v19 for release V7). Many papers
have been published using GTEx data in recent years; however, little effort has been made
to detect novel lncRNAs, and information about tissue-specific gene expression across
different tissue types is limited, although tissue-specific expression measured as tissue
specificity score in identifying drug target context was explored [15].

Taking advantage of the rich RNA-seq data from GTEx and our fast UClncR pipeline,
we performed systematic novel lincRNA detection and characterization of more than 8 K
samples from 30 human tissue types. We conducted novel detection for each major tissue
type first and then consolidated the novel discoveries from all tissue types. These novel
lincRNs were then added to known genes in tissue-specific gene expression analysis to
identify tissue-specific genes for each tissue type. We finally used brain tissue-specific gene
expression to illustrate its potential utility in enhanced interpretation of GWAS-associated
SNPs in bipolar disease.

2. Materials and Methods
2.1. GTEx RNA-seq Samples, Pre-Processing, and Novel lincRNA Detection

Raw data for 8584 samples from GTEx (release V6) were downloaded from dbGAP and
converted to fastq format. The raw data for each sample were processed by our updated
MAPRseq pipeline (V3), where reads were mapped to HG38 by STAR [16] (Supplementary
Figure S1). Cell line samples (bone marrow, transformed fibroblast, and transformed
lymphocytes) and samples with less than 35 million reads were dropped. Mapped reads
with mapping quality scores less than 10 were filtered out (only uniquely mapped reads
were kept). The final dataset had 8046 samples (sequence depths from 35 to 470 million
reads, with a median of 86 million) from 30 major tissue types. The aligned files (BAM)
were then processed by UClncR [12] for novel lincRNA detection for each tissue type
separately, where GTFs from each sample were merged using StringTie [17] and gene
expression quantification was performed using this merged GTF along with known gene
GTFs (Ensembl release 93). The GTFs from each tissue type were then further merged to
create a meta-meta GTF for all tissues and samples, which was used along with known
gene GTFs to create a unified gene expression matrix by featureCounts [18] for all samples
together. As RNA-seq from GTEx was from an unstranded protocol, only novel lincRNAs
were detected in this study. Further, only more reliable multi-exon novel lncRNAs were
used for additional analysis with known genes for tissue-specific gene expression.

2.2. Tissue-Specific Gene Identification

To obtain genes that were specifically expressed in each tissue type, we compared
each tissue type to all other tissue types for both known and newly detected lincRNAs
using edgeR [19]. Because of the variable sample sizes from different tissue types, we
randomly selected 100 samples for those with more than 100 samples. Genes that had
average log2 count per million (CPM) > 0, false discovery rate (FDR) < 0.05, and log2 fold
change greater than >2 (only upregulated in the tissue of interest) were defined as the
first-tier tissue-specific genes. To further select more specific genes for each tissue type,
the log2 fold change greater than 2-fold above the maximum log2 fold change of another
29 tissue types was also used. Further details of the analyses are presented in Figure 1.
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Figure 1. Workflow of novel lincRNA detection and tissue-specific gene expression.

We also performed a similar analysis for brain tissues as the brain contains 13 sub-
brain regions or parts. Because of the high similarities among different brain regions,
tissue-specific genes were defined using less stringent criteria of log2 CPM > 0, FDR < 0.05,
and log2 fold > 0.585 (1.5 fold).

2.3. Enrichment of GWAS Significant SNPs of Bipolar in Brain-Specific Genes

To illustrate the potential use of novel lincRNA and tissue-specific genes in SNP
interpretation, we collected 19,861 bipolar-associated SNPs from GWASDB [20], the GWAS
catalog [21] (https://www.ebi.ac.uk/gwas/; accessed on 5 March 2019), and a recent
literature review [22] and overlapped these with the genes used for the tissue-specific gene
expression. The number of GWAS hits in brain-specific vs. non-brain-specific genes was
counted for enrichment analysis by Chi square test.

3. Results
3.1. UClncR Detected a Significant Number of Novel lincRNAs from Each Tissue Type

We performed novel lincRNA detection for each tissue type separately and the number
of novel lincRNAs detected from each generally increased with the number of samples
in a particular tissue type, ranging from 2140 in bladder tissues to 33,017 in brain tissues

https://www.ebi.ac.uk/gwas/
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(Figure 2A). However, some tissue types, such as testis and thyroid, appeared to have a
disproportionally higher number of novel lincRNAs relative to the number of samples in
the analysis. This is particularly true for novel lincRNAs with multiple exons. For example,
testis only had 201 samples but it had the highest number of novel multi-exon lincRNAs
detected (7282 vs. 5072 from brain, which had 1378 samples, the highest of all) in all tissue
types (Figure 2B).
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Figure 2. Statistics of novel lincRNAs in each tissue. (A) Number of samples vs. number of detected novel lincRNAs (both
single and multi-exon lincRNAs). (B) Number of samples vs. number of detected novel multi-exon lincRNAs. (C) Relative
numbers of known, novel single-exon, and novel multi-exon lincRNAs in each tissue type. Novel.ME—novel multi-exon
lincRNAs, Novel.SE—novel single-exon lincRNAs, Known lincRs—Known lincRNAs in Ensembl annotation.

For expressed lincRNAs (read count > 5 in at least one sample), the novel single-
exon lincRNAs doubled or tripled the number of known lincRNAs in each tissue type
(Figure 2C). The novel multi-exon lincRNAs accounted for 10 to 100% of known lincRNAs.
Altogether, novel lincRNAs doubled or tripled the number of known lincRNAs in each
tissue type. Consolidating all novel detections from all tissues, 17,427 potential novel
lincRNAs were detected, which cover 402.4 Mb of the human genome (vs. 236.3 Mb of the
known lincRNAs), which significantly expanded the coding region of the genome (known
lincRNA accounting for 7.9% and novel lincRNA accounting for 13.4% of the genome).

3.2. Novel lincRNAs from Each Tissue Type Define Their Tissue Type

We conducted unsupervised dimension reduction through machine learning for both
known and novel lincRNAs with multiple exons as they are generally more reliable with
exon junction alignment support compared to single-exon novel lincRNAs. Like known lin-
cRNAs, the newly detected lincRNAs could separate different samples of tissue origin into
distinct clusters (Figure 3A,B), suggesting their tissue specific expression and our pipeline’s
reliability. Using unsupervised clustering, the novel lincRNAs were also able to reveal



Genes 2021, 12, 614 5 of 11

the relatedness of different tissue types. For example, tissues from the gastrointestinal
tract (stomach, small intestine, and colon) were clustered closely together and neurological
tissues (brain and pituitary) were more similar (Figure 3C,D).
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Figure 3. Novel multi-exon lincRNAs define tissue types. (A) t-distributed stochastic neighbor embedding (t-SNE)
unsupervised clustering for all samples using novel multi-exon lincRNAs. Each tissue type forms a distinct cluster.
(B) t-SNE unsupervised clustering for all samples using known lincRNAs. (C) Unsupervised clustering in circular format to
show the relative relationship among samples using novel multi-exon lincRNAs. (D) Unsupervised clustering in circular
format to show the relative relationship among samples using known lincRNAs.

3.3. Identification of Tissue-Specific Genes (lincRNAs and Protein Coding Genes)

With the unprecedented diverse tissue types and numbers of samples, it is very useful
to define tissue-specific genes that express more specifically or uniquely in a particular
tissue type, which not only help to define a tissue type as a marker gene but also elucidate
each tissue’s unique functions. For this, we conducted one vs. all remaining analysis for
each tissue type. At FDR < 0.05, average read count per million greater than 1 and log2
fold change greater than 2 (4-fold, upregulated only), variable numbers, ranging from 18 to
258, of tissue-specific lincRNAs (both know and novel) were identified for each tissue type
(Figure 4A, blue bar). As comparison, the numbers of tissue-specific protein-coding genes
were also detected (Figure 4B, blue bar). The numbers of tissue-specific lincRNAs in each
tissue type were proportionally similar to the numbers of tissue-specific protein-coding
genes. Blood, brain, liver, muscle, and testis were the tissues with the highest numbers
of tissue-specific lincRNAs or protein-coding genes. Using a more stringent fold change
filter (more than 2 fold of the highest fold change of all other tissues), we identified more
specific lincRNAs or protein-coding genes in most of the tissues (Figure 4A,B, green bar
and marked as “highly specific”), although some tissues, such as the ones with dominant
smooth muscle tissue (bladder, blood vessel, cervix, and uterus), had none. Again, we
found that blood, brain, liver, muscle, and testis had a higher number of highly tissue-
specific genes. Overall, 26.02% of genes were tissue-specifically expressed in at least one of
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30 tissues. While 38.17% protein-coding genes were tissue-specific in at least one of the
tissues, around 11.08% lincRNAs were tissue-specifically expressed (known 7.90% and
novel 12.02%). Genes specific to at least one tissue are provided in Supplementary Table S1.
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To illustrate whether these highly tissue-specific genes/lincRNAs perform specific
functions, we used testis as an example as it had the highest number of “highly specific”
lincRNAs (115 lincRNAs) and protein-coding genes (497 genes) among all the tissues.
Among the lincRNAs, 84 were newly detected (vs. 31 known). Pathway enrichment
analysis for the protein-coding and lincRNA-associated protein-coding genes (the closest
gene from each lincRNA) showed significant enrichment of cell cycle (p value = 0.00005)
and oocyte meiosis (p value = 0.01). The top five upregulated genes (by fold change)
were CETN1, PRR30, LELP1, ACTRT2, and HMGB4. The top five lincRNAs were three
known (AC092447.8, LINC00917, and LINC01921) and two newly detected (chr7:57216135-
57219296 and chr17:7428378-7433068). The brain is another specialized organ with many
tissue-specific expressed genes. The top enriched pathways were nicotine addiction,
GABAergic synapse, synaptic vesicle cycle, and morphine addition (all with enrichment
p values less than 4.7 × 10−13), the pathways well known for brain functions. The top
three specific protein-coding genes are OPALIN, AVP, and CACNG3, while the top three
lincRNAs are LINC00599, AL031056.1, and MSTRG.27248 (novel one at chr18:66622040-
66712235, upstream of CDH19).

3.4. Tissue-Specific Genes in Different Parts of the Brain

The brain is the most complex organ, with multiple subregions or parts performing
different functions. Each subregion has different types of cells or proportions of the same
cells. Understanding their gene expression differences would help to understand their
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unique functions. For 13 subregions of the brain in GTEx (Figure 5A), we conducted similar
vs. all remaining differential gene expression analysis for tissue-specific genes (protein-
coding, known lincRNAs, and novel lincRNAs only). Because of their higher similarity,
as expected, we saw only a few genes that met the stringent criteria defined for the main
organ comparisons; thus, we reduced the fold change to 1.5 (log2 0.585, with other criteria
remaining the same). This analysis led to 2 to 116 sub-brain-specific genes (Figure 5B and
Supplementary Table S2). The cerebellum and hypothalamus were the top two regions
with the highest number of specific genes (116 and 111, respectively). The vast majority of
these sub-brain-specific genes (326 genes) were very unique as they only appeared once in
one of the sub-brain regions (Figure 5C) while some other genes (95 genes) were shared
among different sub-brain regions, suggesting that these regions were more similar in
terms of function or anatomic location. For example, GBP5 was detected to be specific
to the cerebellar hemisphere, cortex, frontal cortex, and hippocampus and GAL to the
cerebellum, frontal cortex, hypothalamus, and putamen. Among the unique sub-brain-
specific genes, 284 are protein-coding, 23 are known lincRNAs, and 114 are newly detected
novel lincRNAs (Figure 5D).
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We explored the relationship among sub-brain regions using the heatmap for the
410 genes (gene expression was averaged across samples for each sub-brain) (Figure 6A).
Pathway enrichment analysis for cerebellum-specific genes showed the significant path-
way enrichment of morphine addition, PI3K-Akt signaling, and cell adhesion molecules
(Figure 6B), while tissue-specific genes for the hypothalamus were enriched in neuroactive
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ligand reception interaction, estrogen signaling, and morphine addition as the top three
(Figure 6C).
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3.5. Bipolar GWAS-Associated SNPs in Brain-Specific Genes

Genome-wide association studies (GWAS) have identified tens of thousands of ge-
nomic variants that are associated with a variety of human diseases or traits [23,24]. How-
ever, over 90% of them are located in the non-coding region of the genome [24], which
makes interpretation difficult. We hypothesize that many of these non-coding variants
could be in the region of regulatory elements such as lncRNAs and tissue-specific genes
may better explain the associated variants with a particular disease. To test this, we down-
loaded bipolar-associated SNPs from three sources (see Materials and Methods section for
details) and overlapped them with brain-specific genes detected in our analysis. Among
the 19,861 GWAS hits, 10,899 (54.88%) were mapped to genic regions, of which 2034 were
mapped to newly detected novel lincRNAs, accounting for around 20% of “interpretable”
SNPs that would be missed if only known genes were considered. We further checked
the distribution of these mapped SNPs in brain-specific and non-brain-specific genes and
found that the brain-specific genes (at least one SNP mapped) had much higher proportions
with mapped significant GWAS SNPs than the non-brain-specific genes (21.42% vs. 9.45%,
chi square p value < 2.2 × 10−16, Figure 7A). A total of 1662 GWAS significant SNPs were
mapped to brain-specific protein-coding genes, nine to known lincRNAs, and 23 to novel
lincRNAs (Supplementary Table S3, Figure 7B). Of note, among the top 30 SNPs reported
recently in a large-scale GWAS study, five of them were mapped to five brain-specific genes
(ADCY2, ANK3, GRIN2A, NCAN, SCN2A) [22].
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4. Discussion

The GTEx project provides rich resources for the research community to identify
the functional impacts of genomic variants on phenotypes in a tissue-specific manner,
particularly for gene expression from RNA-seq data [14,25]. Analyses so far are mostly
based on known gene annotation, which could potentially miss genes not characterized
before. We hypothesized that there could be many uncharacterized novel lncRNAs in
the data that could be potentially useful for our understanding of gene regulation or
interpretation of SNP variation in the non-coding regions. Using our previously developed
superfast UClncR [12], we were able to process over 8000 samples efficiently and many
novel lincRNAs were identified for each tissue type. These novel lincRNAs were able to
uniquely define each tissue type. We next identified tissue-specific genes for each major
tissue type and each sub-brain region. These tissue-specific genes have multiple potential
uses. They can explain the tissue’s unique functions; they can be used as tissue-specific
markers; genomic variants affect gene regulation and uniquely expressed genes or functions
in a tissue may contribute to the preference of a disease in a particular organ; and they may
be also highly valuable for drug selection [15].

The number of novel lincRNA discoveries is generally correlated with the number of
samples in the analysis as lincRNAs could be expressed specifically to some individuals at
particular physiological conditions (age, sex, environmental stimulus, etc.). The unexpected
higher number of novel lincRNAs in testis may contribute to its uniqueness and less likely
inclusion in previous studies in novel gene discovery. Our tissue-specific expression and
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GWAS hit enrichment analysis did not include single-exon novel lincRNAs as they are
less reliable compared to multi-exon novel lincRNAs (without exon–exon junction read
support). They could also be the result of fragmented transcripts during the multi-gtf
merging process in the analysis. A closer examination of their suitability in interpretative
analysis is needed in the future.

In our tissue-specific gene expression analysis, some tissues did not show highly tissue-
specific genes or only showed a few. This is likely the result of tissue similarity among some
of them, along with our stringent criteria—for example, uterus and “cervix_uteri”. It might
be appropriate to combine some of the tissues or redefine the criteria to find tissue-specific
genes for these tissues.

Our initial application of tissue-specific genes demonstrated the significant enrichment
of bipolar GWAS hits in the brain-specific genes. This opens the door to expanding the
interpretation of any disease-associated GWAS SNPs. Further work on how these SNPs
affect disease development will be highly relevant and interesting.

5. Conclusions

In conclusion, we have discovered many novel lincRNAs in human normal tissues and
defined tissue-specific genes for each tissue type. These data deepen our understanding of
the transcription landscape and expand the interpretability of non-coding variants from
GWAS studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12050614/s1, Supplemental Table S1: Tissue-specific genes in 30 major GTEx tissues,
Supplemental Table S2: Sub-brain-specific genes, Supplemental Table S3: GWAS significant SNPs
with bipolar disease mapped to brain-specific genes, Supplementary Figure S1: Flow diagram of
RNA-seq preprocessing pipeline MAPRseq (V3).
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