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Purpose: Peak amplitude and peak latency in the pattern reversal visual evoked poten-
tial (prVEP) vary with maturation. We considered that principal component analy-
sis (PCA) may be used to describe age-related variation over the entire prVEP time
course and provide ameans ofmodeling and removing variation due to developmental
age.

Methods: PrVEP was recorded from 155 healthy subjects ages 11 to 19 years at two
time points. We created a model of the prVEP by identifying principal components
(PCs) that explained >95% of the variance in a “training” dataset of 40 subjects. We
examined the ability of the PCs to explain variance in an age- and sex-matched “valida-
tion” dataset (n = 40) and calculated the intrasubject reliability of the PC coefficients
between the two time points.We explored the effect of subject age and sex upon the PC
coefficients.

Results: Seven PCs accounted for 96.0% of the variability of the training dataset and
90.5% of the variability in the validation dataset with good within-subject reliability
across time points (R > 0.7 for all PCs). The PCA model revealed narrowing and ampli-
tude reduction of the P100 peak with maturation, and a broader and smaller P100 peak
in male subjects compared to female subjects.

Conclusions: PCA is a generalizable, reliable, and unbiased method of analyzing
prVEP. The PCA model revealed changes across maturation and biological sex not fully
described by standard peak analysis.

Translational Relevance:Wedescribe a novel application of PCA to characterize devel-
opmental changes of prVEP in youths that can be used to compare healthy and patho-
logic pediatric cohorts.

Introduction

Visual evoked potentials (VEPs) are a relatively
inexpensive and easily implementedmethod of probing
the cortical visual system. Pattern reversal VEPs
(prVEPs), which are generated by viewing reversing
checkerboard patterns, have the additional desirable
property of relatively high intrasubject reliability in
adults.1 The prVEP can be helpful for clinical diagno-
sis and monitoring in demyelinating conditions, such
as multiple sclerosis,2 identifying sources of visual

acuity loss,3 and shows differences in a broad range
of neurologic conditions, including concussion4–7 and
migraine.8

Despite the high potential of VEP as a diagnos-
tic tool, prVEP interpretation faces unique challenges
in the pediatric population. Multiple studies have
found the prVEP varies during maturation, effects
of which can be seen into early adulthood.9–13
Age variation may confound studies that compare
healthy and pathologic groups, either because of
unmatched age differences in the populations, or more
subtly, from a nonspecific effect of the disease upon
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maturation. This is especially true for longitudinal
prVEP measurements. Few studies have examined the
stability of VEP across time in the pediatric popula-
tion. One study showed high intrasubject variability of
flash VEP signals collected in children 10 months apart
on average.14 This variability was higher than adult
studies.14 The ability to define and account for develop-
mental changes is critical for the interpretation of VEPs
in the pediatric population.

Standard prVEP analysis relies on peak amplitude
and peak latency measurements of predictable positive
and negative peaks that occur in the first 150 ms of the
prVEP.15 Prior studies of developmental effects upon
the prVEP have found differences at multiple prVEP
peaks as a function of age, although these results
have been somewhat inconsistent. Some studies have
found general decreases in peak latency,9,10 whereas
others have seen increases13 or no change.11 Peak
amplitude tends to decrease with increasing age,10–12
however, some studies found that this was not the
case for all peaks studied.10 Inconsistencies in these
results may be due, in part, to the peaks analyzed, how
peaks were defined, and differences in nonlocal tempo-
ral VEP waveform shape that are not fully captured
by restricting analysis to predefined maxima and
minima.

Principal component analysis (PCA) offers a poten-
tial solution to these challenges. PCA partitions the
variability of a dataset into orthogonal, uncorrelated
dimensions called principal components (PCs). As
biologically relevant variation may be restricted to a
subset of possible outcomes, PCA, like peak analysis,
may be used to reduce the dimensionality of the VEP,
but with the additional advantage of preserving infor-
mative variability of the global temporal signal.16 This
approach does not require specific reference to prede-
fined, predictable VEP peaks. Further, once character-
ized by weights on a set of components, the effects
of a continuous biological variable like developmen-
tal age can be modeled and accounted for in future
analysis.

We used PCA to analyze prVEP time series data
from a single active electrode collected from a large
youth cohort. Using separate training and valida-
tion datasets, we demonstrate that a particular set
of PCA components provide for generalizable analy-
sis of prVEP data. Using measurements from two
separate sessions in the validation dataset, we further
show that the coefficients measured for these compo-
nents have good reproducibility for a given subject
across a short time span (weeks to months). Finally,
we use this method to characterize developmental
differences in our pediatric cohort over a span of
years.

Methods

Subjects

Subjects between the ages of 11 and 19 years were
recruited from a local Philadelphia-area school as
part of a study on youth concussion conducted as
part of the Children’s Hospital of Philadelphia Minds
Matter Concussion Program. Specifically, subjects were
recruited through the sports teams of their local school
to collect preseason VEP data on healthy athletes.
Subjects with a history of concussion were at least
30 days from their most recent concussion and had
resolution of their concussion symptoms. Consent was
obtained from subjects and guardians, and all studies
were approved by the Children’s Hospital of Philadel-
phia Institutional Review Board and were in accor-
dance with the Declaration of Helsinki. PrVEPs were
collected on 155 subjects between February 2018 and
February 2020. One hundred five subjects had at least
2 recorded sessions separated by 0.7 to 17 months.
For 90 of the subjects, the sessions were separated
by <6 months. Subject demographics, including age,
sex, race, ethnicity, and medical history were recorded.
Any medications the subjects were using was recorded.
As part of the broader study, all subjects filled out a
post-concussion symptom inventory (PCSI). Subjects
were prescreened to ensure normal or corrected normal
visual acuity under binocular and monocular viewing
conditions using the Snellen’s visual acuity chart at
10 feet (5 subjects wore contacts, and 9 subjects wore
glasses). Those with corrective lenses wore them during
testing.

Study Paradigm

Viewing Conditions
Subjects were seated in awell-lit, quiet roomapprox-

imately 1 meter distant from a visual stimulus monitor.
The room was not darkened. The luminance of the
white walls adjacent to the testing apparatus was
53.0 cd/m2 as measured using a spectrophotometer
(PR670 Jadak Inc., North Syracuse, NY). Data were
collected under binocular viewing conditions. Visual
stimuli were presented on a monitor as part of a
vision testing system (NOVA; Diopsys, Pine Brook,
NJ). The monitor was a 17 inch liquid crystal display
(LCD) screen with 1280 × 1024 resolution, and a
75 Hz refresh rate. The screen was factory calibrated
with gamma correction. The measured luminance
of the stimulus background (half-on primaries) was
103.0 cd/m2.
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Visual Stimulus and Paradigm
Visual stimuli were International Society for Clinical

Electrophysiology of Vision (ISCEV) Standard large
checks15 presented in awide field 85% contrast checker-
board with a pattern reversal rate of 2 reversals per
second. Checks were 0.97 degrees visual angle. Subjects
were instructed to fixate on a central red “x” for the
duration of the stimulus presentation. Stimuli were
presented for a continuous 20 seconds for a total of 40
reversals in a single block. The block was repeated five
times in a single session. There was approximately 30
to 60 seconds in between blocks.

VEP Recordings
VEPs were recorded with a vision testing system

(NOVA; Diopsys). Two reference electrodes were
placed at Fz, and laterally to Fz at Fp1, with the
active electrode placed at Oz following the 10 to
20 international electroencephalogram (EEG) place-
ment criteria17 based on the Diopsys system recom-
mendations. Data were recorded at a sampling rate
of 1024 samples/second. Raw voltage-by-time data
were exported for subsequent analysis. Visual stimulus
presentation was time-locked to VEP recording.

Data Analysis

Preregistration for this study can be found at the
following link: https://github.com/pattersongentilelab/
preregistrations. Data analysis was performed using
custom software written in a coding program (Matlab;
MathWorks, Natick, MA).

VEP Preprocessing
Notch filters were applied at 60 Hz and 120 Hz

to remove powerline noise. Data were parsed into
500 ms intervals corresponding to each pattern rever-
sal. Pattern reversals were excluded if there was a
voltage change of >1 mV indicating a large nonphys-
iologic change in voltage (approximately 2% of rever-
sals were discarded by this criterion). Signal-to-noise
ratios (SNRs) were calculated for each block by taking
the mean squared of each time point divided by the
standard deviation squared, then taking themean SNR
across all time points. Blocks with an SNR of <0.03
(level determined by distribution of SNR values across
all blocks) were excluded (3% of blocks). All VEP trials
were adjusted to a baseline of 0 by subtracting the
mean of the first 50 ms.

Visual Evoked Potentials
The mean prVEP for each subject was calculated

across all reversals collected in a given session. Each
session consisted of 5, 20-second blocks. Representa-

tions of prVEPs show the mean across-subject VEP
with 95% confidence intervals obtained by bootstrap
analysis across subjects with replacement.

PCAModel
Twenty female subjects and 20 male subjects were

randomly selected from a pool of 90 subjects who had
at least 2 recorded sessions, less than 6 months apart
(Supplementary Fig. S1). These subjects constituted
the training dataset. Mean prVEP across all trials, and
across the two sessions from the training dataset, were
used for PCA calculations. PCA was calculated using
singular value decomposition (SVD):

Mm x n = Um x m �m x n Vn x n

whereMatrixM is am x nmatrix,Matrix U is a is am x
m orthogonal matrix, � is am x n rectangular diagonal
matrix, and V is a n x n orthogonal matrix. For our
dataset, matrix M consisted of m = 40 subjects and n
= 512 voltage points spanning 500ms sampled at a rate
of 1024Hz. The PCAwas decentered (i.e. themeanwas
not subtracted from the responses for the analysis). The
initial PCs that described >95% of the total variability
were retained for subsequent analysis. We refer below
to this set of PCs as the “PCA model.”

PCA Model Validation for Generalizability and Retest
Reliability

Forty age- and sex-matched subjects were selected
from the remaining pool. This validation dataset was
projected onto the PCA model. The distribution of
coefficients for each PC were compared between the
training and validation datasets using a two-sample
Kolmogorov-Smirnov (KS) test.

We examined the reproducibility of coefficients
within subject. Each session from the validation dataset
was projected on to the PCA model. We calculated the
Pearson correlation coefficient between PC coefficients
from session 1 and session 2 across subjects. We then
calculated the distance between session 1 and session 2
within the 7 PCdimensions for all subjects to determine
if a subject could be correctly matched between their
first and second sessions. Rank order for the small-
est Euclidean distance was determined for the subject’s
own match between session 1 and session 2, compared
to combinations with all other subjects.

Sex and Age Comparisons
Categorical variation across the subject group in sex,

and continuous variation in age, were each modeled
by an ANOVA for which the covariates were created
from the seven PC coefficients from each subject. We
simulated prVEP signals for a 10-year-old, 15-year-old,
and 20-year-old subject (regressing out the effect of

https://github.com/pattersongentilelab/preregistrations
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Figure 1. Schematic demonstrating generation and use of the PCA model. (a) Forty randomly selected subjects were used to generate
the PCA model. Seven PCs (gray dotted waveforms) capture 96.0% of the variability across these 40 subjects. (b) An example subject from
the validation dataset is fit to the PCA model. The subject was not used to generate the original model. The example subject’s mean VEP
waveform (blue) is fit to the PCA model (the PCs multiplied by the coefficients for the example subject are shown in blue lines overlapping
the original PCs in dotted gray) and a PC coefficient is generated for the subject for each of the 7 PCs (blue “x”).

sex) by obtaining the PC coefficients of the 7 PCs for
this age group and fitting to the PCA model.

Peak Analysis
The N75 and P100 peaks were defined by identify-

ing the local minimum in the 60 to 90 ms range, and the
local maximum in the 90 to 130 ms range, respectively.
This was done from the mean VEP waveform for each
session for the comparison across sessions, and from
the mean VEP waveform across sessions for the age
correlation. Pearson Correlation Coefficients between
session 1 to session 2, and correlation with age were
calculated for these three variables.

Results

Seven Components are Sufficient to Capture
prVEP Variability

The prVEP (averaged across sessions) from 40
randomly selected subjects (20 female subjects and
20 male subjects) was used to derive the PCA model
(i.e. training dataset). Specifically, PCA was used to
capture the variability in the VEP waveform across
these 40 subjects (Fig. 1a). The mean prVEP for the
training dataset is shown in Figure 2a. Seven PCs
(Fig. 2b) accounted for 96.0% of the variability in this
sample (Fig. 2c). We refer to these seven PCs gener-
ated by the training dataset as the PCA model. As the
PCA was decentered, the first PC approximates the
mean prVEP. PCs two through seven do not clearly

map to particular peaks or points of time within the
prVEP signal. However, certain peaks are represented
in particular ways within these PCs. For instance, PC 2
has the effect of broadening the P100 peak. PC 3 has
the effect of shortening the peak latency of P100 and
increasing the P100 amplitude. PC 4 primarily broad-
ens the P100 peak. These complex changes in peak
shape would not be fully captured by traditional peak
analysis techniques.

The PCAModel Yields Similar PC Coefficients
in an Independent Validation Dataset

Forty age- and sex-matched subjects were selected to
validation the generalizability of the PCAmodel. There
were no significant differences in patient demographics,
including race/ethnicity and medical history between
the training and validation subjects (Table 1). There
was a significant difference of the number of subjects
on stimulant medications for attention deficit hyperac-
tivity disorder (ADHD), with more subjects on these
medications in the validation compared to the training
group (Table 1).

Measurements from the validation subjects were
projected onto the PCA model generated from the
training subjects. An example of a validation subject
having their VEP projected upon the PCA model
with resultant coefficients for the 7 PCs is shown in
Figure 1b. If the PCA model is generalizable, it should
be able to capture variance in the validation dataset
similar to its performance in the training dataset. We
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Figure 2. PCA model. PCA was generated with 40 randomly
selected subjects (20male subjects and20 female subjects). (a)Mean
VEP across all 40 training subjects; gray represents 95% confidence
interval (CI) by bootstrap analysis. (b) PCs 1 to 7, which account for
96.0% of the variability in the data. (c) Scree plot showing percent
explained variance of PCs 1 to 7.

found that the 7 PCs of the model accounted for 90.5%
of the variance in the validation dataset.

As a second test of generalizability, we considered
that the distributions of PC coefficients derived using
the PCA model in the validation dataset should be
similar to the distributions seen in the training dataset.
We examined these distributions for each PC and found
substantial overlap of the PC coefficients derived from
the training (black) and validation (blue) datasets (Fig.
3a). Comparison of the mean and distribution of PC
coefficients between the datasets revealed no signifi-
cant differences (see Fig. 3a, P > 0.3 for all PCs; KS

test). There was also no difference between training and
validation datasets in the seven PC multidimensional
space (ANOVA F(1,78) = 0.03, P = 0.86).

Coefficients Derived Using PCAModel Have
GoodWithin Subject Retest Reliability

The PCA model was created using the validation
dataset. Specifically, the mean age and mean prVEP
was calculated from two separate sessions for each
subject. We next asked if the PC coefficients obtained
using this model were similar within subject for the
two testing sessions. For each PC, we examined the
correlation of coefficients across subjects for data from
the first and second testing session (Fig. 3b). The
PCA model demonstrated high retest reliability across
sessions (Pearson correlation coefficient, R ≥ 0.75 for
all PCs). We examined the correlation between session
1 and session 2 coefficients across the first 40 compo-
nents of the PCA model (i.e. extending beyond the
first 7 PCs that we retained; Supplementary Fig. S2a).
The intrasubject reliability of the coefficients of the
prVEP declines across the components, indicating that
the higher dimensions of the model likely reflect nonre-
producible noise in the measurement. Consequently,
expressing prVEPs by projection onto the first seven
PCs of the PCA model constitutes a noise-reduction
technique.

The similarity of any two prVEPs may be expressed
by projecting the waveforms upon the PCA model and
measuring the Euclidean distance between the two sets
of seven PC coefficients. The distance between session
1 and session 2 was calculated within the 7 PC dimen-
sions for all subjects to determine if a subject could
be correctly matched between their first and second
sessions. This would indicate very high intrasubject
compared to intersubject reliability and indicate stabil-
ity of VEP signal for a single subject across sessions.
Rank order for the subject’s ownmatch between session
1 and session 2, compared to combinations with all
other subjects is shown (Fig. 3b, lower right). In 70%
of the subjects, the best match to their session 1 prVEP
was their session 2 prVEP. In over 85% of the subjects,
the session 2 prVEP was in the top 5 ranking of
prVEPs that were similar to session 1, compared to
40 possible subject session 1 and session 2 combina-
tions. We examined the ability to match the prVEP
from a subject across sessions as a function of the
number of PCs used to describe the data. Accuracy
plateaued with inclusion of approximately seven PCs
further supporting the use of this dimensionality to
describe the prVEP data (Supplementary Fig. S2b).We
also looked at correlation between session 1 and session
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Table 1. Subject Demographics for the Training and Validation Subject Groups Used to Generate and Validate the
PCA Model, Respectively

Training Subjects Validation Subjects

No. of subjects 40 40
Male 20 20
Female 20 20
Median age at first VEP 15.3 y 15.3 y t-test
[age range] [11.2–19.1] [11.8–18.1] P = 0.94
Race/ethnicity t-test
Non-Hispanic White 28 31 P = 0.88
Non-Hispanic Black 3 5
Hispanic 3 0
Non-Hispanic Asian 1 1
Non-Hispanic mixed race 1 2
Non-Hispanic other 0 0
Unknown 4 1
Medical history z-test
Concussion 9 11 P = 0.61
Migraine 0 3 P = 0.08
Chronic headaches 0 1 P = 0.32
ADHD 1 5 P = 0.09
Motion sickness 3 2 P = 0.64
Sleep problem 0 2 P = 0.15
Anxiety 2 4 P = 0.40
Depression 1 4 P = 0.17
Other psychiatric disorder 0 2 P = 0.15
POTS 0 1 P = 0.32
Neuro-active medications z-test
Stimulant (ADHDmedication) 0 5 P = 0.02
SSRI or SNRI 1 3 p = 0.31

No subjects reported amedical history of dyslexia, bipolar, drug/alcohol use disorder, autism, epilepsy, tic disorder, or ampli-
fied musculoskeletal pain syndrome (AMPS).

POTS, postural orthostatic tachycardia syndrome; SNRI, serotonin-norepinephrine reuptake inhibitor; SSRI, selective
serotonin reuptake inhibitor.

2 for standard peak analysis metrics, including the N75
and P100 peak latencies and the N75 to P100 peak-to-
peak amplitudes. N75 and P100 peak latency showed
good correlation (R = 0.45, P = 0.004; R = 0.64, P <

0.001, respectively), and the N75 to P100 peak-to-peak
amplitude showed excellent correlation (R = 0.92, P <

0.001) across sessions (Supplementary Fig. S3a). Given
the high test-retest reliability of the measurements,
the mean prVEP was calculated across two sessions
for each subject (when available) for the remaining
analyses.

Characteristics of the Full Cohort

The remaining analyses were performed on the
full cohort of 155 subjects. Demographics are shown

for the full cohort (Table 2). Two subjects had a
medical history of a “lazy eye,” two subjects had
a history of wearing an eye patch, and one subject
had a history of strabismus. Exclusion of these five
subjects did not significantly change the outcome of
the results. Seventeen (11%) of the subjects reported
taking neuroactive medications, including stimulants
for ADHD (9), selective serotonin reuptake inhibitors
or serotonin and norepinephrine reuptake inhibitors
(7), beta blockers (1), and antipsychotics (1). The
other 34 subjects who reportedmedication use included
as needed asthma inhalers, birth control, and allergy
medications. Overall PCSI scores were low (median
= 3.5 out of a possible total score of 126), and
there was not a significant difference in the distri-
bution of PCSI scores for subjects with versus
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Figure 3. Generalizability and test-retest reliability of the PCA model. (a) PC coefficient comparison of 40 training subjects (black) and
40 validation subjects (blue) showed no significant differences in the mean or distribution of individual PCs (KS test P > 0.3 for all PCs) or
multidimensional space across all PCs (ANOVA F(1,78) = 0.03, P = 0.87). (b) Scatter plots present the coefficients for each PC derived from
session 1 and session 2 for each subject. There was high correlation for these measurements between sessions across subjects (all R > 0.7).
The bottom right panel shows the proportion of subjects with the rank score for a subject’s Euclidean difference between session 1 and
session 2 compared to session 2 of all validation subjects. Black line shows the cumulative proportion of subjects.

without a remote history of a concussion (P = 0.53,
KS test).

There Was An Effect of Sex on prVEP in the
PCAModel

A linear regression model was generated to examine
if the seven PCs varied based on the sex of a subject.
We did not observe a significant difference between
male subjects and female subjects across all 155 subjects
(F(7,147) = 1.69, P = 0.12). However, when subjects
on neuro-active medication were excluded (8 female
subjects and 9 male subjects), there was a significant
effect of sex on the PCA model (F(7,130) = 2.31, P =
0.03). Coefficients that showed a significant difference
between male and female subjects were PC1 (t(1,130) =
−2.13, P = 0.03) and PC6 (t(1,130) = −2.48, P = 0.01).
These differences capture an increased overall ampli-
tude (PC1) and a narrower P100 peak (PC6) for female

subjects compared to male subjects. Mean male and
female prVEPs and the distribution of the seven PC
coefficients with and without inclusion of subjects on
neuro-active medications are shown (Supplementary
Fig. S4).

The PCAModel Captures Variability
Throughout Maturation in our Pediatric
Cohort

A linear regression model was generated to examine
the effect of the seven PCs upon the age of a
subject. There was a significant, omnibus effect of age
upon the seven PC coefficients (F(7,147) = 4.37, P =
0.0002). The PC coefficients that showed a significant
correlation with age were PC2 (t(1,147) = –4.06, P =
8e−5) and PC3 (t(1,147) = –3.21, P = 0.002). PC coeffi-
cients for the seven PCs are shown as a function age
(Supplementary Fig. S5). The prVEP from any one
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Table 2. Subject Demographics of the Full Pediatric
Cohort

Full Cohort

No. of subjects 155
Male 68 (43.8%)
Female 87 (56.2%)
Median age at first VEP 15.2 y
[age range] [11.2–19.1]
Race/ethnicity
Non-Hispanic White 119 (76.7%)
Non-Hispanic Black 12 (7.7%)
Hispanic 7 (4.5%)
Non-Hispanic Asian 4 (2.6%)
Non-Hispanic mixed race 5 (3.2%)
Non-Hispanic other 2 (1.3%)
Unknown 6 (3.9%)
Medical history
Concussion 42 (27.1%)
Migraine 5 (3.2%)
Chronic headaches 1 (0.6%)
Dyslexia 1 (0.6%)
ADHD 14 (9.0%)
Motion sickness 10 (6.5%)
Sleep problem 3 (1.9%)
Anxiety 10 (6.5%)
Depression 10 (6.5%)
Other psychiatric 2 (1.2%)
POTS 1 (0.6%)
Medications
None 81
Any medication 51
Neuro-active medications 17
Stimulant (ADHDmedication) 9
SSRI or SNRI 7
Beta blocker 1
Antipsychotic 1
Not reported 23

No subjects reported a medical history of bipolar,
drug/alcohol use disorder, autism, epilepsy, tic disorder, or
amplified musculoskeletal pain syndrome (AMPS).

POTS, postural orthostatic tachycardia syndrome; SNRI,
serotonin-norepinephrine reuptake inhibitor; SSRI, selective
serotonin reuptake inhibitor.

subject can be described as a point in the 7-dimensional
PC space.We plotted the prVEPs for our subjects along
the subset of two dimensions that showed a signifi-
cant change with maturation (Fig. 4a). A vector within
the PC space describes the effect of age upon the
coefficients. The PCA model may be used to synthe-
size representative prVEP waveforms that lie along this

vector. The result is a synthetic waveform that expresses
the central tendency of the prVEP corresponding to
subjects of different ages (Fig. 4b). These waveforms
capture multiple, nonlocal changes as a function of
increasing subject age, including a progressively smaller
P100 amplitude, narrowing of the P100 peak, and an
increasing N135 amplitude. In agreement with these
findings, peak analysis metrics showed a negative corre-
lation of the N75 to P100 peak-to-peak amplitude
with age (R = −30, P = 0.002), but there was no
significant correlation between age and peak latency
(see Supplementary Fig. S3b). Removal of subjects
on neuro-active medications did not have a signifi-
cant impact on the outcome of the PCA model across
age.

We considered if a non-neural developmental
change, such as head circumference, could account for
age effects in the prVEP. We examined the correlation
between age and head circumference in the 124 subjects
with this measure and found a nonsignificant correla-
tion (R = −0.04, P = 0.66). There was no relation-
ship between individual differences in head circumfer-
ence and the set of seven PC coefficients across subjects
(F(7,116) = 0.70, P= 0.67). It seems therefore that varia-
tion in head circumference in this cohort has minimal
effect upon our prVEP measures.

Discussion

We found that a PCA model using 7 PCs accounted
for over 90% of the intersubject variability of prVEP
across 40 pediatric subjects for both a training and
validation dataset. We demonstrate that this PCA
model is a generalizable and reliable means of analyz-
ing prVEP in a large pediatric sample. PCA offers
a method of adjusting for differences across matura-
tion to remove this confounding variability, which is
important for the interpretation of VEPmeasurements
in developing youth. For these reasons, PCA offers a
promising complement to standard peak analysis for
interpretation of VEP.

Comparison to Previous Studies

Prior studies that have relied on peak analysis
have generally found decreasing peak amplitude and
decreasing peak latency with maturation, although
some conflicting results have been reported. Snyder
and colleagues (1981) found that the amplitudes of
the P50, N64, P100, and N150 peaks decreased with
increasing age during adolescence.12 In related work,
Shearer and Dustman (1980) found that latencies of
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Figure 4. PC coefficients change systematicallywith age. (a) The VEP fromeach subjectmay bedescribedby their PC2 and PC3 coefficients.
These dimensions of the PCA model had a significant association with subject age. Plot points are colored from black to blue indicating
increasing subject age, and the red arrow indicates the vector direction of the effect of subject age in this space. (b) Simulated VEPs for a
10-year-old, 15-year-old, and 20-year-old subject.

these peaks gradually increased over time.13 Wright and
colleagues (1985) found overall amplitudes were higher
in their youngest age group (10–19 years) compared to
the older age groups, and found no differences in peak
latencies across age.11 One limitation of this study was
that prVEPs were averaged across subjects in 10-year
age groups, which would have failed to capture differ-
ences of maturation during adolescence. Emmerson-
Hanover and colleagues (1994), who examined a large
cohort of 406 subjects ages 6 to 80 years, found
somewhat different results. They observed that the P50
to N70 amplitude increased until about age 13 years
and then decreased, whereas the N70 to P100 ampli-
tude decreased with maturation.10 They also found the
P50, N70, and P100 peak latencies decreased during
maturation.10 Brecelj and colleagues (2002) also found
in children 7 to 18 years old that P100 peak latency
decreased with maturation.18 Allison and colleagues
(1983) similarly found the VEP P100 peak latency
decreased between 4 and 19 years of age, although
the peak latency of other peaks and peak amplitude
were not reported.9 We also observed that prVEP
amplitude decreases with maturation using both the
PCA model and peak analysis (see Fig. 4 and Supple-
mentary Fig. S3b). Our PCA model also revealed a
narrowing of the P100 peak with maturation that
cannot be easily captured by standard peak analysis
(see Fig. 4b). Multiple PCs show a prominent change
in the vicinity of the P100 peak. This reflects that
there is substantial individual variation in the shape
and the amplitude of the waveform in this tempo-
ral window. Age-related variability was predominantly
described by PC2 and PC3. PrVEP changes with age
in youth may be due to maturation of neural circuits
within the visual pathway.18 Head circumference did

not appear to account for the differences we observed
across age, although we cannot rule out the possibility
that other physical characteristics, such as skull thick-
ness19 or age-related closing of cranial sutures,20 could
have played a role. Of note, our model of age-related
effects over adolescence may not generalize to other
age groups. The use of PCA in younger and older age
groups would be an interesting expansion of the work
presented here.

We find good generalizability of the PCA model
between training and validation subjects. Indeed, there
were no differences in PC coefficients for the training
and validation datasets even though there were a few
subjects in the validation set on stimulant medications
for ADHD. We also find good intrasubject reliability
for prVEPs in our pediatric cohort using both the PCA
model and standard peak analysis metrics. An advan-
tage with the PCAmodel is it includes 7-dimensions for
comparison, which we show improves the performance
of matching a subject’s session 1 to their own session
2 (see Supplementary Fig. S2b). We are unaware of a
similar prior measurement in children, although the
prVEP has also been found to have good reliability
in adults.21–23 Very few studies have examined the
stability of VEP signals across sessions in the pediatric
population. Schellberg and colleagues (1987) found
substantial intrasubject variation of flashVEP between
sessions in 26 children 10 to 13 years old spaced 10
months apart on average. The variability they reported
was higher than what was observed in adult studies.14
Their use of flash VEP, which can show higher intra-
subject variability,15 may at least partially account
for the high intrasubject variability. Differences
may also be in part due to reliance on peak analy-
sis compared to PCA.
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Prior work indicates that female subjects tend to
have increased peak amplitudes and shorter peak laten-
cies compared to male subjects.24–26 The PCA model
revealed a broader and lower amplitude P100 peak
in male subjects, which is consistent with these prior
results whereas providing a richer account of the
differences in VEP waveforms between sexes. This
effect achieved significance when subjects on neuro-
active medications were excluded from the analysis (see
Supplementary Fig. S4).

Global Temporal Analysis of VEP

Standard peak analysis of VEP remains an impor-
tant tool for measuring the integrity of the visual
system in many neurologic and ophthalmologic condi-
tions. However, a focus upon the peak amplitude and
peak latency in the prVEP necessarily limits the ability
of an analysis to detect subtle, nonlocal changes in
the shape of the prVEP waveform.22 Sarnthein and
colleagues (2009) used a combination of a metric of
VEP shape and traditional peak analysis to address this
limitation. They similarly demonstrated high test-retest
reliability of prVEPs over 8 months in 10 healthy adult
women using a combination of N75 and P100 peak-to-
peak amplitude and peak time with pairwise regression
of VEP waveforms to account for VEP shape.22 Here,
we describe a method using PCA that takes this one
step further in eliminating focus on predefined peaks
and quantifying instead the most informative individ-
ual variability in the temporal waveform.

Although there are many advantages, the PCA
method has the limitation that the components are
not temporally constrained so they cannot be as easily
linked to discrete temporal physiologic events.27 Many
studies have focused on linking the N75, P100, and
N135 peaks of the prVEP to different stages of process-
ing in the visual hierarchy.28 Compromise between
the unconstrained decomposition of PCA and a rigid
focus on individual peaks may be found in the use of
informed basis functions, as has been used in the spatial
analysis of functional magnetic resonance imaging
(fMRI)29 and EEG30 data. In such an approach, the
prVEP is projected onto a set of components that are
crafted to reflect both temporally local features and
global variation. The development and use of informed
basis sets offers a promising direction for future prVEP
analysis.

Although PCA has been applied to spatial local-
ization in multifocal VEP studies,27,31 we are unable
to find prior examples of PCA or other dimension-
ality reduction approaches being used to character-
ize individual differences in the time series of prVEP

or other EEG data. Indeed, there have been calls to
increase the use of model-based inference in EEG.32
We have demonstrated thatmodeling the global tempo-
ral variability of prVEP using PCA is highly gener-
alizable and repeatable in a pediatric cohort. These
results are promising for the application of this
approach to the study longitudinal pediatric data.
Further, our modeling approach may be used to
capture and remove variability associated with matura-
tion. This offers a means of addressing confounds
of unmatched age differences in the populations, and
testing for the subtle effects of a disease upon matura-
tion. Finally, this model has the potential to identify
differences between normal and pathologic groups that
are not captured by focusing on specific predefined
peaks.

Conclusion

PCA is a highly repeatable and generalizable
method of analyzing prVEP data and offers a useful
means of addressing variability during maturation
in youth. These features are especially advantageous
for longitudinal study designs. PCA offers a compli-
mentary approach to standard peak analysis that can
account for the global temporal variability in the
prVEPwaveform, whichwarrants further study in both
healthy and diseased states.
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