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High-throughput phenotyping technologies are growing in importance in livestock
systems due to their ability to generate real-time, non-invasive, and accurate animal-level
information. Collecting such individual-level information can generate novel traits and
potentially improve animal selection and management decisions in livestock operations.
One of the most relevant tools used in the dairy and beef industry to predict complex
traits is infrared spectrometry, which is based on the analysis of the interaction between
electromagnetic radiation and matter. The infrared electromagnetic radiation spans
an enormous range of wavelengths and frequencies known as the electromagnetic
spectrum. The spectrum is divided into different regions, with near- and mid-infrared
regions being the main spectral regions used in livestock applications. The advantage
of using infrared spectrometry includes speed, non-destructive measurement, and great
potential for on-line analysis. This paper aims to review the use of mid- and near-infrared
spectrometry techniques as tools to predict complex dairy and beef phenotypes,
such as milk composition, feed efficiency, methane emission, fertility, energy balance,
health status, and meat quality traits. Although several research studies have used
these technologies to predict a wide range of phenotypes, most of them are based
on Partial Least Squares (PLS) and did not considered other machine learning (ML)
techniques to improve prediction quality. Therefore, we will discuss the role of analytical
methods employed on spectral data to improve the predictive ability for complex traits in
livestock operations. Furthermore, we will discuss different approaches to reduce data
dimensionality and the impact of validation strategies on predictive quality.

Keywords: beef cattle, dairy cattle, near-infrared, novel phenotypes, mid-infrared, spectral information

INTRODUCTION

For many years dairy and beef cattle breeding have focused on improving the production and
profitability of animals through genetics, nutrition, and management, often at the expense of other
relevant traits. To remain competitive and meet the world population increase and global climate
changes, farmers need to balance production, profitability, and sustainability. There is an extensive
list of key phenotypes that must be measured to achieve the emerging breeding goals for the advance
of genomic selection (Boichard and Brochard, 2012) and management decisions in the context of
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precision agriculture. However, recording such phenotypes
in large-scale or across different herds and countries is a
challenge (Gengler et al., 2016). High-throughput phenotyping
technologies have grown in importance in livestock systems
because of their ability to generate real-time and accurate animal-
level information. Several technologies (e.g., sensors, infrared
spectrometry, and image analysis, among others) have been
used to generate novel complex traits in dairy and beef cattle,
with infrared spectrometry being one of the most relevant
tools used in livestock to date (De Marchi et al., 2014; Dixit
et al., 2017; Bell and Tzimiropoulos, 2018). Infrared spectrometry
is based on the interaction between electromagnetic radiation
(infrared light) and matter. The modern Fourier transform
infrared spectrometers spans an enormous range of infrared
spectrum, which is divided into three main regions: NIR, near-
infrared (800–2,500 nm or 4,000–12,500 cm−1); MIR, mid-
infrared (2,500–25,000 nm or 400–4,000 cm−1); and FAR, far-
infrared (25,000–1,000,000 nm or 10–400 cm−1). NIR and MIR
are the main regions used in livestock applications (Griffiths and
de Hasenth, 2007). This technology is fast, non-invasive, non-
destructive, and has great potential for on-line measurement (De
Marchi et al., 2014; Dixit et al., 2017).

Infrared spectrometry, mainly MIR, has been widely used
worldwide to predict the concentration of protein, casein, fat,
lactose, and urea of milk through regular recording schemes
(De Marchi et al., 2014). When cows are milked 2–3 times
daily, this biological sample can be more deeply interrogated
to generate novel complex traits, which are usually expensive
and difficult to be measure on a large scale (e.g., individual
milk fatty acids, proteins, feed intake, methane emission, fertility,
energy balance, health status, and others). The majority of milk
constituents synthesized in the mammary gland are based on
the by-products from the digestion of the nutrients ingested in
a given day (McParland and Berry, 2016). Therefore, changes in
milk composition profile on that day or in the following days
can be used as a biomarker for complex phenotypes related
to metabolism. Within the beef industry, NIR technology has
been shown to be a valuable and cost-effective technology to
assess several meat quality attributes (e.g., tenderness, fat content,
color, among others) at the same time without any or minimal
sample preparation and pretreatment (Prieto et al., 2009a; Dixit
et al., 2017; Chapman et al., 2019). Therefore, the NIR technique
can be applied directly to the samples, which is an advantage
compared to reference methods, and it is also important for
the slaughterhouses that can reduce losses with carcass sample
assessment and sample preparation. Both technologies (NIR
and MIR) have great potential to assess different milk or meat
attributes using in-line systems, which could lend deep insights
and added efficiencies for both the dairy and beef industries.

Several authors have successfully used infrared spectrometry
to predict a range number of traits as reported in previous reviews
papers (Prevolnik et al., 2004; Prieto et al., 2009a, 2017; De
Marchi et al., 2014; McParland and Berry, 2016; Dixit et al., 2017;
Chapman et al., 2019). Although the aforementioned reviews
discussed the use of MIR and NIR spectrometry as a tool
to predict milk and meat traits, very little attention has been
given to analytical methods and validation strategies employed

in analyzing such spectral data. Thus, complementary to the
previous reviews, the objectives of this review are: to provide a
recent update on the use of MIR and NIR techniques as tools
to predict several novel complex traits in livestock system, with
an emphasis in dairy and beef cattle; and review and discuss
the analytical methods employed on spectral data to improve
predictive ability, the different approaches used to reduce data
dimensionality, and the impact of validation strategies on the
prediction quality.

METHODOLOGY

For this review, research articles published in peer-reviewed
journals were retrieved from Web of Science using the keywords
or the random combination of keywords presented in Table 1.
Initially, a total of 348 papers published until May 2020 was
found. The papers using NIR or MIR were selected based on
the phenotype of interest (e.g., milk composition, feed intake,
energy balance, methane emission, fertility, health status, and
meat quality traits), and from the 348 studies, only 113 were
included in this review. Studies using pre-calibrated or pre-
trained models, provided by a company or third party, were not
considered in this review. The coefficient of determination (R2)
was used as an indicator of prediction quality for continuous
variables. Some authors used the correlation coefficient as one of
the metrics to report the model prediction quality. As such, the
correlation coefficients were converted to R2 in order to have a
single statistical metric for model evaluation. Although we have
adopted R2 as metric to evaluate prediction quality in this review,
due to the number of phenotypes and studies, we also recognize
that other important metrics, such as Root Mean Squared Error
and Mean Absolute Error, must be considered to better evaluate
prediction quality, once R2 could be inflated by one sample or
it could be very sensitive to the range of the variable of interest.
For discrete distributed traits, the metric for prediction quality,
reviewed in the published papers, was the overall accuracy.
Thus, only the R2 or accuracy reported by the author in the
validation set (internal or external) were considered in this review
paper. The validation strategy employed by each author (i.e.,
data-splitting, leave-one-out cross, or k-folds cross-validation)
was reviewed and it is presented in the tables, along with the
information of prediction quality for each respective phenotype.
However, some papers reviewed here did not completely describe
the validation strategy adopted; therefore, it was not reported
in the tables of this review. More information related to

TABLE 1 | Keywords used to retrieve published papers from Web of Science*.

Cattle Mid or Near-infrared

Dairy Milk compounds, milk fatty acids, protein, minerals, metabolic status,
energy balance, feed efficiency, feed intake, energy intake, methane
emission, reproduction, fertility, lameness, blood metabolites

Beef Meat quality, feed efficiency, feed intake, energy intake, methane
emission, metabolic status, energy balance, reproduction, fertility

*Random combination of mid or near-infrared with the target phenotypes for beef
and dairy cattle.
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the compiled validation strategies is presented in the section
“Validation Strategies.”

COMPLEX TRAITS PREDICTED BY
INFRARED SPECTROMETRY DATA

Over the past several years, many studies have investigated
the effectiveness of NIR and MIR to predict novel complex
phenotypes in dairy and beef cattle, as shown in Figure 1. Since
De Marchi et al. (2014) wrote a review paper on milk MIR
spectrometry, there has been an exponential increase in the
number of studies using milk MIR spectral data to predict a
range of complex traits. Overall, these studies include the direct
quantification of compounds present in milk (e.g., milk fatty acids
and protein profile) as well as the prediction of traits linked to
milk spectra (e.g., health status, feed intake, methane emission,
fertility, and energy balance). The use of NIR spectrometry to
assess meat chemical composition and quality traits was reviewed
for different species including beef, chicken, and pork by many
authors (Prevolnik et al., 2004; Prieto et al., 2009a, 2017; Dixit
et al., 2017; Chapman et al., 2019). The authors have stated that
NIR is capable of measuring meat chemical composition and
quality associated traits in different species, including beef cattle.
However, the interest in using NIR technology as an alternative
to predict novel traits in beef cattle since the first review paper
(Prevolnik et al., 2004) has been lower than for using MIR
spectrometry, based on the amount of paper using each method
compiled for this current review (Figure 1). The number of
studies developed in the last years using MIR and NIR techniques
highlights the growing interest by the scientific community and

livestock industry in this topic. Indeed, several novel phenotypes
have been recently generated using both MIR and NIR techniques
in dairy and beef cattle and they will be covered throughout
this review section.

Milk Composition
Beyond the nutritional meaningful for human, milk composition
(e.g., protein, fat, lactose, and minerals) has direct implications on
the sensory and technological properties of milk products as well
as on the economic value of the milk and milk products (Soyeurt
et al., 2009; Bastin et al., 2011; Bonfatti et al., 2011; Gengler et al.,
2016; Fleming et al., 2017). Thus, over the last few years, efforts
have been made by scientists and the dairy industry to quantify
milk composition using modern high-throughput phenotyping
techniques such as MIR spectrometry. Indeed, milk recording
schemes worldwide have used MIR technique to measure total
fat, protein, casein, lactose, and urea contents, which is quick
and inexpensive when compared with gold standard methods (De
Marchi et al., 2014). Given the promising and availability of milk
spectra per cow per milking, several studies have reported that
the major milk fatty acids (FA) can also be predicted using spectra
data (Tables 2, 3).

For FA with less than 16 carbons (C4:0; C6:0; C8:0; C10:0;
C12:0; and C14:0) the R2 reported varied from 0.37 to 0.97
in the validation set (Table 2). The feasibility of milk MIR
spectra to predict FA with 16 carbons (C16:0 and C16:1) was
investigated by several authors. The R2 observed in the validation
sets were between the range of 0.33 and 0.95 (Table 2). For
the FA with more than 16 carbons (C17:0; C18:0; C18:1 cis-9;
C18:2 cis-9, trans-11; C18:2 cis-9, cis-12; and C18:3 cis-9, cis-12,
cis-15) the R2 reported in the validation set varied from 0.07

FIGURE 1 | Published papers retrieved from Web of Science based on the combination of keywords presented in Table 1. Scientific papers published up to May
2020.
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TABLE 2 | Number of samples (N) and coefficient of determination in the validation set for the milk fatty acids predicted from mid-infrared spectrometry using partial least
square methodology in dairy cattle.

References N Breed Validation* C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C16:0 C16:1

Soyeurt et al. (2006) 49 Mul CV 0.51 0.52 0.59 0.64 0.74 0.82 0.82 –

Soyeurt et al. (2008) 78 Mul LOOCV – – – – – 0.90 0.84 –

Rutten et al. (2009) 3,622 – R-Tr/Te 0.91 0.96 0.94 0.92 0.85 0.94 0.94 –

Afseth et al. (2010) 224 Nor 20-F CV 0.72 0.83 0.88 0.89 0.90 0.82 0.65 –

Coppa et al. (2010) 468 – Tr/Teb 0.66 0.88 0.90 0.91 0.89 0.88 0.91 –

De Marchi et al. (2011)a 267 Bro LOOCV – – 0.48 0.52 0.52 0.56 0.49 –

Soyeurt et al. (2011) 517 Mul Tr/Teb 0.89 0.95 0.93 0.92 0.92 0.95 0.93 –

Ferrand et al. (2011) 250 Mul Tr/Te 0.85 0.96 0.96 0.91 0.91 0.93 0.88 –

Eijndhoven et al. (2013) 1,236 Mul Tr/Teb 0.92 0.93 0.92 0.93 0.85 0.95 0.93 –

Ferrand-Calmels et al. (2014) 345 Mul R-Tr/Te 0.93 0.96 0.97 0.95 0.96 0.95 0.94 –

Lopez-Villalobos et al. (2014) 850 Cro R-Tr/Te 0.73 0.78 0.81 0.81 0.86 0.77 0.74 0.33

Eskildsen et al. (2014) 890 Mul 10-F CV – 0.88 0.89 0.91 0.91 0.90 0.91 0.63

Martin et al. (2015)a 422 – 20-F CV 0.82 – – – – 0.82 0.66 –

Ferragina et al. (2015)b 1,264 Bro R-Tr/Teb – – – 0.67 – – 0.60 –

Gottardo et al. (2016) 112 Mul LOOCV 0.92 0.94 0.94 – 0.93 0.93 0.92 –

Bonfatti et al. (2016) 1,040 Sim 10-F CV – – – 0.88 0.90 0.90 0.92 –

Fleming et al. (2017) 1,911 Mul 10-F CV 0.66 0.38 0.37 0.66 0.71 0.80 0.86 0.62

Ho et al. (2020) 240 Hol 10-F CV 0.94 0.94 0.90 0.89 0.90 0.93 0.95 –

aCorrelation coefficient (r) transformed to coefficient of determination (R2). bBayes B methodology employed; multibreed (Mul); Norwegian Red (Nor); Brown Swiss (Bro);
Crossbreed (Cro); Simmental (Sim); Holstein (Hol); number of folds (n-F) in the cross-validation, leave-one-out cross-validation (LOOCV), train and test cross-validation
defined by splitting the data set randomly (R-Tr/Te) or not (Tr/Te), external or independent validation. *The validation strategy defined as “CV” was assigned for the reviewed
paper that did not completely describe the validation method adopted or the authors defined that cross-validation was employed.

TABLE 3 | Coefficient of determination in the validation set for the milk fatty acids predicted from mid-infrared in dairy cattle*.

References C17:0 C18:0 C18:1a C18:2b C18:2c C18:3d SFA MUFA PUFA

Soyeurt et al. (2006) – 0.69 – 0.07 0.62 0.14 0.94 0.85 0.39

Soyeurt et al. (2008) – 0.85 – – – – – 0.93

Rutten et al. (2009) – 0.82 0.92 0.58 0.36 0.45 – – –

Afseth et al. (2010) – 0.48 0.92 0.53 0.49 0.29 0.92 0.94 0.52

Coppa et al. (2010) 0.65 0.80 0.93 0.73 0.34 – 0.95 0.91 0.75

De Marchi et al. (2011)1 0.56 0.42 0.50 0.21 – – – – –

Soyeurt et al. (2011) 0.61 0.88 0.95 0.63 0.71 0.60 0.99 0.97 0.81

Ferrand et al. (2011) – 0.77 0.91 0.70 0.65 – 0.98 0.92 0.38

Eijndhoven et al. (2013) – 0.72 – – – – 0.99

Ferrand-Calmels et al. (2014) – 0.85 0.97 0.83 0.78 – 1.00 0.98 0.78

Lopez-Villalobos et al. (2014) 0.43 0.60 0.87 0.64 0.66 0.51 0.93 – 0.73

Eskildsen et al. (2014) 0.54 0.82 0.82 0.37 0.65 – – – –

Martin et al. (2015)1 – 0.62 0.84 – – – 0.77 0.86 –

Ferragina et al. (2015)2 – 0.49 – – – – – – –

Gottardo et al. (2016) – 0.80 – – – – 0.99 0.95 0.71

Bonfatti et al. (2016) – 0.78 0.90 0.65 – – 0.97 0.93 0.75

Fleming et al. (2017) 0.53 0.73 0.79 – 0.65 – 0.94 0.84 0.66

Ho et al. (2020) 0.82 0.81 0.72 – – – – – –

1Correlation coefficient (r) transformed to coefficient of determination (R2). 2Bayes B methodology employed. aC18:1 cis9. bC18:2 cis9, trans 11. cC18:2 cis9, cis12.
dC18:3 cis9, cis12, cis15. SFA, saturate fatty acids; MUFA, monounsaturated fatty acids; PUFA, and polyunsaturated fatty acids. *The number of samples, breed, and
validation strategy are described in Table 2.

to 0.95 (Table 3). The sums of saturated and monounsaturated
FA were predicted with precision (R2) higher than 0.80, whereas
for the polyunsaturated FA, the R2 varied from 0.38 to 0.81
in the validation set (Table 3). In general, FA with larger
proportion (% of total FA) in the milk (e.g., C14:0, C16:0, and

C18:1) presented greater R2 (e.g., C14:0, C16:0, and C18:1),
when compared to milk FA of small individual proportion in
milk (e.g., C17:0).

Studies have also investigated the effectiveness of using milk
spectra data as a potential predictor of total protein, casein,
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and whey, as well as the individual caseins and whey proteins
(Table 4). The R2 in the validation set for total protein and casein
were greater than 0.70, except Sørensen et al. (2003); De Marchi
et al. (2009), Rutten et al. (2011), and McDermott et al. (2016)
that observed R2 in a range of 0.25–0.58. The R2 for total whey
varied from 0.42 (McDermott et al., 2016) to 0.69 (Niero et al.,
2016) in the validation set. For the individual caseins αS1-CN,
αS2-CN, β-CN, and κ-CN R2 in a range of 0.18 (β-CN; Rutten
et al., 2011) to 0.78 (αS1-CN; Ferrand et al., 2012) were reported
in the validation set. The α-LA whey protein fraction presented
the lowest predictionR2, varying from 0.06 (Eskildsen et al., 2016)
to 0.48 (Ferrand et al., 2012), compared with β-LG where the
prediction R2 were in a range of 0.34 (Eskildsen et al., 2016) to
0.64 (Bonfatti et al., 2011) in the validation set.

The effectiveness of milk spectra data to predict mineral
composition in dairy cattle has also been investigated. The
prediction quality reported in the validation set for Ca, Mg,
Na, and P is presented in Table 5. Model performances were
satisfactory to predict Ca and P (R2 > 0.67) in Soyeurt et al.
(2009); Toffanin et al. (2015), Visentin et al. (2016), and Franzoi
et al. (2019). But the same minerals were poorly predicted
(R2 < 0.55) by Gottardo et al. (2015); Bonfatti et al. (2016),
Malacarne et al. (2018), and Fleming et al. (2019). For K, Mg, and
Na the R2 reported by the authors varied from 0.25 (Malacarne
et al., 2018) to 0.75 (Franzoi et al., 2019) in the validation set.

Divergences in the predictability reported might be related to
the different gold standard methodologies used in the reference
data, population studied, and the sample size (De Marchi et al.,
2014). Overall, the R2 observed in the published papers reviewed
here highlight the potential of milk spectra data as a predictor
of milk FA, proteins, and minerals. These studies also underline
the need for future work using robust analytical data mining
techniques and large datasets as a way to improve the model
performance for phenotypes that have been inaccurate predicted.
The possibility of more frequent predictions of such phenotypes
could potentially create discoveries in different areas of animal
science, such as genetics/genomics, nutrition, physiology, and
reproduction. For example, some authors have demonstrated that
milk fatty acids can be good predictors of plasma non-esterified

fatty acids concentration (Mann et al., 2016; Dórea et al., 2017),
which is an important phenotype associated with negative energy
balance in lactating dairy cows. Additionally, such predictions
can be used as a powerful tool to improve management decisions
on livestock operations.

Feed Intake
Given the economic impact of animal feed costs on farmer’s
profitability, feed efficiency has been widely discussed as a
key phenotype to be included in the selection indexes and
for management decisions on livestock operations (Berry
and Crowley, 2013; Berry, 2015; Seymour et al., 2019).
Selecting animal for feed efficiency is highly attractive, but
the practical implementation might be challenging, primarily
because individual feed intake records on a large-scale are
unavailable to date, and secondly some aspect of production,
such as milk output or body weight, and energy sinks including
maintenance, need to be accounted to determine individual feed
efficiency (Berry and Crowley, 2013; Connor, 2015). Therefore,
the use of NIR and MIR spectrometry has been explored as a
potential tool to predict traits related to feed efficiency in beef
and dairy cattle, as shown in Tables 6, 7. Seven studies evaluated
the use of fecal NIR on fecal samples to predict organic or dry
matter intake, reporting R2 ranging from 0.44 (Huntington et al.,
2011) to 0.98 (Decruyenaere et al., 2004) in the validation set
(Table 6). From the studies reviewed, only one study reported
the use of feed (grass NIR) to predict dry matter intake, in which
the R2 reported in the validation set was 0.71. It is important
to point out that the results have not always been consistent,
and few studies have compiled data sets of sufficient size to
generate robust and accurate prediction equations. Furthermore,
the use of NIR spectrometry on grab fecal and grass samples
requires preparation and pretreatment, which is laborious, time-
consuming, and may not be applicable on a large-scale.

Due to the difficulties in utilizing fecal or grass samples with
NIR to predict intake, the value of milk MIR spectrometry for
prediction of feed efficiency has also been evaluated (Table 7).
As many milk recording schemes globally already use MIR
spectrometry to predict protein, fat, casein, lactose, and urea

TABLE 4 | Number of samples (N) and coefficient of determination in the validation set for the major protein content predicted from milk spectra using partial least square
methodology in dairy cattle.

References N Breed Validation Prot Cas Whey αS1-CN αS2-CN β-CN κ-CN α-LA β-LG

Luginbühl (2002) 74 – Tr/Te* – 0.90 – – – – – – –

Sørensen et al. (2003)a 86 Multibreed – – 0.53 – – – – – – –

De Marchi et al. (2009)a 1,336 Simmental 20-F CV 0.58 0.58 0.53 0.50 0.35 0.32 0.43 0.29 0.55

Bonfatti et al. (2011) 1,517 Simmental 4-F CV 0.78 0.77 0.61 0.66 0.49 0.53 0.49 0.31 0.64

Rutten et al. (2011) 1,800 Holstein R-Tr/Te - 0.25 0.53 0.18 0.26 0.19 0.28 0.20 0.56

Ferrand et al. (2012) 193 Multibreed Tr/Te 0.99 0.88 0.58 0.65 0.71 0.78 0.54 0.48 0.45

Bonfatti et al. (2016) 1,137 Simmental 10-F CV 0.81 0.80 0.53 0.74 0.49 0.58 0.39 0.24 0.48

Eskildsen et al. (2016) 832 Multibreed Tr/Te – – – 0.66 0.36 0.25 0.71 0.06 0.34

McDermott et al. (2016)a 730 Multibreed 4-F CV* – 0.55 0.42 0.43 0.43 0.45 0.31 0.29 0.48

Niero et al. (2016) 114 Multibreed LOOCV 0.88 0.88 0.69 – – 0.60 0.74 0.37 0.47

Total protein (Prot), total casein (Cas), number of folds (n-F) in the cross-validation, leave-one-out cross-validation (LOOCV), train and test cross-validation defined by
splitting the data set randomly (R-Tr/Te) or not (Tr/Te). aCorrelation coefficient (r) transformed to coefficient of determination (R2), and *external or independent validation.
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TABLE 5 | Number of samples (N) and coefficient of determination in the validation set for mineral contents using partial least square methodology.

References N Breed Validation* Ca K Mg Na P

Soyeurt et al. (2009) 92 Multibreed LOOCV 0.87 0.36 0.65 0.65 0.85

Gottardo et al. (2015) 208 – 10-F CVb 0.55 – – – –

Toffanin et al. (2015) 208 Holstein LOOCV 0.53c – – – 0.70c

Bonfatti et al. (2016) 689 Simental 10-F CV 0.48 0.41 0.46 – 0.43

Visentin et al. (2016) 923 Multibreed R-Tr/Teb 0.67 0.69 0.65 0.40 0.68

Malacarne et al. (2018)a 153 Holstein Tr/Teb 0.25 0.34 0.26 0.25 0.53

Franzoi et al. (2019)b 93 Holstein CV 0.79 0.55 0.68 0.75 0.87

Fleming et al. (2019) 986 Multibreed 10- FCV 0.25 – – – –

aBulk milk samples. bBackward interval partial least squares (BiPLS), number of folds (n-F) in the cross-validation, leave-one-out cross-validation (LOOCV), train and
test cross-validation defined by splitting the data set randomly (R-Tr/Te), external or independent validation. cCorrelation coefficient (r) transformed to coefficient of
determination (R2). *The validation strategy defined as “CV” was assigned for the reviewed paper that did not completely describe the validation method adopted or the
authors defined that cross-validation was employed.

contents (De Marchi et al., 2014), they can be a useful source
of information on large-scale operations. The majority of
researchers have aimed to predict dry matter intake, though
some have also evaluated predictions for residual feed intake,
net energy intake, and effective energy intake. For dry matter
intake, the R2 in the validation set was in a range of 0.29
(Wallén et al., 2018) to 0.77 (Shetty et al., 2017b). The studies
evaluating the use of milk spectra to predict effective energy
intake reported R2 varying from 0.49 (McParland et al., 2014) to
0.74 (McParland et al., 2011). McParland et al. (2015) observed
R2 of 0.56 for energy intake in the validation set. McParland
et al. (2014) and Shetty et al. (2017b) reported R2 of 0.36 and
0.46, respectively, to predicted residual feed intake from MIR data
in the validation set. The majority of the studies observed that
combining MIR data with other animal-level variables, such as
milk yield, body weight, and feeding behavior resulted in greater
prediction precision and accuracy compared to predictions based
only on MIR data. The reviewed studies suggest that milk MIR
spectra data is a promising tool to predict indicator traits for feed
efficiency in dairy cattle. Such a novel source of information has

TABLE 6 | Number of samples (N), and coefficient of determination in the
validation set (R2) for the prediction of dry matter intake (DMI) and organic matter
intake (OMI) traits using grass near-infrared (G-NIR) and fecal near-infrared (F-NIR)
spectrometry §.

References N Breed Spectra Trait Validation R2

Agnewa et al. (2004) 203 dairy G-NIR DMI 7-F CV 0.71

Boval et al. (2004) 88 beef F-NIR OMI 3-F CV 0.52

Decruyenaere et al. (2004) 139 dairy F-NIR DMI CV 0.98

Garnsworthy and Unalt (2004) 91 dairy F-NIR DMI R-Tr/Tea 0.97

Tran et al. (2010) 1,322 dairy F-NIR DMI Tr/Tea 0.58

Huntington et al. (2011) 406 beef F-NIR DMI CV 0.44

Landau et al. (2016) 125 beef F-NIR DMI 6-F CV 0.75

Johnson et al. (2017) 408 beef F-NIR DMI CV 0.73

Number of folds (n-F) in the cross-validation (CV), train and test cross-validation
defined by splitting the data set randomly (R-Tr/Te) or not (Tr/Te). aExternal or
independent validation. *The validation strategy defined as “CV” was assigned for
the reviewed paper that did not completely describe the validation method adopted
or the authors defined that cross-validation was employed. § All the studies applied
partial least square statistical methodology.

the potential to bring new insights into management decisions
and breeding programs.

Energy Balance
Dairy cows in early lactation are under high energy demand to
meet their requirements for lactation and often energy intake
is unable to meet a cow’s requirements, leading animals to
enter in a period of negative energy balance (Collard et al.,
2000; de Vries and Veerkamp, 2000; McParland et al., 2012).
Effective and accurate early assessment of a cow’s energy balance

TABLE 7 | Number of samples (N) and coefficient of determination (R2) for dry
matter intake (DMI), residual feed efficiency (RFI), effective energy intake (EEI), net
energy intake (NEI), and energy intake (EI) traits using milk mid-infrared
spectrometry in dairy cattle.

References N Breed Trait Method Validation R2

McParland et al.
(2011)

5,469 Holstein EEI PLS 4-F CV* 0.74a

McParland et al.
(2012)

4,109 Holstein EEI PLS 4-F CV* 0.64a

McParland et al.
(2014)

1,335 Holstein RFI PLS Tr/Te* 0.36a

McParland et al.
(2014)

1,335 Holstein EEI PLS Tr/Te* 0.49a

McParland et al.
(2015)

1,270 Holstein EI PLS 20-F CV 0.56a

Shetty et al.
(2017b)

1,044 Multibreed DMI PLS R-Tr/Te* 0.77

Shetty et al.
(2017b)

1,044 Multibreed RFI PLS R-Tr/Te* 0.46

Dórea et al. (2018) 1,279 Holstein DMI ANN LOOCV* 0.70

Wallén et al. (2018) 857 Norwegian red DMI PLS 5-F CV* 0.29a

Wallén et al. (2018) 857 Norwegian red NEI PLS 5-F CV* 0.42a

Lahart et al. (2019) 1,074 Multibreed DMI PLS LOOCV* 0.64

Smith et al. (2019) 11,941 Holstein EEI PLS 4-F CV* 0.52

Grelet et al. (2020) 1,034 Holstein DMI SVM R-Tr/Te 0.66

Number of folds (n-F) in the cross-validation, leave-one-out cross-validation
(LOOCV), partial least square (PLS), artificial neural network (ANN), Support Vector
Machine (SVM) train and test cross-validation defined by splitting the data set
randomly (R-Tr/Te) or not (Tr/Te). *External or independent validation. aCorrelation
coefficient (r) transformed to coefficient of determination R2.

Frontiers in Genetics | www.frontiersin.org 6 August 2020 | Volume 11 | Article 923

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00923 December 1, 2020 Time: 11:12 # 7

Bresolin and Dórea Novel High-Throughput Phenotyping Technology

could be useful for management strategies, mitigating the costs
associated with detrimental effects of negative energy balance,
and future genetic selection (McParland et al., 2012; Grelet et al.,
2019). Energy balance has been estimated in dairy cows through
alternative methods that are mostly based on the difference
between energy intake and energy output or considering the
change in body reserves (Coffey et al., 2001; Friggens et al., 2007;
Banos and Coffey, 2010). The drawback to these methods is
that they require regular measurements of energy intake, body
condition score, and body weight, which are expensive to collect
on a sufficiently large number of animals, not well suited to
assess short-term changes, and vary with intake respectively
(McParland et al., 2012). Moving forward to high throughput
phenotyping, milk spectra have been used as a potential tool
to predict energy balance (Table 8). McParland et al. (2011;
2012; 2014; 2015) reported R2 in a range of 0.29–0.56 in the
validation set using evening milk spectra data. A moderate R2

(0.60) was reported by Smith et al. (2019) to predict energy
balance in the validation set, whereas Ho et al. (2020) observed
low R2 (0.48), which according to the authors could be due to
the small dataset used when compared with the previous studies.
The predictive ability observed by the authors highlights the
potential of milk spectra data to predict herd or individual energy
status level; however, more efforts are needed to improve the
prediction quality. Furthermore, the models used only require
milk spectra and yield, which are both routinely generated during
milk recording. Therefore, farmers could have access to the
individual animal energy status at the time of milking without
additional cost.

Methane Emission
Strategies to predict enteric methane emission (CH4) have been
widely explored by different research groups worldwide. Such
interest is usually driven by concerns regarding the carbon
footprint and lower feed efficiency due to energy losses in CH4
(Johnson and Johnson, 1995). Mitigating CH4 emissions may
improve the livestock systems’ sustainability and profitability
(Knapp et al., 2014). However, the majority of the classical
methods used to quantify CH4 in the papers reviewed here
(i.e., respiration chamber, sulfur hexafluoride tracer, and sniffer

TABLE 8 | Number of samples (N) and coefficient of determination (R2) in the
validation for energy balance trait using milk mid-infrared spectrometry in dairy
cattle§.

References N Breed Validation R2

McParland et al. (2011) 5,469 Holstein 4-F CV* 0.56a

McParland et al. (2012) 4,109 Holstein 4-F CV* 0.29a

McParland et al. (2014) 1,335 Holstein Tr/Te* 0.46a

McParland et al. (2015) 1,270 Holstein 20-F CV 0.53a

Ho et al. (2019) 240 Holstein 10-F CV 0.48

Smith et al. (2019) 11,941 Holstein 4-F CV* 0.60

Number of folds (n-F) in the cross-validation, train and test cross-validation defined
by splitting the data set randomly (R-Tr/Te) or not (Tr/Te). *External or independent
validation. aCorrelation coefficient (r) transformed to coefficient of determination
(R2). §All studies used partial least square methodology.

systems) are difficult, expensive, or not feasible to carry out
on large scale operations (Hammond et al., 2016; Patra, 2016;
Negussie et al., 2017). Several indirect measurements (e.g., feed
intake, volatile fatty acids, milk FA, body weight, hindgut,
feces, among others) have been proposed as a predictor of
CH4 emission, in which milk FA have been stated as a
promising CH4 proxy in dairy cattle (Negussie et al., 2017).
Many studies have investigated the correlation between different
milk FA, quantified using gas chromatography, and enteric CH4
production (Chilliard et al., 2009; Dijkstra et al., 2011; van Lingen
et al., 2014; Rico et al., 2016). Based on the moderate to high
correlations (0.50–0.80) observed by these authors, milk FA can
be considered a potential indicator of individual animal enteric
CH4 emissions. Since milk FA can be predicted from milk spectra,
as previously discussed in section “Milk Composition,” several
researchers have investigated the feasibility of using milk spectra
data to predict the volume of CH4 eructed daily by a dairy
cow (Table 9). Overall, the R2 reported by the papers reviewed
here varied from 0.01 (Wang and Bovenhuis, 2019) to 0.79
(Dehareng et al., 2012) in the validation set. The variation in
the predictive ability across studies can be partially explained
by the different methods used to determine CH4 emission
(e.g., respiration chambers, sulfur hexafluoride tracer, and sniffer
method). Based on the prediction quality presented by some of
the authors in experimental settings, milk spectra data has the
potential to predict enteric CH4 emissions (Vanlierde et al., 2015).
The validity of spectra data to predict CH4 emissions under
conditions more similar to a commercial herd was only partly
confirmed only by Shetty et al. (2017a). In beef cattle, the majority
of studies have measured methane emission using classical direct
methods, but to the best of our knowledge, no studies have
attempted to predict methane emission indirectly using infrared
spectrometry data.

Fertility
Although fertility is a non-yield trait, it is the key to overall
profitability in cattle farming as poor fertility increases the

TABLE 9 | Number of samples (N) and coefficient of determination in validation set
(R2) for methane emission trait predicted from milk mid-infrared spectra data.

References N Breed Method Validation R2

Dehareng et al. (2012) 60 Holstein PLS LOOCV 0.79

Vanlierde et al. (2015) 446 Multibreed PLS Tr/Te* 0.23a

Vanlierde et al. (2016) 532 Multibreed PLS 5-F CV 0.70

Shetty et al. (2017a) 2,202 Holstein PLS R-Tr/Te* 0.39

Bittante and Cipolat-Gotet
(2018)

1,150 Brown Swiss Bayes B R-Tr/Te 0.57

Vanlierde et al. (2018) 584 Multibreed PLS 5-F CV 0.57

van Gastelen et al. (2018) 218 Holstein PLS 10-F CV 0.49

Wang and Bovenhuis
(2019)

801 Holstein PLS LOOCV* 0.01

Partial least square (PLS), multivariate linear regression (MLR), number of folds (n-
F) in the cross-validation (CV), leave-one-out cross-validation (LOOCV), train and
test cross-validation defined by splitting the data set randomly (R-Tr/Te) or not
(Tr/Te). *External validation. aCorrelation coefficient (r) transformed to coefficient of
determination (R2).
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replacement rate due to involuntary culling, costs related to
fertility treatments, and multiple inseminations, which directly
affect animal production (Boichard, 1990; Dekkers, 1991;
González-Recio et al., 2004; Berry et al., 2014; Pravia et al., 2014;
Kaniyamattam et al., 2016). Since fertility traits are difficult and
expensive to measure, early indicator or associated traits (e.g.,
body condition score, body weight, metabolic and endocrine
blood traits, and milk composition) can be used either to enhance
indirect genetic improvement of fertility or for reproductive
management decisions (Berry et al., 2003; Moraes et al., 2007;
Friggens et al., 2008; Diskin and Kenny, 2014). Hempstalk et al.
(2015) developed a biological-based ML model to predict the
likelihood of conception success given the herd- and cow-specific
attributes, with particular attention to the use of milk spectral
data. The area under the curve reported by the authors in the
external validation set varied from 0.49 to 0.60 across different
ML algorithms. However, the inclusion of milk spectra, compared
with the same model using only non-MIR data (e.g., days in milk,
milk yield, number of inseminations, breeding values, among
others) in the ML models, did not improve the accuracy of
predicting the likelihood of conception to an insemination. The
prediction accuracies of pregnancy status using milk spectra data
were also assessed by Toledo-Alvarado et al. (2018). The area
under the curve across breed had similar patterns averaging
0.61 for Holsteins and 0.64 for Alpine Grey cows in the cross-
validation. The authors concluded that pregnant versus open
cows post insemination could be discriminated with promising
accuracy using milk spectra, parity, and days in milk. Ho
et al. (2019) reported that milk spectra from early lactation
cow together with other on-farm data (e.g., days in milk, days
from calving to insemination, calving age, milk yield, genotypes,
among others) could be used to classify cows that conceived
at first insemination or did not conceive within the breading
season with reasonable accuracy, based on the area under the
curve (0.75), in herd-by-herd external validation. Delhez et al.
(2020) observed that milk spectra recorded after 150 days of
pregnancy was promising to predict the pregnancy status in
Holstein, with the area under the curve around 0.76 in cow-
independent external validation. More efforts need to be made
to investigate the reliability of milk spectra to predict fertility
traits since the accuracies observed to date are not high and the
number of studies is very low, although recent. Nevertheless,
these studies provide new insights into novel phenotypes that
can be used indirectly to improve fertility, especially in dairy
cattle, which could become an important tool for management
decisions on dairy farms.

Health Status
Several metabolic disorders and diseases, such as ketosis,
mastitis, milk fever, lameness, displaced abomasum, metritis,
retained placenta, and cystic ovaries have important impacts on
profitability and animal welfare (Kelton et al., 1998; Friggens
et al., 2007; McArt et al., 2015; Jamrozik et al., 2016). To
mitigate herd losses, producer-recorded events have been used
for management decisions at farmer-level and genetic selection
(Jamrozik et al., 2013; Miglior et al., 2014; Luke et al., 2019).
However, the bottleneck relies on the difficulty of routinely

collecting high-quality direct phenotypes on farms (Egger-
Danner et al., 2015). Subclinical hyperketonemia or ketosis is
one of the most frequent diseases in dairy cattle and it is
characterized by increased concentrations of the ketone bodies
acetoacetate, β-hydroxybutyrate (BHB), and acetone in blood,
milk, and urine (Hansen, 1999). Additionally, blood metabolites
such as glucose, non-esterified fatty acids (NEFA), blood urea
nitrogen (BUN), and insulin-like growth factor 1 (IGF-1), and
glutamic oxaloacetic transaminase (GOT) might also be used
as indicators of metabolic status in dairy cows (Fenwick et al.,
2008; Benedet et al., 2019; Grelet et al., 2019). Blood metabolic
profile testing is the gold standard for diagnosis, however, it is
invasive, logistically challenging, and costly (Luke et al., 2019).
MIR spectrometry has been explored as possible high-throughput
phenotyping technology to predict BHB concentration in blood
or milk, and acetone in milk (Table 10). Within the published
papers de Roos et al. (2007) and Grelet et al. (2016) predicted the
concentration of BHB in milk and the R2 reported by the authors
in the validation was 0.62 and 0.63, respectively. Seven published
papers evaluated the use of milk spectra as a predictor of BHB
in serum and the R2 varied from 0.40 (Belay et al., 2017) to 0.70
(Grelet et al., 2019) in the validation set. Although few studies
have focused on predicting acetone in milk from milk spectra,
the R2 observed by Hansen (1999) and de Roos et al. (2007) were
higher than 0.70, except Grelet et al. (2016) which observed R2 of
0.67 in the validation set. Heuer et al. (2001) observed a standard
error of cross-validation, the prediction quality metric used by the
authors, of 0.24 to predict acetone in milk. Likewise, the feasibility
of using spectral data to predict glucose, NEFA, BUN, and IGF-1
were also investigated in this review (Table 10). The R2 reported
by the authors varied between 0.20 (glucose; Benedet et al., 2019)
to 0.61 (IGF-1; Grelet et al., 2019) in the validation set.

Mastitis is the most common and costly contagious disease in
dairy cattle characterized as an inflammation of the mammary
gland and udder tissue. To the best of our knowledge, only
Rienesl et al. (2019) investigated the possibility of using milk
spectra to predict mastitis, which reported satisfactory accuracy
(0.68) in the validation data set (Table 11). Mineur et al. (2017)
and Bonfatti et al. (2020) investigated the ability of milk spectra
data as a predictor of lameness and the predictions were poor
to be employed as an on-farm tool to detect lameness in cows
(Table 11). Based on the results presented by the reviewed papers,
milk spectra might be useful to predict the concentration of BHB
in serum or milk, acetone on milk, and mastitis occurrence in
dairy cattle. However, more studies using larger and more diverse
calibration data sets are needed, especially across countries, to
improve the prediction quality before models can be used for
on-farm management or genetic selection purposes.

Meat Traits
Meat quality is a complex concept that involves many attributes
such as tenderness, juiciness, flavor, marbling, color, and shelf
life (Williams, 2008). Meat tenderness is one of the most
important attributes affecting consumers’ acceptability, followed
by fat content and visual attributes (Shackelford et al., 2001;
Liu et al., 2003; Williams, 2008). Considering the increasing
demands for meat and consumers willing to pay higher prices for
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TABLE 10 | Number of samples (N) and coefficient of determination (R2) in the validation set for β-hydroxybutyrate (BHB), acetone (Ac), non-esterified fatty acids (NEFA),
blood urea nitrogen (BUN), glucose (Glu), glutamic oxaloacetic transaminase (GOT), and insuline-like growth factor 1 (IGF-1) using milk mid-infrared spectrometry
in dairy cattle.

References N Breed Sample Trait Method Validation* R2

Hansen (1999) 310 – Milk Ac PLS Tr/Te 0.81

Heuer et al. (2001) 180 – Milk Ac PLS LOOCV 0.24b

de Roos et al. (2007) 1,080 Holstein Milk Ac PLS CV 0.72c

de Roos et al. (2007) 1,080 Holstein Milk BHB PLS CV 0.62c

Grelet et al. (2016) 224 Holstein Milk Ac PLS R-Tr/Tea 0.67

Grelet et al. (2016) 434 Holstein Milk BHB PLS R-Tr/Tea 0.63

Belay et al. (2017) 1,914 Holstein Blood BHB PLS R-Tr/Tea 0.40

Pralle et al. (2018) 3,629 Holstein Blood BHB ANN R-Tr/Tea 0.56

Bonfatti et al. (2019) 1,910 Multibreed Blood BHB PLS R-Tr/Tea 0.52

Benedet et al. (2019) 295 Multibreed Blood BHB PLS 3-F CV 0.63

Benedet et al. (2019) 294 Multibreed Blood NEFA PLS 3-F CV 0.52

Benedet et al. (2019) 294 Multibreed Blood BUN PLS 3-F CV 0.58

Benedet et al. (2019) 294 Multibreed Blood Glu PLS 3-F CV 0.20

Benedet et al. (2019) 294 Multibreed Blood GOT PLS 3-F CV 0.24

Grelet et al. (2019) 205 Holstein Blood BHB PLS 4-F CV 0.70

Grelet et al. (2019) 234 Holstein Blood NEFA PLS 4-F CV 0.39

Grelet et al. (2019) 387 Holstein Blood IGF-1 PLS 4-F CV 0.61

Grelet et al. (2019) 380 Holstein Blood Glu PLS 4-F CV 0.44

Luke et al. (2019) 878 Holstein Blood BHB PLS R-Tr/Tea 0.60

Luke et al. (2019) 878 Holstein Blood NEFA PLS R-Tr/Tea 0.45

Luke et al. (2019) 878 Holstein Blood BUN PLS R-Tr/Tea 0.35

Müller et al. (2019) 585 Holstein Blood BHB PLS CV 0.42

Partial least square (PLS), artificial neural network (ANN), train and test cross-validation defined by splitting the data set randomly (R-Tr/Te), number of folds (n-F) in the
cross-validation (CV), leave-one-out cross-validation (LOOCV). aExternal or independent validation. bStandard error in the cross-validation as accuracy metric. cCorrelation
coefficient (r) transformed to coefficient of determination (R2). *The validation strategy defined as “CV” was assigned for the reviewed paper that did not completely describe
the validation method adopted or the authors defined that cross-validation was employed.

TABLE 11 | Number of samples (N), accuracy (Acc), sensitive (Sen), and specificity (Spe) in the validation set for mastitis (Mas) and lameness (Lam) traits using milk
mid-infrared spectrometry using partial least square in dairy cattle.

Reference N Breed Trait Validation Acc (%) Sen (%) Spe (%)

Mineur et al. (2017) 9,811 Multibreed Lam R-Tr/Te – 60 62

Rienesl et al. (2019) 2,340 Multibreed Mas R-Tr/Te* 68 57 79

Bonfatti et al. (2020) 3,771 Multibreed Lam 10-F CV 62 57 62

Train and test cross-validation defined by splitting the data set randomly (R-Tr/Te), number of folds (n-F) in the cross-validation (CV), and *external or independent validation.

certified, high-quality meat products, there is a growing interest
by the beef meat chain to accurately assess meat quality traits
(Andrés et al., 2008; Prieto et al., 2008). To date, meat quality
traits have been measured using physical methods, which are
time-consuming, expensive, destructive (depreciating the value
of the carcass), and unsuitable to perform individually in large-
scale (Su et al., 2018; Chapman et al., 2019). To satisfy the
requirements of the modern meat industry, NIR spectrometry
has been stated as an alternative tool for high throughput
phenotyping meat quality traits because it is considered an
accurate, fast, non-invasive and non-destructive technique with
great potential for in-line application (Prevolnik et al., 2004;
Prieto et al., 2009a; Chapman et al., 2019). The feasibility and
robustness of NIR technique to predict meat quality traits in cattle
have been investigated by several researchers (Tables 12–14).
Here our focus will be on meat tenderness, intramuscular

fat content, meat color, and cooking loss traits, since such
attributes impact consumers’ satisfaction. Meat quality traits can
be measured using different methodologies, but in our review,
such traits were summarized regardless of the methodology
applied. The R2 observed in the reviewed papers for meat
tenderness varied from 0.12 (De Marchi et al., 2007) to 0.81
(Prieto et al., 2014) in the validation set (Table 12). The R2 for
intramuscular fat content varied from 0.02 (Magalhães et al.,
2018) to 0.99 (Su et al., 2014) in the validation set (Table 13). For
color traits (L∗, a∗, and b∗), the R2 in the validation set (Table 14)
were in a range of 0.16 (Magalhães et al., 2018) to 0.93 (Zhang
et al., 2015). The R2 observed for cooking losses varied from 0.001
(Prieto et al., 2008) to 0.61 (Zhang et al., 2015) in the validation set
(Table 14). Overall, NIR spectrometry has shown great potential
to assess meat quality traits within different breeds. Furthermore,
meat quality traits can be generated directly on the raw beef under
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TABLE 12 | Number of samples (N) and coefficient of determination (R2) in the
validation set for meat tenderness trait predicted from near-infrared
spectrometry in cattle.

References N Breed Method Validation∗ R2

Mitsumoto et al.
(1991)

11 Japanese Black MLR – 0.67b

Hildrum et al.
(1994)

10 Norwegian PCR CV 0.29b

Byrne et al. (1998) 70 – PLS CV 0.37b

Park et al. (1998) 119 – PLS Tr/Te 0.63

Rødbotten et al.
(2000)

79 Norwegian Red PLS LOOCV 0.36b

Rødbotten et al.
(2001)

48 Norwegian PLS CV 0.72b

Venel et al. (2001) 67 – PLS LOOCV 0.31b

Leroy et al. (2003) 189 Belgian White Blue PLS CV 0.25

Liu et al. (2003) 22 Multibreed PLS LOOCV 0.48

Shackelford et al.
(2005)

146 Multibreed MLR Tr/Te 0.22

De Marchi et al.
(2007)

148 Piamontese PLS 4-FCV 0.12

Andrés et al. (2008) 112 Maronesa PLS LOOCV 0.53

Ripoll et al. (2008) 190 Multibreed PLS R-Tr/Te 0.74

Prieto et al. (2008) 67 - PLS LOOCV 0.17

Prieto et al. (2009b) 194 Crossbred PLS LOOCV 0.31

Rosenvold et al.
(2009)

381 Hereford PLS R-Tr/Te 0.58

Cecchinato et al.
(2009)

1,298 Piamontese PLS Tr/Te 0.50

Yancey et al. (2010) 40 Multibreed PLS LOOCV 0.28b

Cecchinato et al.
(2011)

1,208 Piamontese PLS R-Tr/Te 0.21

De Marchi et al.
(2013)

336 Multibreed PLS 8-FCV 0.34

De Marchi (2013) 81 Crossbred PLS LOOCV 0.13

Prieto et al. (2014) 63 Crossbred PLS LOOCV 0.81

Zhang et al. (2015) 162 Yak PLS R-Tr/Te 0.43

Magalhães et al.
(2018)

644 Nelore PLS LOOCV 0.40

Su et al. (2018) 442 Multibreed PLS R-Tr/Tea 0.60

Qiao et al. (2015) 234 - SVM Tr/Te 0.20

Wyrwisz et al.
(2019)

89 Holstein PLS TR/Te 0.62

Savoia et al. (2020) 1,166 Piamontese Bayes B LOOCVa 0.16

Cafferky et al.
(2020)

595 Multibreed PLS LOOCV 0.22

Mulitple linear regression (MLR), principal components regression (PCR), partial
least square (PLS), support vector machine (SVM), number of folds (n-F) in the
cross-validation (CV), leave-one-out cross-validation (LOOCV), train and test cross-
validation defined by splitting the data set randomly (R-Tr/Te) or not (Tr/Te). aExternal
or independent validation. bCorrelation coefficient (r) transformed to coefficient of
determination (R2). *The validation strategy defined as “CV” was assigned for the
reviewed paper that did not completely describe the validation method adopted or
the authors defined that cross-validation was employed.

slaughterhouses conditions as the NIR technique may not require
sample pre-preparation. Nevertheless, further research needs to
be conducted to validate the models across breeds and use
modern data mining approaches to improve prediction quality.

TABLE 13 | Number of samples (N) and coefficient of determination (R2) in the
validation set for intramuscular fat content predicted from near-infrared
spectrometry in cattle.

References N Breed Method Validation* R2

Mitsumoto et al. (1991) 11 Japanese Black MLR – 0.922

Sanderson et al. (1997) 72 British Friesian PLS 4-FCV 0.95

Rødbotten et al. (2000) 79 Norwegian Red PLS LOOCV 0.58b

Cozzolino and Murray
(2002)

100 – PLS 4-FCV 0.86

Cozzolino et al. (2002) 78 Hereford PLS 4-FCV 0.92

Prevolnik et al. (2005) 34 Multibreed PLS CV 0.93

Ripoll et al. (2008) 190 Multibreed PLS R-Tr/Tea 0.76

Prieto et al. (2011) 194 Multibreed PLS LOOCV 0.43

Cecchinato et al. (2012) 148 Piamontese PLS 4-FCV 0.82

Prieto et al. (2014) 63 Crossbred PLS LOOCV 0.86

Su et al. (2014) 182 Multibreed PLS R-Tr/Tea 0.99

Dixit et al. (2016) 108 – PLS Tr/Te 0.82

Magalhães et al. (2018) 644 Nelore PLS LOOCV 0.02

Mulitple linear regression (MLR), partial least square (PLS), number of folds (n-
F) in the cross-validation (CV), leave-one-out cross-validation (LOOCV), train and
test cross-validation set defined by splitting the data randomly (R-Tr/Te) or not
(Tr/Te). aExternal or independent validation. bCorrelation coefficient (r) transformed
to coefficient of determination (R2). *The validation strategy defined as “CV” was
assigned for the reviewed paper that did not completely describe the validation
method adopted or the authors defined that cross-validation was employed.

DATA MINING

Frequently, the main goal of using infrared spectrometry
technology in the livestock industry is the development
of predictive models to determine the content of specific
compounds present in products such as milk, meat, and
feedstuffs. However, many compounds present in such products
are highly correlated with phenotypes that are difficult to measure
in commercial and research settings, such as feed intake, methane
emission, energy balance, methane emission, fertility, metabolic
diseases, and meat quality traits, as previously discussed. In
this context, several research studies have attempted to develop
predictive models to predict such complex phenotypes for
management decisions or breeding purposes. However, we have
noted that factors such as the analytical method chosen to develop
the predictive models and the cross-validation strategy used
to evaluate the analytical approaches are not deeply discussed
in the research studies involving livestock data. If not utilized
properly, those two factors can result in (a) poor predictions
due to the lack of ability of certain models to capture complex
relationships between explanatory and response variables and (b)
overoptimistic prediction quality due to high data dependency
occurring between training and validation dataset. To developed
robust predictive models using spectral data the following three
steps should be followed: (1) spectra pretreatment, to remove
noise or non-informative wavenumbers, (2) model training (or
algorithm training), in which analytical techniques are used
to assess the set of coefficients, number of latent variables,
or hyperparameters, and (3) model validation, in which an
independent dataset is used to evaluate the predictive ability of
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TABLE 14 | Number of samples (N) and coefficient of determination (R2) in the validation set for L∗ (R2
L∗ ), a∗ (R2

a∗ ), and b∗ (R2
b∗ ) meat color, and cooking losses (R2

CL)
traits predicted from near-infrared spectrometry in cattle.

References N Breed Method Validation§ R2
L∗ R2

a∗ R2
b∗ R2

CL

Mitsumoto et al. (1991) 11 Japanese black MLR CV – – – 0.59b

Leroy et al. (2003) 189 Belgian White Blue PLS CV 0.83 0.39 0.75 0.25

Liu et al. (2003) 113 Multibreed PLS LOOCV 0.55 0.90 0.78 –

De Marchi et al. (2007) 148 Piamontese PLS 4-FCV – – – 0.15

Andrés et al. (2008) 109 Maronesa PLS LOOCV 0.80 0.23 0.27 0.02

Prieto et al. (2008) 67 – PLS LOOCV 0.87 0.71 0.90 0.001

Prieto et al. (2009b) 194 Crossbred PLS LOOCV 0.83 0.76 0.84 0.23

Cecchinato et al. (2009) 1,298 Piamontese PLS CV 0.65 0.69 0.81 0.50

Cecchinato et al. (2011) 1,208 Piamontese PLS R-Tr/Te 0.64 0.68 0.44 0.04

De Marchi et al. (2013) 336 Multibreed PLS 8-FCV 0.70 0.73 0.60 0.38

De Marchi (2013) 81 Crossbred PLS LOOCV 0.41 0.58 0.57 0.31

Prieto et al. (2014) 63 Crossbred PLS LOOCV 0.80 0.71 0.77 –

Zhang et al. (2015) 162 Yak PLS R-Tr/Te 0.74 0.81 0.93 0.61

Qiao et al. (2015) 234 – SVM Tr/Te 0.80 0.64 0.54 –

Magalhães et al. (2018) 644 Nelore PLS LOOCV 0.16 0.17 0.45 –

Su et al. (2018) 442 Multibreed PLS R-Tr/Tea 0.61 0.64 0.38 0.56

Wyrwisz et al. (2019) 89 Holstein PLS Tr/Te 0.33 0.57 0.61 0.47

Savoia et al. (2020) 1,166 Piamontese Bayes B LOOCVa 0.84 0.55 0.63 0.16

Mulitple linear regression (MLR), partial least square (PLS), support vector machine (SVM), number of folds (n-F) in the cross-validation (CV), leave-one-out cross-validation
(LOOCV), train and test cross-validation set defined by splitting the data randomly (R-Tr/Te) or not (Tr/Te). aExternal or independent validation. 2Correlation coefficient
(r) transformed to coefficient of determination (R2). §The validation strategy defined as “CV” was assigned for the reviewed paper that did not completely describe the
validation method adopted or the authors defined that cross-validation was employed.

the model developed using the training dataset. These three main
steps will be discussed throughout this review section.

Spectra Preprocessing
Infrared spectra data comprise signals related to compounds
present in the biological sample as well as non-informative
signals coming from background, high-frequency noise, baseline
shift, and overlapping bands (Rinnan et al., 2009a). Therefore,
preprocessing spectral data is a common and crucial strategy
that helps to mitigate such undesirable signals present in the raw
data, maximizing the relationship between the infrared spectrum
and the target phenotype (Rinnan et al., 2009a; De Marchi et al.,
2014; McParland and Berry, 2016). Furthermore, preprocessing
the spectra data prior to fit the calibration model is used in
attempting to obtain robust prediction models and to restrict the
insertion of bias into the model. However, applying unsuitable
or a high stringent preprocessing strategy might remove
important information from the biological sample (Rinnan
et al., 2009a). Spectra preprocessing are commonly performed
using mathematical pretreatment techniques or variable selection
approach. The main mathematical pretreatment techniques used
in the reviewed papers to mitigate signal noise can be divided
into two groups, scatter-correction methods (e.g., multiplicative
scatter correction, standard normal variate, and orthogonal
scatter correction) and spectral derivatives (e.g., Savitzky-Golay
polynomial derivative). Multiplicative scatter correction (MSC)
is used to remove physical effects including particle size and
surface blaze from the spectra, which do not carry any chemical
or physical information, by correcting differences in the baseline
and the trend (Martens et al., 1983). Standard normal variate

(SNV) aims to remove the multiplicative effects of scatter and
particle size, giving the sample a unit standard deviation (Barnes
et al., 1989). Orthogonal scatter correction (OSC) eliminates the
parts linearly unrelated (orthogonal) to the response variable
(Wold et al., 1998). Savitzky-Golay (SG) first derivative is
used to improve the spectra resolution by eliminating constant
baseline, whereas the second derivative eliminates both baseline
and linear trend (Savitzky and Golay, 1964). More details and
theory overview about the mathematical pretreatment techniques
employed on NIR and MIR spectra can be found in Rinnan
et al. (2009a,b). From the 113 published papers reviewed here,
researchers have used spectra data without pretreatment (50), SG
first derivative (28), SG second derivative (10), MSC (7), SNV (5),
and OSC (2). Eleven authors did not report if some mathematical
pretreatment was applied to the spectra data. Several authors also
used the combination of more than one pretreatment strategy
(e.g., SG first derivative + MSC; SG second derivative + SNV;
and SG first derivative + SG second derivative + MSC). Some
authors have reported an increase in the prediction quality using
pretreated spectra data (Heuer et al., 2001; Rødbotten et al., 2001;
Soyeurt et al., 2011; De Marchi et al., 2011), whereas others
have observed that the pretreatment failed to improve prediction
accuracies (McParland et al., 2011; Cecchinato et al., 2012;
Dehareng et al., 2012; Shetty et al., 2017a; Cafferky et al., 2020).

Analytical methods commonly employed on spectra data
are suitable to reduce the full-spectrum to a few latent
variables or perform some type of regularization (e.g., ridge and
lasso). However, even performing such dimensionality reduction,
they may also be penalized by noise or non-informative
wavenumbers. Furthermore, the number of wavenumbers in
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infrared spectrometry datasets usually outnumbers the sample
size. For example, a dataset containing 30 samples with their
respective spectra data (1,060 wavenumbers). Note that the
number of parameters p (1,060 wavenumbers) is greater than
the number of observations n (30 samples). In such situations,
the use of least squares is not appropriate since it will yield
a set of coefficient estimates that result in a perfect fit to the
data and the residuals will be zero (James et al., 2013). This
phenomenon is a concern in data analysis because such perfect
fit will potentially lead to overfitting the data (Hastie et al., 2009).
Variable selection, therefore, is an important strategy used prior
to the model calibration to reduce the data dimensionality by
selecting a subset of relevant features from the original space to
improve the model robustness and reduce the model complexity
(Koljonen et al., 2008; Rinnan et al., 2009a). Although several
authors removed the water noise wavenumbers, here we are only
taking into account studies that performed variable selection
based on a mathematical or statistical approach. Thus, only nine
out of 113 published papers reviewed here performed variable
selection prior to the calibration model. Variable selection was
employed using a genetic algorithm (GA), uninformative variable
elimination (UVE), variable importance for projection (VIP),
and coefficient of variation (CV) combined with Markov Blanket
(MB) techniques by 4, 3, 2, and 1 studies, respectively. Briefly,
GA is an algorithm based on the biological evolution theory and
natural selection and the main idea is to find within the set of
predictor variables the ones that best fitted the model. The best
predictor variables need to show high “fitness” and probability to
“survive” to be included in the subsequent variable sets used for
model refit. An iterative process is performed until the GA has
selected the best predictor variable set or the best combination
of them (Leardi et al., 1992). UVE approach adds artificial noise
predictor variables, multiplied by a constant close to zero in
order to eliminate any possible interaction with the original
variables, to the reference dataset before fitting the model. The
wavenumbers (original variables) that play a less important role
in the model (based on the root mean square error, for example)
than the random variables are considered uninformative and
eliminated from the dataset before the procedure is repeated.
The iterative process is performed until the stop criterion is
reached (Centner and Massart, 1996). Using the VIP technique,
one calculates a coefficient v that represents the importance or
influence of each predictor variable on the response variable.
Thus, predictor variables with a v < user-defined threshold u
(v < 1, for example) are less relevant to fit the model and
can be eliminated (Wold et al., 1993). CV is a well-known
standardized measure of dispersion and it is used to eliminate
wavenumbers that lack variability between samples. The MB
notion is widely used in Bayesian Network and is defined as: for
a node (target variable), its MB is the minimal set of parents,
children, and spouses (wavenumbers) that best represents the
node (Pearl, 1988). Studies that performed variable selection
prior to the calibration step have reported an improvement in the
quality of the predictions for different phenotypes and analytical
approaches (Wu et al., 2009, 2012; Gottardo et al., 2015, 2016;
Niero et al., 2016; Dórea et al., 2018). Although the authors
have observed that spectra pretreatment and variable selection

improved the predictions accuracies, there is no consensus in
the literature regarding which situations such techniques will
effectively result in better prediction ability, especially using
larger datasets. Therefore, the effect of spectra data pretreatment
and variable selection on the prediction quality should be more
deeply investigated. Furthermore, as pointed out by De Marchi
et al. (2014) and observed in the published papers reviewed here,
the authors usually report only the precision and accuracy for
the best model, while information regarding other models is not
shown and discussed for full comparison.

Calibration Models
From the 113 published papers retrieved from Web of Science,
Partial Least Squares (PLS) was the most used statistical approach
(101 papers) for the development of predictive equations,
when compared to other machine learning (ML) methods.
The simple implementation makes PLS a well-established and
widely used methodology to generate novel complex traits
from infrared spectrometry data in different fields. PLS is a
dimension reduction technique suitable when the number of
predictors is greater than the number of observations (e.g.,
infrared spectra data) as well as when strong collinearity exists
between predictor variables, i.e., some wavenumbers can be
rewritten as a linear function of others (Martens and Naes,
1987). Briefly, PLS maximizes the covariance between the
predictor variables and the response variable resulting in a
small set of components (latent variables), commonly called
factors, that are used to predict target phenotypes in a new
dataset (Martens and Jensen, 1982; Martens and Naes, 1987).
Multiple linear regression (MLR) has also been used (Mitsumoto
et al., 1991; Shackelford et al., 2005) or compared to other
methodology (Pralle et al., 2018; Müller et al., 2019) to predict
complex phenotypes using spectra data. MLR solves a number
of simultaneous equations exploring the linear relationship
between several explanatory variables (i.e., wavenumbers) and
the continuous response variable (Hastie et al., 2009). Despite
the power of such statistical method, Pralle et al. (2018) did
not observe improvement in the prediction quality. In contrast,
Müller et al. (2019) reported improvement when MLR was
implemented compared with other methodologies such as PLS.
In addition, the bottleneck of MLR methodology is that its
implementation will often face the problem that the number of
parameters is greater than the number of samples (Hastie et al.,
2009). The PLS method to date has succeeded in predicting some
complex traits with high accuracies, whereas for other traits, the
prediction quality was poor, as previously reported in section
“Complex Traits Predicted by Infrared Spectrometry Data.” This
fact highlights the need for more research studies evaluating
other analytical strategies able to deal with missing data, non-
linear relationships between response and explanatory variables,
and high-dimensional data to improve the prediction quality of
complex phenotypes. Recently, Bayesian and ML techniques have
been implemented to predict a range of phenotypes in livestock;
however, it is at a small proportion compared with the number of
studies using PLS. Bayesian models have been developed for high-
dimensional regression and they are widely used in the context
of genomic prediction (Meuwissen et al., 2001). In addition to
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the possibility of assigning prior information for the marker
effects, here substituted by the wavenumbers’ effects, Bayesian
methods are also able to perform estimate shrinkage and variable
selection. For genomic prediction, Bayesian methods may have
greater predictive power than dimension-reduction methods
(Meuwissen et al., 2001; de los Campos et al., 2013). Ferragina
et al. (2015) reported that Bayes B approach, which is one of the
many Bayesian methods available, outperformed PLS methods
for predicting milk components and technological properties
using infrared spectral data and Bayes B was able to select a
small subset of important wavenumbers. Based on Ferragina
et al. (2015) finds, Bittante and Cipolat-Gotet (2018); Toledo-
Alvarado et al. (2018), and Savoia et al. (2020) also used Bayes
B methodology to predict complex phenotypes using spectra
data. ML techniques such as Support Vector Machine (SVM)
and Artificial Neural Networks (ANN) have been tested as an
alternative to the traditional PLS method, because of their ability
to search in a high-dimensional space of predictor variables for
features that best describe the response variable, with the ability
to self-learn. Additionally, such methods can better model the
complex relationships (e.g., non-linear and interactions) between
the input variables and the response outcome, which could
improve the prediction quality (Gianola et al., 2011). Indeed,
the authors that used SVM or ANN approaches have reported
an increase in prediction quality compared with PLS method
(Hempstalk et al., 2015; Qiao et al., 2015; Dórea et al., 2018; Pralle
et al., 2018; Grelet et al., 2020). Although ML methodologies
are suitable to be implemented in the high-dimensional space
of predictor variables, this approach tends to easily overfit, in
general because of small datasets and noisy data (Hempstalk et al.,
2015). Overfitting is a recurrent issue in ML methods, such as
in ANN, and it is clearly identified by high prediction accuracy
in the training dataset but very poor in the validation dataset.
For such methods, it is very important to perform unbiased
validation strategy, therefore ensuring maximum possible data
independency between training and validation would be ideal
to unbiased predictions (Roberts et al., 2017). Additionally, ML
techniques often require an extensive search for hyperparameters
(e.g., number of neurons, number of layers, learning rate,
among others) before training the algorithms to perform final
prediction (Bengio, 2012). Such search is critical in order to
define the network architecture, which may detrimentally affect
prediction quality if not appropriate (Bengio, 2012). Based on the
comparisons between traditional (PLS) and advanced analytical
methods (Bayesian and ML) found in the reviewed papers, the use
of advanced techniques resulted in improved prediction accuracy
for some complex phenotypes. However, the prediction quality
is influenced by many factors, including the trait to be predicted
(e.g., qualitative or quantitative), the quality of the reference data
(observed data) set, the spectra quality, the spectra preprocessing,
the sample size used to develop the prediction equations, and the
validation strategies used for model development and validation
(Karoui et al., 2010; Rutten et al., 2010; Ferragina et al., 2015;
Bonfatti et al., 2017; Dórea et al., 2018). In addition, directly
predicted traits (e.g., milk fat) usually has a significant signal
in the spectra data, whereas indirectly predicted traits (e.g.,
feed efficiency and methane emission) the signal in the spectra

is associated to complex traits through compounds found in
the scanned products (milk or meat, for example) (Ferragina
et al., 2015). The number of research studies implementing
alternative methods to predict complex traits in livestock systems
is small and, therefore, more investigation using a different
analytical approach, sample size, data pretreatment, and variable
selection, is important to shed light on the predictive analytics of
complex phenotypes.

Validation Strategies
Infrared spectrometry data (MIR and NIR) have been stated
as an important source of information to generate many novel
complex phenotypes in dairy and beef cattle (Prevolnik et al.,
2004; De Marchi et al., 2014; McParland and Berry, 2016;
Gengler et al., 2016; Chapman et al., 2019). To predict such
phenotypes, robust models or equations must be developed using
a training dataset that represents the population variability. The
approval that ensures prediction quality of the developed models
is given through their performance when implemented in a
validation dataset, ideally, an external dataset not previously
utilized for model development. However, defining the external
validation dataset is a non-trivial task in some cases, since the
dependency between training and validation sets needs to be
reduced as much as possible. The main reason for reducing
such dependence between training and validation sets is the
need to approximate prediction quality from model validation
to real-life implementation, in which very little dependency
between training and validation set will occur. In this review,
we considered as an external validation set, all datasets in which
some level of dependency between training and validation set was
broken. For example, research trials using multiple herds where
one herd or trial was removed from the dataset to validate the
model. Although this is the desired validation strategy, in some
situations, it is difficult to define an external validation set due
to the hierarchical structure of the dataset. In such case or when
datasets are small, internal validation is usually performed, which
was the most used strategy in the papers reviewed here (67 out of
113). In this review, we considered internal validation the studies
in which hierarchical structure in the dataset (e.g., country, herd,
dietary effect, etc.) was not considered for data split strategies
(holdout, leave-one-out, k-fold). Therefore, to create the training
and internal validation datasets the reviewed studies used one
of the data-splitting techniques: holdout (22 studies), leave-one-
out cross-validation (20 studies), and k-fold cross-validation (25
studies). An example of each validation strategy technique used
for model validation is depicted in Figure 2.

Briefly, in the holdout strategy (Figure 2A), given that animals
are sourced in different herds, about 80% of the dataset is
randomly used in the model training and the remaining 20%
is used for model validation (Stone, 1974; Picard and Berk,
1990). When holdout is adopted, the test error rate can be
highly variable depending on which sample is assigned in the
training and validation set (Hastie et al., 2009). Leave-one-out
cross-validation is an alternative to the holdout approach and
involves splitting the dataset into two parts in which N – 1
observations are used to train the model and a single sample N is
used to validate the model (Figure 2B). The splitting is iterated
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FIGURE 2 | Example of validation strategies employed in the publish papers retrieved from Web of Science. (A) split-data or k-fold cross-validation, (B)
leave-one-out cross-validations, and (C) leave-one-group-out cross-validation. Colors represent animals from different herds.

N times until all the observations were used in the validation
and the model performance is averaged across the N validation
sets. Thus, the test error in leave-one-out cross-validation is
highly variable compared to holdout, because the training dataset
contains almost the same number of observations (N – 1) as the
entire dataset (Hastie et al., 2009). Leave-one-out is commonly
used when the sample size is small and there is concern about
the limited size of the calibration set (Gianola and Schön, 2016).
The idea of leave-one-out cross-validation technique can also be
adapted to perform leave-one-herd-out (e.g., group, farm, trial,
year, among others), which can be a good strategy to reduce data
dependence between training and validation dataset (Figure 2C).
The k-fold cross-validation is performed by dividing the entire
dataset into k disjoint sets of approximately equal size, usually
randomly, in which k – 1 sets are used in the training and
one set is used to validate the model. Such process is repeated
k times until all k sets were used in the validation and the
model performance is averaged across all k validation sets (Stone,
1974; Hastie et al., 2009). This process can be repeated many
times, wherein each iteration different samples are assigned in
both training and validation sets. Due to the larger validation
dataset assigned in k-fold cross-validation as well as the test
error averaged across the k different subsets, the test error is less
sensitive to the partition of the dataset than in the leave-one-out
cross-validation (Hastie et al., 2009). The drawback of the three

procedures adopted to split the dataset, except for the leave-one-
herd-out strategy, is that animals from the same herd or multiple
records from the same animal will be present on the training and
validation set, creating dependence between them.

Studies comparing different validation strategies using spectra
data confirmed the hypothesis that prediction quality was inflated
according to the split-data strategy employed to externally
validate the model (Shetty et al., 2017b; Dórea et al., 2018;
Lahart et al., 2019; Luke et al., 2019; Smith et al., 2019;
Wang and Bovenhuis, 2019). Therefore, evaluating the fitted
model using only internal validation is not recommended.
The performance of the model fitting will be better than it
should be, resulting in greater model precision and accuracy
than if a true external validation is used, but the prediction
accuracies in the external validation set are more realistic
and quite often observed in practice. Several authors (32
out of the 112 papers reviewed here) reported that an
independent dataset was used to externally validate the model’s
performance. However, by reviewing the papers from the
32 studies only seventeen fully performed external model
validation. In those studies, the authors validated the models’
performance using an external/independent dataset, which an
entire farm, herd, trial, year, study, region, dataset, or batch
was removed from the training dataset. The remaining studies
(15) only assigned records by animal, individual records,
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or lactations either randomly or not from the entire dataset
to external validate the model. Such strategy does not produce
a good independent dataset to test the model against real-life
implementation because animals from the same herd or group
can be present on the training and validation set. Fourteen out of
112 papers did not report if model performance was evaluated,
only stated that cross-validation was employed, or the procedure
was not clearly described. Therefore, it is a good practice to use
external validation (if large sample size is available), based on data
from a different farm, herd, trial, year, region, or batch, before full
deployment of such predictive models.

CONCLUDING REMARKS

Important advances have been made in the nutrition,
reproduction, management, and molecular breeding techniques
of beef and dairy cattle in recent years. However, efficient and
precise phenotyping remains a bottleneck and, therefore, modern
high-throughput techniques should be developed, improved, and
applied to take full advantage of the advancements performed
in the different animal knowledge fields. Of the techniques
currently available, this review summarized the applications
of MIR and NIR spectrometry as a novel high-throughput
phenotyping technique to generate complex phenotypes in dairy
and beef cattle. Furthermore, it presented an overview, status
update, and insights into the use of such techniques and the

data mining strategies employed to predict the phenotypes of
interest. The majority of studies compiled have demonstrated
the capability and power of MIR and NIR technique to
generate complex traits such as feed efficiency, methane
emissions, energy balance, health, and meat quality from different
biological samples routinely accessed, without additional cost
and at the animal-level. Therefore, these phenotypes would be
widely explored in dairy and beef cattle for on-farm decision-
making, management, and breeding purpose. MIR and NIR
spectrometry has important advantages compared to gold
standard methods such as speed, low cost, non-invasive, non-
destructive, and potential for in-line application; however, for
the implementation of these high-throughput techniques into
livestock operations, numerous issues regarding the modeling
methodology must be considered. Few studies have used a large
dataset as well as machine learning or Bayesian techniques
to develop the calibrations models. Therefore, larger datasets
and modern data mining approaches should be investigated
to improve predictive ability and to confirm the existing
calibration models.
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