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Aims An artificial intelligence-enabled electrocardiogram (AI-ECG) is a promising tool to detect patients with aortic stenosis (AS) 
before developing symptoms. However, functional, structural, or haemodynamic components reflected in AI-ECG respon-
sible for its detection are unknown.

Methods 
and results

The AI-ECG model that was developed at Mayo Clinic using a convolutional neural network to identify patients with mod-
erate–severe AS was applied. In patients used as the testing group, the correlation between the AI-ECG probability of AS 
and echocardiographic parameters was investigated. This study included 102 926 patients (63.0 ± 16.3 years, 52% male), and 
28 464 (27.7%) were identified as AS positive by AI-ECG. Older age, atrial fibrillation, hypertension, diabetes, coronary ar-
tery disease, and heart failure were more common in the positive AI-ECG group than in the negative group (P < 0.001). The 
AI-ECG was correlated with aortic valve area (ρ = −0.48, R2 = 0.20), peak velocity (ρ = 0.22, R2 = 0.08), and mean pressure 
gradient (ρ = 0.35, R2 = 0.08). The AI-ECG also correlated with left ventricular (LV) mass index (ρ = 0.36, R2 = 0.13), E/e′ 
(ρ = 0.36, R2 = 0.12), and left atrium volume index (ρ = 0.42, R2 = 0.12). Neither LV ejection fraction nor stroke volume 
index had a significant correlation with the AI-ECG. Age correlated with the AI-ECG (ρ = 0.46, R2 = 0.22) and its correlation 
with echocardiography parameters was similar to that of the AI-ECG.

Conclusion A combination of AS severity, diastolic dysfunction, and LV hypertrophy is reflected in the AI-ECG to detect AS. There 
seems to be a gradation of the cardiac anatomical/functional features in the model and its identification process of AS is 
multifactorial.

* Corresponding author. Tel: +507 266 1376, Fax: +507 266 9142, Email: oh.jae@mayo.edu
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0001-7076-2340
https://orcid.org/0000-0002-9706-7900
https://orcid.org/0000-0002-4308-0456
https://orcid.org/0000-0001-5788-9734
mailto:oh.jae@mayo.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/ehjdh/ztad009


New insight of AI-ECG in AS                                                                                                                                                                        197

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Graphical Abstract

Functional, structural, and haemodynamic components reflected in artificial intelligence-enabled electrocardiogram (AI-ECG) for aortic stenosis (AS) are 
summarized.

Keywords AI • Convolutional neural network • ECG • Aortic stenosis

Introduction
Recently, various artificial intelligence (AI) models have been developed 
for aortic stenosis (AS). The AI-enabled electrocardiogram (AI-ECG) 
models to identify patients with AS have been developed.1–3 The chest 
radiographs are also used for building the AI model for detecting pa-
tients with AS.4 By using AI models, the potential sex-specific gene 
sets that can achieve good predictability of valvular calcification have 
been also reported.5 The AI models are beneficial to patient identifica-
tion and the characterization of AS.

Earlier detection of patients with AS even before developing symp-
tomatic severe AS is becoming important with increasing evidence 
that asymptomatic patients with severe AS may benefit from aortic 
valve replacement (AVR).6 Moreover, some symptomatic patients 
with severe AS present too late to have optimal therapeutic results 
from AVR. There has been growing interest in the potential benefit 
of earlier AVR because of unfavourable survival outcomes in patients 
with moderate AS.7–10 The AI-ECG model that our group recently de-
veloped using a convolutional neural network (CNN) to identify pa-
tients with moderate-to-severe AS from the Mayo Clinic database is 
thus expected to play an important role in screening AS and improving 

the management.1 Its excellent ability has been demonstrated [area un-
der the curve (AUC): 0.85]1; however, specific functional, structural, 
and haemodynamic characteristics of AS reflected in the AI-ECG model 
have not been delineated. Changes in the QRS complex configuration 
on electrocardiogram (ECG) due to left ventricle (LV) hypertrophy in 
response to AS (e.g. increased R wave amplitude or increased S wave 
depth) were thought to be what identifies AS patients by AI-ECG, 
but the segment between the T and P wave has been reported to be 
most extensively utilized.1–3

In this study, we investigated how AI-ECG probability for AS corre-
lates with 2-dimensional and Doppler echocardiographic parameters to 
assess the impact of the functional, structural, and haemodynamic sta-
tus of AS in the genesis of characteristic ECG patterns recognised by AI. 
This knowledge will improve our understanding of false positive and 
negative finding of AI-ECG, consequently a better detection of patients 
with AS.

Methods
In this study, testing data from the Mayo Clinic dataset between January 
1989 and September 2019 which was previously used for developing the 
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AI-ECG model for identifying patients with moderate or severe AS were 
applied.1 Details of the study design have been previously published.1

Briefly, adults (age ≥ 18 years) who had available both an echocardiography 
and an ECG performed within 180 days were identified and the AI-ECG 
model was developed using CNN. The total number was 258 607; training 
was in 129 788 (50%), validation in 25 893 (10%), and testing in 102 926 
(40%), respectively. AS severity was defined along with the current guide-
lines using echocardiography.11,12 If one of the following echocardiography 
criteria was met, diagnosis of moderate or severe AS was given: peak vel-
ocity ≥ 3.0 m/s, mean pressure gradient (MG) ≥ 20 mmHg, dimensionless 
velocity index (DVI) ≤ 0.35, or aortic valve area (AVA) ≤ 1.5 cm2. 
Exclusion criteria included previous cardiac surgery or permanent pace-
maker implantation. The threshold of the AI-ECG model for the probability 
of classifying an ECG into positive and negative AS screens which was estab-
lished as 0.0243 by Youden index in the validation set in the model training 
process was used. In this post hoc study, we investigate the correlation be-
tween the AI-ECG probability of moderate or severe AS and echocardiog-
raphy parameters.

Patients’ demographics were identified using ICD-9 and -10 codes. The 
Institutional Review Board approved the study and patients who had 
authorised research participation were involved.

Echocardiography
All echocardiography data were retrieved using the Mayo Clinic Unified 
Data Platform. AVA was calculated by the continuity equation.13 Peak 
velocity and MG were acquired by continuous wave Doppler and ob-
tained from all available views, and the highest value was used.12,14 DVI 
was a ratio between left ventricular outflow tract (LVOT) and AV vel-
ocity time integral (VTI).15 LV ejection fraction (LVEF) was calculated 
by the modified Simpson or the modified Quinones method.16 Stroke 
volume index (SVI) was calculated as LVOT VTI × cross-sectional area 
at LVOT and indexed for body surface area (BSA).16 Early (E) transmitral 
filling peak velocity, septal mitral e′ were measured in a standard fash-
ion.17 Left ventricular mass index (LVMI) was calculated by the 
Devereux formula and indexed for BSA.16 Left atrium volume index 
(LAVI) was calculated using the area–length method, method of disks, 
or prolate ellipse method and indexed for BSA.16

Statistical methods
Continuous variables were summarised as a mean ± standard deviation or 
median (interquartile range) when appropriate. Categorical variables were 
summarised using frequency and percentage. For continuous variables, 
groups were compared using two-sample t-test. Binary data were com-
pared with a χ2 test. The correlation between the AI-ECG probability of 
AS and echocardiography parameters was assessed using a linear regression 
model. Spearman’s correlation coefficient (ρ) and R2 were reported. 
Decadic logarithm (log 10) transformation was applied when data were 
non-normal. A two-tailed P value < 0.05 was considered significant; how-
ever, its interpretation was carefully and comprehensively made because 
of the large sample size. Analyses were performed using R version 3.6.2 
(The R Foundation, Vienna, Austria).

Results
Of a total of 102 926 patients, n = 28 464 (28%) were identified as AS 
positive according to the established threshold in the AI-ECG model 
(≥0.0243).1 In those with AI-ECG positive (n = 28 464), patients with 
moderate AS were 830 (3%) and severe AS were 2615 (8%), respect-
ively (Table 1). In those with AI-ECG negative (n = 74 462), AS was mild 
in 4648 (6%) patients and none AS was in 68 976 (93%) patients. These 
findings were consistent with our previous report; low positive predict-
ive value at 11% and high negative predictive value at 99% were due to 
the low prevalence of the disease in this cohort (4%).1 The prevalence 
of positive AI-ECG in each group of AS severity diagnosed by echocar-
diography was followed; none AS 24%, mild AS 44%, moderate AS 68%, 
and severe AS 83%, respectively (see Supplementary material online, 
Table S1). AS with low-flow (SVI < 35 mL/m2) was present in 13.9% 

of the severe AS group and 9.7% of the moderate AS group (see 
Supplementary material online, Table S1).

Patient’s clinical characteristics, echocardiography, and ECG data are 
presented in Table 1. Mean age was 63.0 ± 16.3 years and 52% was 
men. Compared to patients with AI-ECG negative, patients with 
AI-ECG positive were 11 years older and male sex was more common 
(P < 0.001 for both). Patients with AI-ECG positive had a higher preva-
lence of atrial fibrillation/flutter, hypertension, diabetes mellitus, congest-
ive heart failure (CHF), myocardial infarction, coronary artery disease, 
peripheral artery disease, cerebrovascular disease, renal disease, and 
chronic pulmonary disease (P < 0.001 for all). In the AI-ECG positive 
group, patients with CHF (n = 8180) had LVEF of <40, 40–50, and 
>50% in 32.9% (n = 2691), 16.7% (n = 1364), and 50.4% (n = 4125), re-
spectively, indicating heart failure of preserved ejection fraction (HFpEF) 
was the most common in this cohort. The prevalence of decreased SVI 
(<35 mL/m2) was higher in patients with CHF compared to those with-
out CHF [31.8% (n = 2516) vs. 13.6% (n = 2648), P < 0.001].

Artificial intelligence-enabled 
electrocardiogram probability and 
echocardiographic parameters
Aortic valve area was similar between the AI-ECG positive and negative 
group (Table 1, 3.07 ± 63.22 vs. 3.07 ±  2.44 cm2, P < 0.001); however, pa-
tients with positive AI-ECG had extremely wide standard deviation. This 
was also the case for DVI. Peak velocity and MG were higher in the 
AI-ECG positive group compared to the negative group (P < 0.001). 
LVEF was lower in the AI-ECG positive group than the negative group, 
but the difference was not significant (56.7 ± 12.8 vs. 59.8 ±  9.2%, P <  
0.001). Stroke volume (SV) and SVI were equivalent between the groups. 
LVMI was larger in the positive group than in the negative group (P <  
0.001). Advanced diastolic dysfunction was more common in the 
AI-ECG positive group compared to the negative group; patients with 
the AI-ECG positive had higher medial E/e′ and a larger LVMI and LAVI 
(P < 0.001).

A summary of our findings (Graphical Abstract) and the correlation 
between AI-ECG probability and echocardiography parameters 
(Figure 1) are shown, respectively. There was a negative correlation be-
tween AI-ECG and AVA (ρ = −0.48, R2 = 0.20, P < 0.001) and a posi-
tive correlation for peak velocity (ρ = 0.22, R2 = 0.08, P < 0.001) as 
well as MG (ρ = 0.35, R2 = 0.08, P < 0.001). Due to the large sample 
size, the correlation between AI-ECG probability and LVEF (ρ =  
−0.095, R2 = 0.04, P < 0.001) was thought to be insignificant. There 
was no significant correlation between AI-ECG probability and SVI 
(ρ = 0.0035, R2 = 0.0003, P = 0.271). The correlation between 
AI-ECG and LV systolic parameters was shown to be poor. For diastolic 
parameters, there was a positive correlation between AI-ECG and 
LVMI (ρ = 0.36, R2 = 0.13, P < 0.001), E/e′ (ρ = 0.36, R2 = 0.12, P <  
0.001), and LAVI (ρ = 0.42, R2 = 0.12, P < 0.001), respectively.

Of note, the impact of cardiomyopathies on the correlation between 
the AI-ECG and LVMI was thought to be minimal since the number of 
patients with cardiomyopathies (e.g. hypertrophic cardiomyopathy, 
Fabry disease, amyloidosis) was small (see Supplementary material 
online, Table S2).

Artificial intelligence-enabled 
electrocardiogram probability and 
electrocardiogram parameters
The AI-ECG positive group had longer PR-interval, QRS, and QT (QTc) 
(Table 1). There was a positive correlation between AI-ECG and QRS 
duration (ρ = 0.25, R2 = 0.08, P < 0.001), PR interval (ρ = 0.25, R2 =  
0.03, P < 0.001), and QTc (ρ = 0.23, R2 = 0.05, P < 0.001) (Figure 2). 
However, these correlations were shown to be weak.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad009#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad009#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad009#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad009#supplementary-data
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New insight of AI-ECG in AS                                                                                                                                                                        199

Artificial intelligence-enabled 
electrocardiogram probability and age
There was a positive correlation between AI-ECG probability and age 
(Figure 3, ρ = 0.46, R2 = 0.22, P < 0.001). Consistently, the prevalence 
of positive AI-ECG increased as age increased (Table 2, age < 60 years: 

12.8%, 60–70 years: 25.2%, 70–80 years: 37.0%,  ≥ 80 years: 53.4%; P <  
0.001). As age increased, the prevalence of moderate and severe AS di-
agnosed by echocardiography also increased (Table 2, e.g. severe AS: 
age < 60 years: 0.6%, 60–70 years: 1.7%, 70–80 years: 3.4%,  ≥ 80 years: 
7.3%). The prevalence of comorbid conditions increased as age in-
creased, inversely, bicuspid AV became less common (P < 0.001). 
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Table 1 Clinical, echocardiography, and electrocardiogram characteristics

Overall AI-ECG positive AI-ECG negative P
(n = 102 926) (n = 28 464) (n = 74 462)

Age, years 63.0 ± 16.3 71.3 ± 13.4 59.8 ± 16.2 <0.001
Male sex, (%) 53 938 (52%) 16 386 (58%) 37 552 (50%) <0.001

Body surface area, m2 1.95 ± 0.27 1.94 ± 0.27 1.95 ± 0.27 <0.001

Aortic stenosis severity diagnosed by echocardiography <0.001
None 90 763 (88%) 21 787 (77%) 68 976 (93%)

Mild 8330 (8%) 3682 (13%) 4648 (6%)

Moderate 1225 (1%) 830 (3%) 395 (1%)
Severe 2608 (3%) 2165 (8%) 443 (1%)

Clinical characteristics (%)

Bicuspid aortic valve 2087 (2%) 821 (3%) 1266 (2%) <0.001
Atrial fibrillation/flutter 10 760 (11%) 5068 (18%) 5692 (8%) <0.001

Hypertension 50 486 (49%) 18 405 (65%) 32 081 (43%) <0.001

Diabetes mellitus 18 186 (17.7%) 6951 (24.4%) 11 235 (15.1%) <0.001
Congestive heart failure 18 531 (18.0%) 8180 (28.7%) 10 351 (13.9%) <0.001

Myocardial infarction 9843 (10%) 3700 (13%) 6143 (8%) <0.001

Coronary artery disease 27 148 (26%) 10 616 (37%) 16 532 (22%) <0.001
Peripheral artery disease 16 134 (16%) 6447 (23%) 9687 (13%) <0.001

Cerebrovascular disease 11 879 (12%) 4969 (18%) 6910 (9%) <0.001

Renal disease 12 394 (12.0%) 5260 (18.5%) 7134 (9.6%) <0.001
Chronic pulmonary disease 20 932 (20%) 6832 (24%) 14 100 (19%) <0.001

Echocardiography

Aortic valve area, cm2 3.07 ± 33.56 3.07 ± 63.22 3.07 ± 2.44 0.999
Peak velocity, m/s 1.53 ± 0.61 1.78 ± 0.90 1.43 ± 0.40 <0.001

Mean pressure gradient, mmHg 8.39 ± 10.99 13.58 ± 16.18 5.87 ± 5.71 <0.001

Dimensionless velocity index 0.76 ± 0.63 0.69 ± 0.81 0.79 ± 0.54 <0.001
LV ejection fraction, % 58.9 ± 10.4 56.7 ± 12.8 59.8 ± 9.2 <0.001

Stroke volume, mL 86.1 ± 22.3 86.1 ± 23.5 86.1 ± 21.8 0.94

Indexed stroke volume, mL/m2 44.3 ± 10.4 44.6 ± 11.5 44.2 ± 9.9 <0.001
Indexed stroke volume, mL/m2 < 35 mL/m2 (%) 16 548 (16.7%) 5164 (18.8%) 11 384 (15.9%) <0.001

Medial E/e′ 12.0 ± 15.5 15.1 ± 10.2 10.9 ± 16.9 <0.001a

LA volume index, mL/m2 33.6 ± 13.2 39.5 ± 15.4 31.3 ± 11.4 <0.001
LV mass index, g/m2 95.4 ± 28.3 109.3 ± 33.1 90.1 ± 24.3 <0.001

ECG

Ventricular rate, b.p.m. 75.0 ± 18.9 76.2 ± 17.6 74.5 ± 19.3 <0.001
PR interval 162.5 ± 40.2 170.1 ± 54.0 159.9 ± 33.8 <0.001

QRS duration 96.4 ± 20.3 105.0 ± 25.5 93.1 ± 16.7 <0.001

QT 399.3 ± 46.1 403.6 ± 46.3 397.7 ± 45.9 <0.001
QTc 437.6 ± 33.6 447.0 ± 36.2 434.0 ± 31.8 <0.001

P axis 47.6 ± 27.4 46.5 ± 30.5 47.9 ± 26.2 <0.001

R axis 22.0 ± 45.3 12.8 ± 52.5 25.5 ± 41.7 <0.001
T axis 47.0 ± 47.6 57.5 ± 60.6 43.0 ± 40.8 <0.001

AI-ECG, artificial intelligence-enabled electrocardiogram; ECG, electrocardiogram; E/e′, ratio between mitral inflow early diastolic velocity and medial mitral annular early diastolic velocity; 
LA, left atrium; LV, left ventricle. 
aComparison is performed after applying decadic logarithm transformation (log 10).
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Figure 1 Correlation between artificial intelligence-enabled electrocardiogram probability and echocardiography parameters. Correlations between 
the probability of artificial intelligence-enabled electrocardiogram for aortic stenosis and echocardiography parameters using linear regression model 
are shown. Spearman’s correlation coefficient (ρ), R2, and P values are reported. LVEF, left ventricular ejection fraction; LA, left atrium.
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Furthermore, as age increased, AS severity increased (AVA, peak vel-
ocity, and MG) and diastolic function deteriorated (increase in E/e′, 
LAVI, and LVMI) (P < 0.001). Although statistical significance was pre-
sent (P < 0.001), LVEF and SVI were similar between the age groups.

The correlation between age and each echocardiography parameter 
was similar to that of the AI-ECG probability (Figure 4). A negative cor-
relation between age and AVA (ρ = −0.3, R2 = 0.14, P < 0.001) and a 
positive correlation for peak velocity (ρ = 0.2, R2 = 0.05, P < 0.001) as 
well as MG (ρ = 0.26, R2 = 0.05, P < 0.001) were seen. The correlation 
was not significant for LVEF (P = 0.882) and not relevant for SVI (ρ =  
0.055, R2 = 0.0003, P < 0.001). Age had positive correlation with 
LVMI (ρ = 0.04, R2 = 0.22, P < 0.001), LAVI (ρ = 0.38, R2 = 0.12, P <  
0.001), and LAVI (ρ = 0.43, R2 = 0.12, P < 0.001), respectively. 

However, even after adjusting for age and sex, the AI-ECG probability 
significantly correlated with AS severity (AVA, peak velocity, and MG) 
as well as diastolic parameters (E/e′, LAVI, and LVMI) (P < 0.001 for all).

Discussion
This study found the following; (i) AI-ECG is positive in 68% of patients 
with moderate AS and 83% of those with severe AS, (ii) AI-ECG probabil-
ity is positively correlated with AS severity and LVMI as well as LV diastolic 
parameters, (iii) age was one of the important determinants of the AI-ECG 
probability; this is mostly because that the prevalence of AS increased as 
age increased and the AI feature for AS overlaps with aging.

Figure 2 Correlation between artificial intelligence-enabled electrocardiogramprobability and electrocardiogram parameters. Correlations between 
the probability of artificial intelligence-enabled electrocardiogram for aortic stenosis and electrocardiogram parameters are shown. Spearman’s cor-
relation coefficient (ρ), R2, and P values are reported.

Figure 3 Correlation between intelligence-enabled electrocardiogram probability and age. Correlations between the probability of artificial 
intelligence-enabled electrocardiogram for aortic stenosis and age are shown. Spearman’s correlation coefficient (ρ), R2, and P values are reported.
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Table 2 Clinical, echocardiography, and electrocardiogram characteristics according to age

Age < 60  
(n = 38 237)

Age 60–70  
(n = 24 970)

Age 70–80  
(n = 24 077)

Age ≥ 80  
(n = 15 642)

P

Age, years 45.7 ± 11.0 64.7 ± 2.9 74.3 ± 2.9 85.0 ± 4.2 —
Male sex, (%) 18 803 (49.2%) 14 063 (56.3%) 13 294 (55.2%) 7778 (49.7%) <0.001

Body surface area, m2 1.98 ± 0.29 1.99 ± 0.27 1.93 ± 0.25 1.83 ± 0.23 <0.001

AI-ECG probability 0.118 ± 0.621 0.273 ± 0.966 0.494 ± 1.307 0.894 ± 1.732 <0.001
AI-ECG positive (%) 4912 (12.8%) 6296 (25.2%) 8898 (37.0%) 8358 (53.4%) <0.001

Aortic stenosis severity diagnosed by echocardiography <0.001

None 36 532 (95.5%) 22 590 (90.5%) 20 206 (83.9%) 11 435 (73.1%)
Mild 1380 (3.6%) 1765 (7.1%) 2613 (10.9%) 2572 (16.4%)

Moderate 97 (0.3%) 202 (0.8%) 438 (1.8%) 488 (3.1%)

Severe 228 (0.6%) 413 (1.7%) 820 (3.4%) 1147 (7.3%)
Clinical characteristics (%)

Bicuspid aortic valve 1002 (2.6%) 584 (2.3%) 370 (1.5%) 131 (0.8%) <0.001

Atrial fibrillation/flutter 1256 (3.3%) 2399 (9.6%) 3582 (14.9%) 3523 (22.5%) <0.001
Hypertension 11 919 (31.2%) 12 870 (51.5%) 14 694 (61.0%) 11 003 (70.3%) <0.001

Diabetes mellitus 4728 (12.4%) 5191 (20.8%) 5207 (21.6%) 3060 (19.6%) <0.001

Congestive heart failure 4687 (12.3%) 4211 (16.9%) 4876 (20.3%) 4757 (30.4%) <0.001
Myocardial infarction 2267 (5.9%) 2357 (9.4%) 2731 (11.3%) 2488 (15.9%) <0.001

Coronary artery disease 5469 (14.3%) 7226 (28.9%) 8556 (35.5%) 5897 (37.7%) <0.001

Peripheral artery disease 2897 (7.6%) 3795 (15.2%) 5168 (21.5%) 4274 (27.3%) <0.001
Cerebrovascular disease 1941 (5.1%) 2532 (10.1%) 3699 (15.4%) 3707 (23.7%) <0.001

Renal disease 3271 (8.6%) 2908 (11.6%) 3179 (13.2%) 3036 (19.4%) <0.001

Chronic pulmonary disease 5929 (15.5%) 4946 (19.8%) 5762 (23.9%) 4295 (27.5%) <0.001
Echocardiography

Aortic valve area, cm2 2.20 ± 1.08 1.74 ± 0.79 1.55 ± 0.68 1.37 ± 0.66 <0.001

Peak velocity, m/s 1.39 ± 0.394 1.51 ± 0.54 1.61 ± 0.68 1.76 ± 0.86
Mean pressure gradient, mmHg 5.63 ± 6.91 7.56 ± 9.71 9.52 ± 11.79 12.30 ± 14.65 <0.001

Dimensionless velocity index 0.80 ± 0.12 0.76 ± 0.14 0.71 ± 0.17 0.65 ± 0.20 <0.001

LV ejection fraction, % 59.3 ± 9.3 59.0 ± 10.6 58.9 ± 10.8 57.9 ± 11.7 <0.001
Stroke volume, mL 86.3 ± 22.4 88.2 ± 22.5 86.5 ± 22.0 81.5 ± 21.5 <0.001

Indexed stroke volume, mL/m2 43.6 ± 9.8 44.4 ± 10.3 44.9 ± 10.6 44.8 ± 11.2 <0.001

Indexed stroke volume, mL/m2 < 35 mL/m2 (%) 6083 (16.5%) 3902 (16.3%) 3758 (16.2%) 2805 (18.6%) <0.001
Medial E/e′ 9.7 ± 4.6 11.9 ± 5.7 13.2 ± 6.2 15.7 ± 7.9 <0.001a

LA volume index, mL/m2 28.9 ± 10.5 33.6 ± 12.3 36.5 ± 13.5 41.3 ± 15.5 <0.001

LV mass index, g/m2 89.4 ± 27.5 96.8 ± 28.1 99.0 ± 28.2 102.7 ± 29.9 <0.001
ECG

Ventricular rate, b.p.m. 75.4 ± 18.7 74.6 ± 18.7 74.3 ± 18.8 75.7 ± 19.5 <0.001

PR interval 154.6 ± 28.9 162.9 ± 36.9 168.7 ± 46.7 175.2 ± 59.4 <0.001
QRS duration 92.9 ± 15.6 96.3 ± 19.9 98.8 ± 22.5 101.6 ± 24.9 <0.001

QT 393.5 ± 42.5 401.0 ± 45.7 403.0 ± 47.6 405.2 ± 51.1 <0.001

QTc 432.6 ± 31.8 438.3 ± 33.1 439.6 ± 34.1 445.5 ± 36.0 <0.001
P axis 46.9 ± 23.9 47.9 ± 26.9 48.1 ± 30.1 48.2 ± 32.4 <0.001

R axis 35.1 ± 39.9 19.6 ± 43.9 13.5 ± 45.7 7.0 ± 50.3 <0.001

T axis 42.2 ± 39.1 47.0 ± 46.9 50.1 ± 52.1 54.1 ± 57.8 <0.001

AI-ECG, artificial intelligence-enabled electrocardiogram; ECG, electrocardiogram; E/e′, ratio between mitral inflow early diastolic velocity and medial mitral annular early diastolic 
velocity;, LA, left atrium; LV, left ventricle. 
aComparison is performed after applying decadic logarithm transformation (log 10).
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Figure 4 Correlation between age and echocardiography parameters. Correlations between age and echocardiography parameters are shown. 
Spearman’s correlation coefficient (ρ), R2, and P values are reported. LVEF, left ventricular ejection fraction; LA, left atrium; LV, left ventricle.
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Artificial intelligence-enabled 
electrocardiogram for detecting moderate 
or severe aortic stenosis
Because of better clinical outcomes following AVR in patients with 
asymptomatic severe AS6 and poor survival outcomes in patients 
with moderate AS,9,10 early detection of AS is becoming increasingly 
important. There has been growing interest in earlier AVR, and several 
clinical trials investigating the efficacy of transcatheter AVR (TAVR) in 
those with moderate AS are currently ongoing (TAVR UNLOAD: 
NCT02661451, PROGRESS; NCT04889872, EXPAND II; 
NCT05149755). Three AI-ECG models from the US, South Korea, 
and Japan have been developed for detecting patients with AS1–3 and 
have been expected to identify patients with AS even before developing 
symptomatic severe AS in the community as well as clinical practice. All 
models showed an excellent ability (AUC: 0.83–0.88)1–3; however, it 
has not been clarified yet how to apply these models in practice. 
One of the important reasons for the difficulty for clinical application 
is its low positive predictive values (10.5–18.0%).1–3 This is mostly be-
cause the prevalence of patients with moderate to severe AS is low at 
approximately 3% even in those with age ≥75 years.18,19 To overcome 
this limitation, we are currently planning to investigate and develop the 
most effective way of using the AI-ECG in clinical practice as a screening 
tool by prospectively obtaining a point-of-care ultrasound in patients 
with positive AI-ECG for AS. Another important limitation would be 
that we do not know which features of AS are reflected in AI-ECG 
(black box). Without understanding its decision-making process, we 
may not be able to simply apply it to patients especially when we 
want to make a clinical decision. Our AI group at Mayo Clinic recently 
developed a set-up to understand which features of the ECG were used 
by human intelligence (medical expert) and by an AI model20; however, 
the further effort remains necessary to understand the black box. In the 
current study, therefore, we studied how the AI-ECG probability of AS 
correlated with the cardiac structural, functional, and haemodynamic 
features assessed by echocardiography to understand the model iden-
tification process for AS.

In our AI model, the TP segment or U wave was found to be most 
heavily weighted for determining the presence of AS.1 The AI-ECG 
model for AS from a Korean population showed that the initial area 
of the T wave in V2–V5 was the most important region.2 The 
AI-ECG model from the Japanese population showed that the ST-T 
segment is weighted.3 Despite its significance, these findings are based 
on the representative ECG cases and the specific segments were iden-
tified by saliency maps or sensitivity maps, thus, it may not be general-
ised to all cases. Such a feature of ECG representing LV hypertrophy 
(e.g. increased R wave amplitude or increased S wave depth) was not 
identified as specific segments used by AI-ECG; however, it is possible 
that the models identify R or S wave, or even other ECG segments for 
determining the presence of AS. In fact, LV hypertrophy is a key adap-
tation mechanism against increased afterload in AS. There was a signifi-
cant positive correlation between the AI-ECG probability and LVMI 
(Graphical Abstract, Figure 1). In addition, the AI-ECG probability posi-
tively correlated with AS severity (AVA, peak velocity, and MG). 
Based on the correlation coefficient (ρ), AVA and medial E/e′ has a rela-
tively strong correlation, and peak velocity, MG, LVMI, and LAVI had a 
moderate correlation with the AI-ECG probability. However, even for 
AVA, the R2 was not so much high at 0.20 indicating that there might be 
significant diversity in its correlation with the AI-ECG. The AI-ECG 
positive group has longer PR-interval, QRS, and QTc indicating that 
those with AI-ECG positive may have advanced myocardial disease 
compared to those with AI-ECG negative. Based on these findings, 
we may be able to postulate that the AI model identifies a significant 
diversity of electrical disturbance that is associated with LV hyper-
trophy or myocardial disease that is induced by AS or other similar 

cardiac conditions (e.g. high afterload associated with hypertension 
or atherosclerosis). In fact, in the AI-ECG positive group, patients 
were older and thus expected to have advanced atherosclerosis, and 
frequently had hypertension as well as peripheral artery disease com-
pared to those with negative AI-ECG. Other comorbid conditions 
were also more frequent in those with AI-ECG positive than in the 
negative group. Comorbidities usually accelerate atrial stiffening result-
ing in a further increased LV afterload.21,22 These findings suggest the 
importance of systemic arterial compliance associated with high after-
load in addition to AS severity in creating characteristic changes of AS in 
ECG.

Our study showed that advanced diastolic dysfunction such as higher 
E/e′ and larger LAVI was associated with higher AI-ECG probability in 
addition to LVMI (Table 1, Graphical Abstract, Figure 1). Diastolic dys-
function or high LV filling pressure has been reported to be associated 
with dyspnoea as well as worse survival in patients with AS.23–25 In 
significant AS, LV hypertrophy occurs as a compensatory mechanism 
in an attempt to normalise wall stress in the setting of increased after-
load.26–28 Reduced systemic arterial compliance has also been shown to 
induce LV hypertrophy and diastolic dysfunction in addition to AS.21,29

LV hypertrophy is a key adaptation mechanism against increased after-
load in AS to preserve LV ejection performance; however, it is accom-
panied by increased resistance to diastolic filling and LA pressure 
increases as shown in our data.30,31

The correlation between the AI-ECG probability and LVEF or SVI was 
not shown to be significant in the current study. Reduced LVEF (<50%) 
has been reported to be present approximately in 20% of patients with 
severe AS and its reduction has already started even before developing 
severe AS.32 Furthermore, impaired LVEF is associated with adverse 
survival outcomes in patients with AS.10,32 Despite its importance, the 
AI-ECG does not weight LV systolic function based on our data. 
Inconsistently, the prevalence of patients with CHF was higher in 
AI-ECG positive group compared to the negative group (Table 1, 28.7 
vs. 13.9%), and 33% of patients with CHF had LVEF < 40%. According 
to these findings, the AI-ECG perhaps identifies electrical disturbance 
associated with systolic dysfunction in some cases. However, most im-
portantly, patients with LVEF > 50% were present in 50% of those with 
CHF indicating significant importance of diastolic dysfunction (e.g. 
HFpEF) in this cohort. SVI is also an important factor in patients with 
AS. Its prognostic value has been well documented,33,34 and the SV 
reduction in progressive AS from moderate to severe AS is well de-
scribed.35 For our AI model, severe or moderate AS was defined using 
Doppler echocardiography parameters, and low-flow low-gradient AS 
is theoretically identified by the model. Patients with low-flow (SVI <  
35 mL/m2) were present at 14% in the severe AS group and 10% in 
the moderate AS group, respectively (see Supplementary material 
online, Table S1). Low-flow status was much more common in patients 
with CHF than those without CHF (32 vs. 14%).

Artificial intelligence-enabled 
electrocardiogram probability and age
In the original manuscript,1 we demonstrated that model performance 
increased when age and sex were added to the model (AUC: 0.85– 
0.87). Further analysis of stratifying based on the age groups, we de-
monstrated that the sensitivity gradually increased, and the specificity 
decreased as age increased.1 Patients with positive AI-ECG were 
much older than the negative group and there was a correlation be-
tween the AI-ECG and age (Table 1, Figure 3). The correlation between 
the AI-ECG and echocardiography parameters was similar to that of 
age and echocardiography parameters (Figures 1 and 4). We believe 
this is because the prevalence of AS increased as age increased 
(Table 2), and the AI feature for AS overlaps with features associated 
with aging. Comorbidities such as hypertension and peripheral artery 

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad009#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad009#supplementary-data
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disease that are associated with advanced atherosclerosis are more fre-
quent in the older group of patients. These comorbidities are risk fac-
tors for AS itself but are also associated with increased high afterload in 
addition to AS.

It may be better to incorporate age, sex, and several medical condi-
tions into the model to improve diagnostic accuracy; however, we 
aimed to develop the model as a stand-alone screening tool in the com-
munity that can be utilised for individuals who do not have available 
medical information.1 To have better diagnostic accuracy, we are cur-
rently planning to incorporate several AI-ECG models that have been 
previously developed (e.g. LV systolic dysfunction, age and sex, silent at-
rial fibrillation, and hypertrophic cardiomyopathy).36–39

Future directions
Although AS severity, LVMI, and diastolic function have a relatively 
strong correlation with the AI-ECG probability of AS, it is obvious 
that the model detects amalgam of several features associated with 
AS. Its identification for AS process is multifactorial and there seems 
to be a gradation of the cardiac anatomical/functional features and dys-
function in the model. It may be possible that AI-ECG recognises para-
meters yet to be identified at this time; therefore, further studies are 
warranted. Not infrequently, there is a discrepancy between AS sever-
ity based on its valvular haemodynamics and patients’ symptoms or LV 
filling pressures. Therefore, it may be possible that AI-ECG can help us 
to identify patients who have AS-specific cardiac maladaptation and 
predict which patients can benefit most from AVR in the future.

Limitations
Since our model was developed from the Mayo Clinic database, we 
need to validate its generalizability in an external group. Additional test-
ing of our AI-ECG in different races and different parts of the world is 
currently planned. However, as long as the purpose of the study is iden-
tifying echocardiographic features related to the AI-ECG probability, in-
ternal use should be sufficient. In this study, we aimed to demonstrate 
how the AI-ECG probability is correlated with each echocardiography 
parameter, thus, correlation coefficient and R2 were important. 
However, in the majority of the linear regression models, the R2s 
were relatively low. These findings indicate that there might be signifi-
cant diversity in the recognition process by the AI model but also sug-
gest that the AI-ECG for AS has significant overlap with features 
associated with other conditions in the elderly.

Conclusions
Combined features from AS severity, LV hypertrophy, and diastolic 
dysfunction are reflected in the AI-ECG model to detect AS. There 
seems to be a gradation of the cardiac anatomical/functional features 
in the model and its identification process for AS is multifactorial. 
The prevalence of AS increased with aging, thus the AI feature for AS 
overlaps with cardiac conditions associated with aging.
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Health.
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