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Abstract: In a network architecture, an intrusion detection system (IDS) is one of the most commonly
used approaches to secure the integrity and availability of critical assets in protected systems. Many
existing network intrusion detection systems (NIDS) utilize stand-alone classifier models to classify
network traffic as an attack or as normal. Due to the vast data volume, these stand-alone models
struggle to reach higher intrusion detection rates with low false alarm rates( FAR). Additionally, irrel-
evant features in datasets can also increase the running time required to develop a model. However,
data can be reduced effectively to an optimal feature set without information loss by employing a
dimensionality reduction method, which a classification model then uses for accurate predictions of
the various network intrusions. In this study, we propose a novel feature-driven intrusion detection
system, namely χ2-BidLSTM, that integrates a χ2 statistical model and bidirectional long short-term
memory (BidLSTM). The NSL-KDD dataset is used to train and evaluate the proposed approach. In
the first phase, the χ2-BidLSTM system uses a χ2 model to rank all the features, then searches an
optimal subset using a forward best search algorithm. In next phase, the optimal set is fed to the
BidLSTM model for classification purposes. The experimental results indicate that our proposed
χ2-BidLSTM approach achieves a detection accuracy of 95.62% and an F-score of 95.65%, with a low
FAR of 2.11% on NSL-KDDTest+. Furthermore, our model obtains an accuracy of 89.55%, an F-score
of 89.77%, and an FAR of 2.71% on NSL-KDDTest- 21, indicating the superiority of the proposed
approach over the standard LSTM method and other existing feature-selection-based NIDS methods.

Keywords: deep learning; feature selection; intrusion detection systems; chi-square; bidirectional
LSTM

1. Introduction

In present-day society, various organizations and individuals have become more and
more reliant upon information and communication technology (ICT), due to the increasing
number of useful technologies. The rise in reliance has resulted in a greater demand for
more stable and reliable ICT components and services. As a section of ICT, the Internet
provides a medium for individuals and organizations to accomplish tasks in their everyday
lives. However, as the data flow and the information traffic over the Internet increase,
user privacy and transactions become more prone to malicious users’ threats and attacks
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(intrusions). An intrusion is a succession of activities aiming to jeopardize the security of a
network system [1].

Intrusion detection systems (IDSs) have proven essential in the security domain and
play a vital role in detecting different types of malicious behaviors and attacks. IDSs can be
grouped into three basic strategic concepts (misuse detection, anomaly detection, and a
hybrid of the two) [2,3]. Misuse detection is a signature-based approach used to identify a
particular matching behavior or signature, compare it to recorded user behavior or activities,
and raise a signal [4–6]. Anomaly detection is used to spot activities that are significantly
different from normal user activity. In anomaly detection systems, an action is raised if
there is some deviation from a predefined computer state [7–9]. Hybrid detection is a fusion
of anomaly and misuse detection methods used to identify malicious activities [2,10,11]. It
is vital to mention that network intrusion or attacks can come from outside the network
(outsider attacks) or from within the network (insider attacks). Researchers have proposed
several different intrusion detection systems over the past few decades using machine
learning, deep learning, and other statistical methods. However, in recent times, machine
learning and deep learning techniques have gained more attention in many different
research areas, including intrusion detection [12]. They have become the most commonly
adopted approaches for many intrusion detection systems (IDS).

In the literature, machine learning methods such as support vector machine (SVM),
decision trees (DT), k-nearest neighbor (KNN), artificial neural networks, and deep neural
networks (DNN) have been widely used for the detection of network intruders [13–16].
However, the performance of these techniques depends heavily on simulated datasets.
These datasets often require many features for training, making them computationally
expensive for most classification models. Furthermore, using large numbers of features
may result in low performance, because some features may be redundant and irrelevant to
the performance of a model.

Therefore, it is necessary to perform feature selection before training, to eliminate
redundant and irrelevant features from the datasets. Feature selection plays an important
role in data preprocessing for most machine learning models. It is the process of selecting
features with the highest contributions to the predictive variable. Feature selection can be
performed manually or using algorithms (automatically) to reduce the dimensions of the
data to a subset of features relevant to building a predictive model. There are three main
categories of feature selection in the literature: wrapper, filter, and hybrid methods [17].
The wrapper method utilizes the greedy search strategy to evaluate all possible feature com-
binations against a criterion for evaluation based on machine learning algorithms [17,18].
The filter method, on the other hand, is not dependent on any machine learning algorithm.
Features are selected based on the variable characteristics or intrinsic properties, which
are measured via statistical analysis [19,20]. A hybrid or embedded method uses a combi-
nation of the properties of wrapper and filter methods [17,21]. Motivated by the positive
impact of feature selection on the performance of machine learning and deep learning
models for several different problems, we have developed a new IDS called χ2-BidLSTM
for network systems.

Main Contributions

The proposed χ2-BidLSTM IDS integrates χ2 with a BidLSTM-based deep learning
model. The χ2 statistical model is used for the ranking and selection of features based
on their χ2 test scores. The selected optimal features are used to train a bidirectional
long short-term memory (BidLSTM)-based recurrent neural network (RNN) for network
intrusion detection. The NSL-KDD dataset, which can be accessed via the University of
New Brunswick (UNB) data repository, is used to train and evaluate our χ2-BidLSTM
model’s performance. The contributions of this paper are as follows:

1. Developing and implementing an intrusion detection system based on a bidirectional
long short-term memory integrated with a χ2 feature selection model.
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2. To the best of our knowledge, no prior work has addressed the hybridization of the
bidirectional LSTM model with χ2 statistical model for network intrusion detection.

3. The χ2-BidLSTM method uses fewer features for training and testing purposes, and
thus reduces the complexity of traditional BidLSTM and also improves its
classification accuracy.

4. A better classification accuracy than the traditional bidirectional LSTM model is
obtained. Additionally, our approach outperforms existing state-of-the-art methods in
the literature.

The remainder of this work is organized as follows. Section 2 presents a review of
related work in the literature. A description of the dataset and the proposed methodology
is presented in Section 3. Section 4 presents the implementation, experimental results, and
discussion. Section 5 discusses the model complexity and limitations. In Section 6, we
present the conclusions and future directions of the study.

2. Related Work

As an essential element for ensuring security in network systems, IDSs continuously
draw the interest of many researchers. Many models have been developed to enhance the
effectiveness of IDSs in network systems. In this section, we discuss the literature related
to IDS techniques based on machine learning (ML) and deep learning (DL) that leverage
feature selection for network anomaly detection.

The authors in [22] proposed a hybrid IDS approach using the NSL-KDD dataset,
which focuses on combining the probability distributions of different learning algorithms
using information gain (IG) and a voting algorithm to select relevant features for classi-
fication. The hybrid method comprises the J48, Random Tree, Meta Pagging, REPTree,
Decision Stump, AdaBoostM1, and naive Bayes base classifiers. Although the technique
demonstrated a good performance of 99.81% and 98.56% accuracy for binary and multi-
class problems, respectively, there are still some concerns that need attention. The feature
selection process in this approach is often biased towards variables with distinct values, not
variables that have observations with large values, which can result in over-fitting and poor
performance. In [23], Hota and Shrivas also developed a framework that utilizes different
feature selection methods for irrelevant feature removal. The findings suggested that the
C4.5 algorithm could obtain the greatest accuracy with IG for just 17 features of the NSL-
KDD dataset. The study investigated the performance of four different feature selection
methods (i.e., correlation, information gain, relief, and symmetrical uncertainty) integrated
with the C4.5 decision tree algorithm for classification. According to the experimental
findings, the most efficient amongst the four selection methods was information gain with
C4.5, which obtained a detection accuracy of 99.68%. Although the result is promising,
the method tends to be skewed towards attributes with many possible values, leading
to poor generalization. Moreover, the entropy model employed in C4.5 has many time-
consuming logarithmic operations, sorting operations, and continuous values resulting in
high computational cost. Using logistic regression combined with a search strategy, the
authors in [24] presented a feature-selection-based IDS model that selects the best subset
of features from the KDDCUP’99 and the UNSW-NB15 datasets. The findings indicated
that their algorithm yields a good detection accuracy with just 18 selected features from the
KDDCUP’99 dataset and 20 selected features from the UNSW-NB15 dataset.

Acharya and Singh [25] proposed a novel bio-driven feature selection approach that
utilizes the Intelligent Water Drops algorithm combined with an SVM classifier for network
intrusion detection. Their approach, also known as a swarm optimization algorithm,
produced a high performance on the KDDCUP’99 dataset. The results indicated that the
approach obtained a high accuracy of 93.12%, a detection rate of 91.35%, and a reduced false
alarm rate of 3.35%, compared to other methods. The authors in [26] introduced a hybrid
IDS mechanism that integrates feature selection and clustering using SVM and K-medoids
clustering strategies. In this approach, the authors trained a naïve Bayes classifier on the
KDDCUP’99 dataset. They evaluated the model using the detection rate, accuracy, and
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false alarm rate. The evaluation results indicated that the proposed approach obtained a
higher detection rate of 90.1%, an accuracy of 91.5%, and a false alarm rate of 6.36%. In [27],
Jabbar et al. presented a cluster-oriented ensemble model for network intrusion detection.
The model was developed using the alternating decision tree technique (ADTree) and the
K-nearest neighbor (KNN) algorithm. In experiments, their proposed approach showed a
better performance with regard to accuracy and detection rate, compared to other methods
in the literature.

In another approach [28], Paulauskas and Auskalnis introduced an ensemble IDS
model. The model was developed using naïve Bayes (NB), C5.0, J48, and the partial
decision list algorithms as base classifiers, with the notion of integrating multiple learners.
Experimental findings indicated that the approach obtained better accuracy for network
intrusion detection. To combat the high-dimensionality problem in network traffic, Zhou
and Cheng [29] developed a heuristic feature selection algorithm known as the correlation-
based feature selection bat algorithm (CFS-BA). Their strategy obtains the best feature
subset by evaluating the correlations among features. The authors further built an ensemble
model that incorporates random forest, forest-oriented penalizing attribute, and C4.5
decisions, using the rule of the average of probabilities (AoP). The model was trained
and evaluated using CIC-IDS2017, KDDCUP’99, and the NSL-KDD datasets. The results
showed that the CFS-BA ensemble approach produced a better performance, compared to
other existing methods.

In [30], Pham et al. presented a hybrid approach that leverages gain ratio and bagging
techniques for network intrusion detection. The former (gain ratio) is utilized to obtain
the best features. The latter (bagging) is used to integrate tree-based core classifiers. The
approach was evaluated using the NSL-KDD dataset. The results showed that the bagging
method combined with J48 as the core classifier produced better performance for 35 features.
The authors in [31] proposed a wrapper-based IDS that utilizes a hyper-graph (HG) and
a genetic algorithm (GA) for producing possible subsets of features. The approach uses
SVM as a classification algorithm, which is evaluated on the NSL-KDD dataset. From
the evaluation, their proposed method exhibited a performance accuracy of 96.72% with
35 selected features.

In [32], Abdullah et al. developed an IDS model based on splitting the data input into
several subsets relative to the attack types. In this work, IG was used to select the best
features for each subset. Using random forest (RF) and partial decision list (PART) as core
classifiers, the method was evaluated on the NSL-KDD dataset. Experimental findings
illustrated that higher accuracy was achieved with the RF and PART classifiers combined
with product probability. In [33], Mohammadi et al. introduced a feature-selection-based
IDS that incorporates a clustering algorithm. The methodology was developed using
a wrapper method that leverages a linear correlation coefficient (LCC) algorithm and a
filter strategy that utilizes a cuttlefish algorithm (CFA). Their approach trained a decision
tree (DT) classifier on the KDDCUP’99 dataset. Experimental results with 10-fold cross-
validation showed that the method obtained a 95.03% accuracy, a 95.23% detection rate,
and a reduced false alarm rate of 1.6%. The authors in [34] developed a hybrid intrusion
detection system that integrates principal component analysis (PCA) and information gain
(IG) algorithms for feature selection. Their approach was evaluated on the NSL-KDD, Kyoto
2006+, and ISCX 2012 datasets using three ensemble classifiers (i.e., multi-layer perceptron
(MLP), SVM, and instance-based learning algorithms (IBK)). The IG-PCA method exhibited
more remarkable performance in detection rate, accuracy, and false alarm rate than other
existing strategies.

Using the organic combination of several deep learning methods, the authors in [35]
proposed a novel anomaly detection approach known as HELAD. The authors first per-
formed feature extraction and selection using the damped incremental statistics algorithm
(DISA). An autoencoder was then trained with selected features of a label dataset while
noting the irregular (abnormal) score labels in the data traffic. They further trained an
LSTM model using the irregular score label and obtained the final score using a weighted



Sensors 2022, 22, 2018 5 of 23

technique. In the experiment, the HELAD method produced a better accuracy compared
to other state-of-the-art methods. In [36], the authors used a multi-objective technique to
obtain the best subsets of features, which were then evaluated based on three decision tree
algorithms (i.e., NB, RF, and C4.5). The three algorithms were trained and tested using the
CIC-IDS2017, UNSW-NB15, and NSL-KDD datasets. In the experiment, the NSGA2-LR
approach showed promising results compared to other methods.

3. Materials and Methods

In this section, we present a detailed description of the dataset used in our study and
the proposed methodology.

3.1. Description of Dataset

One of the benchmark datasets utilized by researchers on intrusion detection in the
security domain is the NSL-KDD dataset [37]. It is publicly available in the online data
repository of the University of New Brunswick (UNB) [38]. The NSL-KDD dataset is a
modified form of the KDDCUP’99 dataset presented in [39]. The proposed model was
trained and evaluated on the NSL-KDD dataset. We selected this dataset because of the
following advantages:

1. The dataset has a reasonable and sufficient number of traffic records that can be used
to perform the study.

2. It does not contain redundant traffic in the training set, ensuring that classifiers are not
biased toward more frequently occurring records.

3. The testing set has no duplicate records; hence, the performance of learning algorithms
is not biased by models with higher detection rates on more frequently occurring records.

4. The fraction of records in the main KDD dataset is inversely proportional to the overall
records chosen from each difficulty level category. Therefore, the prediction rates of
various ML algorithms differ over a greater range, making accurate evaluation of
various learning methods more effective.

The dataset includes a training set (i.e., KDDTrain+) containing 125,973 data records
and two different test sets (i.e., KDDTest−21 and KDDTest+) containing 11,850 and 22,544 data
records, respectively, as presented in Table 1.

Table 1. Traffic sample breakdown of the NSL-KDD dataset.

Class Number of Samples

KDDTrain+ KDDTest+ KDDTest−21

Attack Type

DoS 45,927 7458 4342
Probe 11,656 2421 2402
U2R 52 200 200
R2L 995 2754 2754

Normal 67,343 9711 2152
Total 125,973 22,544 11,850

3.2. Data Preprocessing

As presented in Table 2, the NSL-KDD dataset has forty-one (41) features, of which
three are non-numeric. The non-numeric features are service, protocol_type, and flag. The
dataset has one classification label that can be categorized into two classes (i.e., normal and
attack) for a 2-class classification or five classes for a 5-class classification. The five classes
include Remote-2-Local (R2L), User-to-Root (U2R), Denial of Service (DoS), Probe, and
Normal. Apart from the normal class, the remaining four classes represent the different
attack types found in the dataset (see Table 3). Like any neural network model, the proposed
approach uses only numeric values as inputs. Hence, we converted all the non-numeric
data inputs to numeric form by encoding and assigning unique integer values to each of
them. As an integral part of data preprocessing, normalization plays an essential role in
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producing a balanced dataset. The commonly used normalization strategies in machine
learning and data science include decimal scaling, z-score, and min-max. The NSL-KDD
dataset exhibits uneven distribution for some features (e.g., src_bytes and dst_bytes), leading
to biased results. To ensure that the proposed model does not produce biased results, we
transformed all 41 features to values within the range of 0 to 1 by utilizing the min-max
feature scaling technique, as shown in Equation (1):

x =
z− zmin

zmax − zmin
(1)

where z signifies the original value of the feature and x represents the newly scaled number.

Table 2. List of all 41 features in the NLS-KDD dataset.

No. Feature Code No. Feature Code

01 duration F01 22 is_guest_login F22
02 protocol_type F02 23 count F23
03 service F03 24 srv_count F24
04 flag F04 25 serror_rate F25
05 src_bytes F05 26 srv_error_rate F26
06 dst_bytes F06 27 rerror_rate F27
07 land F07 28 srv_rerror_rate F28
08 wrong_fragment F08 29 same_srv_rate F29
09 urgent F09 30 diff_srv_rate F30
10 hot F10 31 srv_diff_host_rate F31
11 num_failed_logins F11 32 dst_host_count F32
12 logged_in F12 33 dst_host_srv_count F33
13 num_compromised F13 34 dst_host_same_srv_rate F34
14 root_shell F14 35 dst_host_diff_srv_rate F35
15 su_attempted F15 36 dst_host_same_src_port_rate F36
16 num_root F16 37 dst_host_srv_diff_host_rate F37
17 num_file_creations F17 38 dst_host_serror_rate F38
18 num_shells F18 39 dst_host_srv_serror_rate F39
19 num_access_files F19 40 dst_host_rerror_rate F40
20 num_outbound_cmds F20 41 dst_host_srv_rerror_rate F41
21 is_host_login F21

Table 3. Categories of the various attack types.

Class Types of Attacks

Training Set Testing Set

DoS smurf, neptune, land, back, teardrop, pod land, pod, apache2, processtable, neptune, smurf, worm, udpstorm,
back, mailbomb, teardrop

Probe satan, nmap, portsweep, ipsweep portsweep, satan, nmap, ipsweep, saint, mscan
U2R perl, loadmodule, buffer-overflow, rootkit ps, rootkit, sqlattack, buffer-overflow, xterm, loadmodule, perl

R2L imap, warezmaster, fpt-write, warezclient,
spy, phf, multihop, guess-passwd

warezmaster, snmpguess, phf, xsnoop, httptunnel, snmpgetattack,
sendmail, warezclient, fpt-write, named, xlock, spy, imap,

guess-passwd, multihop
Normal normal normal

3.3. Proposed Approach

The proposed method (see Figure 1) in this paper is chi-square bidirectional long
short-term memory (χ2-BidLSTM), which involves two steps. The first step utilizes a
chi-square statistical model to select optimal features from the dataset. The second step
trains a bidirectional LSTM predictive model on the optimal set.
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Figure 1. The proposed IDS architecture.

3.3.1. Chi-Square (χ2) Feature Selection

A χ2 model computes the χ2 statistics for every feature (Fi) and class (θ) to measure
the level of independence between each class and feature. It also indicates features that are
most likely to be irrelevant (not class-dependent) for classification [40]. The feature selection
process first partitions the data and ranks the features, and then performs a search to obtain
an optimal subset from the ranked set of features [41]. The features are ranked using the χ2

test scores. For instance, consider a 2-class (i.e., Normal and Attack) classification with m
instances. We can construct a table to obtain the χ2 test scores, as shown in Table 4.

Table 4. Computation of chi-square test scores.

Normal Class Attack Class Total

Fi occur n a n + a = ϕ
Fi do not occur ν ν ν + ρ = m− ϕ

Total n + ν = δ a + ρ = m− δ m

Here, ϕ represents the total number of instances with feature Fi, and the total number
of instances without Fi is represented by m− ϕ. In addition, δ denotes the total number of
normal instances. The total number of attack instances is denoted by m− δ. The χ2 test
statistic compares the observed values (O) measured from the data with the expected values
(E). From Table 4, the observed values are n, a, ν, and ρ. Let En, Ea, Eν, and Eρ represent
their expected values, respectively. Using the assumption that the two occurrences are
independent, we can compute the expected values as:

En = (n + a)
(

n + a
m

)
(2)
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Similarly to Equation (2), we can also compute the expected values Ea, Eν, and Eρ. The
χ2 test statistic for a goodness-of-fit test is generally obtained by:

χ2 =
k

∑
i=1

(Oi − Ei)
2

Ei
(3)

where i is the number of different data classes, O denotes the observed values measured
from the data, and E represents the expected values. We can therefore compute the χ2 test
statistic for Table 4 as:

χ2 =
(n− En)

2

En
+

(a− Ea)
2

Ea
+

(ν− Eν)
2

Eν
+

(
ρ− Eρ

)2

Eρ
(4)

The test statistic in Equation (4) is used to rank the features. Subsequently, we perform
a forward best-first search to select the features with the highest test scores as the optimal set.
Thus, we first select a feature with the highest χ2 test result and check its performance using
the BidLSTM model. Another feature is added to the subset of features in the subsequent
iteration based on the test score. Again, we investigate the performance of the subset of
features with the BidLSTM model. This procedure is repeated until every ranked feature
is added to the subset. The subset of features with the best performance is then selected
as the optimal set and supplied to the BidLSTM predictive model to produce the best
performance results.

3.3.2. BidLSTM Model

In this subsection, we present the deep learning methods used in this study. We give a
brief overview of the working principles of RNNs in general and narrow it down to the
main methods: the LSTM and the BidLSTM.

RNN is a generalized form of traditional feed-forward network with internal memory,
capable of propagating information from the past to the future. It generates loops in the
networks which enable information to persist. The loops are utilized together with the
memory state to process a sequence of input data [42]. RNN is a category of DNN that
is able to utilize previous outputs while maintaining hidden layers that serve as storage
for information [43,44]. The same weights and biases are supplied to all layers, thereby
minimizing the challenge of memorizing and increasing parameters. The basic architecture
of an RNN is shown in Figure 2. RNNs may be suitable for solving several research
problems, but they suffer from the drawback of vanishing gradients, which inspired the
development of LSTM in [45].

Figure 2. An unrolling RNN architecture [46].

The LSTM network is a more advanced version of the RNN that learns long-term
dependencies via a gating mechanism. It is a solution to the vanishing gradients problem
encountered when training conventional RNNs [47]. The gates and cell state are the LSTM
network’s basic principles. The cell state is considered as the network’s memory and serves
as route to propagate relevant information. The gates (i.e., forget, input, and output gates)
control the information flow and determine what knowledge should be kept or discarded



Sensors 2022, 22, 2018 9 of 23

(forgotten), as shown in Figure 3. Equations (5)–(9) give the expressions for the cell state
and various gates at the periods t and t− 1, as follows:

iT = σ
[
(Ŵαi ∗ αT) + (Ŵβi ∗ βT−1) + (Ŵζi ∗ ζT−1) + λi

]
(5)

fT = σ
[
(Ŵα f ∗ αT) + (Ŵβ f ∗ βT−1) + (Ŵζ f ∗ ζT−1) + λ f

]
(6)

ζT = ( fT ∗ ζT−1) + iT tanh
[
(Ŵαζ ∗ αT) + (Ŵβζ ∗ βT−1) + λζ

]
(7)

oT = σ
[
(Ŵαo ∗ αT) + (Ŵβo ∗ βT−1) + (Ŵζo ∗ ζT−1) + λo

]
(8)

βt = oT tanh(βT) (9)

where iT denotes the input gate, α represents the input vector, oT is the output gate, βT
denotes the output, and fT represents the forget function. The cell state is given by ζ, with
Ŵ and λ as the weight and bias parameters, respectively.

Figure 3. The LSTM memory cell.

The proposed method, which is the bidirectional LSTM (BidLSTM), augments the
conventional LSTM to enhance a network model’s performance. The BidLSTM model
utilizes two hidden LSTM layers to process data inputs in two directions (i.e., forward
and backward) [48,49]. The basic concept of a BidLSTM model is quite simple. It involves
duplicating the primary recursive layer of the neural model. In training, the input to the
primary layer consists of the actual data, while that of the duplicate layer is a reverse copy
of the data. This technique effectively increases the amount of information available to the
model. Figure 4 displays the structure of a BidLSTM model. The Keras library in Python
provides a wrapper for the bidirectional layers used for developing BidLSTMs. It permits
users to decide the merging mode, which determines how the outputs from both directions
(i.e., forward and backward) are combined before feeding them to the subsequent layer.

The forward hidden layer (
→
β ), the backward hidden layer (

←
β ), and the output (o) of a

BidLSTM can be obtained from the following equations [49,50]:

→
β t = h

(
Ŵ

α
→
β

αt + Ŵ→
β
→
β

→
β t−1 + λ→

β

)
(10)
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←
β t = h

(
Ŵ

α
←
β

αt + Ŵ←
β
←
β

←
β t+1 + λ←

β

)
(11)

ot = Ŵ→
β o

→
β t + Ŵ←

β o

←
β t + λo (12)

where Ŵ
α
→
β

denotes the forward hidden weight and Ŵ
α
←
β

denotes the backward hidden

weight. The terms λ→
β

and λ←
β

signify the forward and backward bias vectors, respectively,

while the term h denotes the hidden layer.

Figure 4. A bidirectional LSTM architecture.

It is evident from the literature that bidirectional RNN models perform considerably
better than standard models in several research areas, including intrusion detection. In
this approach, we evaluated the performance of BidLSTM using the NSL-KDD intrusion
detection dataset. The χ2 statistical model was hybridized with the BidLSTM to further
improve the model’s performance. We carried out experiments to discover the hyper-
parameter values that would result in the best IDS performance metrics. The trained
χ2-BidLSTM model consisted of an input layer with 64 neurons, three hidden layers with
32 neurons each, and an output layer with five neurons corresponding to the five class
labels. We set the number of epochs to 100, with a range of 0 to 0.05 as the model weights.
We defined the loss function in the training process to assess the model weights. Since the
study deals with a multi-class classification issue, we chose an algorithmic loss function
specified in the Keras library as “categorical_crossentropy”. This loss function measures
how the predicted values vary from the actual values. We employed ReLU as the activation
function for all layers except the output layer, which used Softmax activation. The model
uses an “Adam” optimization algorithm with a learning rate of 0.008. Finally, we fitted
the model to the dataset using the “fit” function. We adopted the K-fold cross-validation
scheme with the value of K set to 10, to evaluate the model’s performance.

4. Experimental Results and Discussion

This section presents the process of implementing χ2-BidLSTM (Algorithm 1) and
discusses the experimental results. To investigate the proposed method’s robustness, we
evaluated the model’s performance using different metrics such as accuracy, precision,
F-score, and false alarm rate (FAR). In addition, this section compares the findings to those
of the standard LSTM model and other techniques in the literature. The complexity and
runtime analyses of the proposed algorithm are also provided.

4.1. Implementation

The proposed method is a feature-selection-based IDS called χ2-BidLSTM. Several
tools in the literature can be used to perform this type of experiment. In this study, the
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Python programming language was utilized to implement the different phases of the
proposed method. To be precise, we used Python’s TensorFlow and Keras libraries to
implement the various components of the model. All experiments and evaluations were
carried out using a personal computer (PC) running on the Windows 10 Operating System
(OS), with the following specifications: Intel Core i5-9300H CPU, 8GB Random Access
Memory (RAM), NVIDIA GeForce GTX 1050, and a 4GB dedicated GDDR5 VRAM. The
implementation was in two phases. The first phase was feature selection with a chi-square
statistical model. As mentioned earlier, the NSL-KDD dataset contains 41 training features.
However, the dataset contains some irrelevant features that can hinder the performance
of a model. To improve the prediction accuracy, we used a χ2 feature selection method to
narrow down the features to those most relevant for classification. As shown in Section 1,
the χ2 model computes the scores between each feature D[i] and class label L and ranks the
features in descending order based on their test scores. The result is saved in SELECTED.
The algorithm finally returns SELECTED, containing the list of ranked feature indexes.
After ranking all features, a forward best search was performed to select an optimal set,
as stated in Section 3.3.1. The search first finds the feature having the highest χ2 test score
using the evaluation function v() and appends it to SELECTED. The next iteration finds the
subsequent feature that achieves the highest score in addition to the features in SELECTED.
The procedure is repeated until an ideal feature combination is achieved and fed to the
classification models to produce the best results.

4.2. Results and Discussion

In this section, we present a discussion of the results obtained from all experiments.
We performed a total of four separate experiments using the NSL-KDD dataset with 10-fold
cross-validation.

4.2.1. Experiment No. 1: Standard LSTM Trained with All 41 Features

In experiment 1, we investigated a standard LSTM model’s performance using all
41 features for 5-class classification (i.e., DoS, Probe, U2R, R2L, and Normal). Table 5
illustrates the confusion matrices used to evaluate the model’s performance, and the results
are reported in Tables 6 and 7.

Table 5. Confusion matrix for standard LSTM model trained with all 41 features.

Predicted Label Predicted Label

Normal DoS Probe R2L U2R Normal DoS Probe R2L U2R

Normal 8958 4 729 9 11 1685 11 433 8 15
DoS 408 6441 538 6 65 652 3064 527 6 93

Probe 241 26 2114 18 22 258 23 2062 25 34
R2L 184 5 498 2067 0 439 7 379 1929 0

True Label

U2R 45 2 61 0 92 51 3 58 1 87

Test Set NSL-KDDTest+ NSL-KDDTest−21

Table 6. Standard LSTM performance on NSL-KDDTest+ using all 41 features.

Class Label Performance Results (%)

Precision Specificity Recall FAR F-Score

DoS 99.43 99.75 86.36 0.25 92.44
Probe 53.65 90.93 87.32 9.07 66.47
R2L 98.43 99.83 75.05 0.17 85.17
U2R 48.42 99.56 46.00 0.44 47.18

Normal 91.07 93.16 92.25 6.84 91.66
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Algorithm 1 χ2-BidLSTM implementation process

. Obtain the χ2 test scores for each feature using χ2 statistical model
. Rank(sort) the features in descending order based on their χ2 test scores

1: arr← {}
2: for i← 1 to n do
3: test_score← chi.sqaured(D[i], L) . Compute the χ2 score between features in the dataset D

and class labels L
4: append (i, test_score) to arr
5: end for
6: rank the features of arr . Sort the features in a descending order based on their χ2 test scores
7: store the feature scores of arr to SELECTED
8: return SELECTED

. Find the features with the highest test value (v_max) from the ranked features
. Obtain the best feature subset for training using forward search

9: SELECTED← {}
10: v_max←−1
11: SubF← index of D
12: while SubF != NULL do
13: index ← NULL
14: for i← 0 to SubF length do
15: temp f eature_list← (SELECTED ∪ SubF[i])
16: temp v← v(temp f eature_list)
17: if temp v > v_max then
18: index← i
19: end if
20: end for
21: if index == NULL then
22: break
23: else
24: append SubF[index] to SELECTED
25: Remove SubF[index] from SubF
26: end if
27: end while
28: return SELECTED as optimal set

. Model training interface with a K-fold cross-validation using the optimal set
29: for f = 1 to k do
30: [ ]Training_set = New_List[|V|]
31: [ ]Testing_set = New_List[|V|] . Construct the training set
32: for m = 1 to k do
33: if m == f then
34: continue
35: end if
36: for v = 1 to |V| do
37: Train[v] + fold[v][m]
38: end for
39: end for . Construct the testing set
40: for v = 1 to |V| do
41: Test[v] + fold[v][m]
42: end for . Fit BidLSTM model for training and testing
43: model = BidLSTM()
44: BidLSTM.Fit(Train) . Train model with K-1 folds
45: Evaluate model perfomance with remaining Kth folds
46: scores = cross_val_scores()
47: Return scores . Return the classification accuracy and validation scores
48: end for
49: Test model with an unseen test dataset
50: Return test scores
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Table 7. Standard LSTM performance on NSL-KDDTest−21 using all 41 features.

Class Label Performance Results (%)

Precision Specificity Recall FAR F-Score

DoS 98.58 99.41 70.57 0.59 82.26
Probe 59.61 85.21 85.85 14.79 70.36
R2L 97.97 99.56 70.04 0.44 81.69
U2R 37.99 98.78 43.50 1.22 40.56

Normal 54.62 85.56 78.30 14.44 64.35

As reported in Table 6, the standard LSTM model produces a detection accuracy
of 87.26%, a precision of 90.34%, an F-Score of 88.03%, and a false alarm rate of 4.03%
for the NSL-KDDTest+ dataset. From Table 7, the model produced a 74.49% detection
accuracy, 81.53% precision, an F-Score of 75.76%, and a 5.96% false alarm rate for the
NSL-KDDTest−21 dataset.

4.2.2. Experiment No. 2: BidLSTM Trained with all 41 Features

The second phase of the experiments involved a bidirectional LSTM model trained
with all 41 features of the dataset. We evaluated the model’s performance using the
confusion matrix and experimental findings shown in Tables 8–10.

Table 8. Confusion matrix of BidLSTM model trained with all 41 features.

Predicted Label Predicted Label

Normal DoS Probe R2L U2R Normal DoS Probe R2L U2R

Normal 9264 1 435 3 8 1776 2 364 2 8
DoS 321 6738 343 3 53 426 3657 221 2 36

Probe 191 9 2216 0 5 195 17 2165 10 15
R2L 173 0 311 2270 0 446 0 281 2027 0

True Label

U2R 39 0 53 0 108 35 0 60 7 98

Test Set NSL-KDDTest+ NSL-KDDTest−21

Table 9. BidLSTM performance on NSL-KDDTest+ using all 41 features.

Class Label Performance Results (%)

Precision Specificity Recall FAR F-Score

DoS 99.85 99.93 90.34 0.07 94.86
Probe 65.99 94.32 91.53 5.68 76.69
R2L 99.74 99.97 82.43 0.03 90.26
U2R 62.07 99.70 54.00 0.30 57.75

Normal 92.75 94.36 95.40 5.64 94.06

Table 10. BidLSTM performance on NSL-KDDTest−21 using all 41 features.

Class Label Performance Results (%)

Precision Specificity Recall FAR F-Score

DoS 99.48 99.75 84.22 0.25 91.22
Probe 70.04 90.20 90.13 9.80 78.83
R2L 98.97 99.77 73.60 0.23 84.42
U2R 62.42 99.49 49.00 0.51 54.90

Normal 61.71 88.64 82.53 11.36 70.62

To obtain a better intuition about the numbers of correctly classified attacks and the
misclassification rates, we tabulated the confusion matrix in Table 8 for the two test sets
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(i.e., NSL-KDDTest+ and NSL-KDDTest−21). The vertical labels denote the true classes
while the horizontal labels represent the predicted classes. As mentioned in Section 3.1,
the NSL-KDDTest+ dataset contains 22,544 traffic records, out of which 12,833 samples
are malicious behaviors (attacks) and 9711 are normal behaviors. Out of the 12,833 attack
samples, the BidLSTM model could correctly detect 11,332, producing a detection accuracy
of 91.36% from the confusion matrix, a precision of 92.81%, and an F-score of 91.67%. The
model misclassified 1501 attack samples, yielding a low false alarm rate of 3.06%. Similarly,
the NSL-KDDTest−21 test set contains 2152 normal and 9698 attack records. BidLSTM
correctly detected 7947 attacks while 1751 were misclassified. Thus, the model achieved
82.05% detection accuracy, 85.91% precision, an F-Score of 82.77%, and a false alarm rate of
4.20% compared to the standard LSTM model. The performances of our proposed approach,
BidLSTM, and those of other current techniques using all the 41 features in the NSL-KDD
dataset are reported in Table 11.

Table 11. Performance comparison against existing methods in the literature using all 41 features
(N/A denotes not available).

Approach Performance (%)

NSL-KDDTest+ NSL-KDDTest−21

Accuracy F-Score FAR Accuracy F-Score FAR

SCDNN [51] 72.64 N/A 27.36 44.55 N/A 55.45
NN [52] 83.67 83.28 23.47 N/A N/A N/A

MDPCA-DBN [53] 82.08 81.75 2.62 66.18 74.87 13.06
RNN [54] 81.29 79.25 12.42 64.67 N/A N/A
STL [55] 74.38 N/A 7.21 57.34 N/A 15.06

OCNN [56] 88.67 89.78 11.89 N/A N/A N/A
HMLSTM [56] 87.11 88.40 12.20 N/A N/A N/A

OCNN-HMLSTM [56] 90.61 91.46 8.86 N/A N/A N/A
Standard LSTM 87.26 88.03 4.03 74.49 75.76 5.96

BidLSTM 91.36 91.67 3.06 82.05 82.77 4.20

Based on the results presented in Table 11, our approach shows substantial advantages
over the other methods on the NSL-KDD dataset. BidLSTM trained using all 41 features
reliably exhibits a greater detection accuracy and a better F-score than the other methods
on the two test sets (i.e., NSL-KDDTest+ and NSL-KDDTest−21), as shown in Figure 5.
Additionally, it also has a lower FAR than these approaches, indicating its effectiveness in
detecting intrusions.

4.2.3. Experiment No. 3: Standard LSTM Trained with Reduced Features

In this section, we investigate the performance of the chi-squared feature selection
integrated with the standard LSTM model. Using the χ2 statistical model, we achieved
different subsets of features. These subsets were fed successively to the standard LSTM
classification model for training, and the performance of each subset was recorded as
shown in Section 6. The subset of features that produced the best performance results was
selected as the optimal set as shown in Figure 6. Table 12 presents the list of features in the
chosen subset.

As shown in Table 13, with just 21 features, the model could correctly detect 11,377 ma-
licious records out of the 12,833 records in the NSL-KDDTest+ dataset, producing a higher
accuracy of 91.16% compared to training the model with all 41 features. Additionally, with
the reduced set of features, the LSTM model obtained 91.86% precision, 96.23% specificity,
an F-score of 91.32%, and a recall of 91.20%. It also produced a low false alarm rate of 3.77%
compared to the standard LSTM trained with all features.

The experimental results from Table 14 indicate that the standard LSTM model trained
with the reduced feature set improved the performance by 3.90%.
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In the same vein, Table 15 shows that the model improved the performance by 6.49%
with the reduced feature set. That is, with the NSL-KDDTest−21 dataset, as presented in
Table 13, the model accurately detected 7760 attack records out of a total of 9698, achieving
a detection accuracy of 80.98% compared to when it was trained with the complete feature
set. It obtained precision, specificity, recall and F-score values of 84.95%, 95.49%, 80.97%,
and 81.68%, respectively, with a low false alarm rate of 4.51%.

Table 12. The selected optimal set of features.

Method Feature Code Number of
Features

Standard LSTM [F02, F03, F04, F05, F06, F08, F10, F13, F14, F22, F24, F25, F27,
F28, F29, F31, F33, F34, F38, F40, F41] 21

BidLSTM [F02, F03, F04, F05, F06, F08, F10, F13, F14, F22, F24, F25, F27,
F28, F29, F31, F33] 17

(a) (b)

Figure 5. Comparison of results against existing methods on NSL-KDDTest+ and NSL-KDDTest−21

using all 41 features. (a) Performance results on NSL-KDDTest+; (b) performance results on NSL-
KDDTest−21.

(a) (b)

Figure 6. Performance results of different subsets of features on NSL-KDDTest+ and NSL-KDDTest−21.
(a) Performance of different subsets on NSL-KDDTest+; (b) performance of different subsets on
NSL-KDDTest−21.
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Table 13. Confusion matrix of standard LSTM model trained with 21 features.

Predicted Label Predicted Label

Normal DoS Probe R2L U2R Normal DoS Probe R2L U2R

Normal 9175 7 505 16 8 1836 12 269 21 14
DoS 375 6806 215 9 53 405 3343 493 13 88

Probe 111 156 2120 21 13 178 33 2143 48 0
R2L 322 0 100 2325 7 328 9 266 2128 23

True Label

U2R 68 0 0 6 126 35 0 19 0 146

Test Set NSL-KDDTest+ NSL-KDDTest−21

Table 14. Standard LSTM performance results on NSL-KDDTest+ using 21 features.

Class Label Performance Results (%)

Precision Specificity Recall FAR F-Score

DoS 97.66 98.92 91.26 1.08 94.35
Probe 72.11 95.93 87.57 4.07 79.09
R2L 97.81 99.74 84.42 0.26 90.63
U2R 60.87 99.64 63.00 0.36 61.92

Normal 91.28 93.17 94.48 6.83 92.85

Table 15. Standard LSTM performance results on NSL-KDDTest−21 using 21 features.

Class Label Performance Results (%)

Precision Specificity Recall FAR F-Score

DoS 98.41 99.28 76.99 0.72 86.39
Probe 67.18 88.92 89.22 11.08 76.65
R2L 96.29 99.10 77.27 0.90 85.74
U2R 53.87 98.93 73.00 1.07 62.00

Normal 66.00 90.25 85.32 9.75 74.42

4.2.4. Experiment No. 4: BidLSTM Trained with Reduced Features

In this experiment, we evaluated the performance of the proposed BidLSTM method
using a reduced feature set. Similarly to experiment No. 3, we obtained different subsets of
features after applying χ2 feature selection. Sequentially, these feature subsets were fed to
the BidLSTM model for training and classification. We then selected the subset with the
best performance as the optimal feature set, as shown in Table 12.

From Tables 16–18, we can observe that the BidLSTM model had higher detection
accuracy, precision, specificity, F-score, and recall. It is evident from the results that
BidLSTM trained with a reduced set of features improves the performance of BidLSTM
trained with all 41 features by 4.26% and 7.50% on the NSL-KDDTest+ and NSL-KDDTest−21

datasets, respectively. With 17 features, as presented in Table 12, the model could correctly
detect 11,976 attack samples out of the 12,833 samples in the NSL-KDDTest+ dataset,
yielding a greater accuracy of 95.62%. Furthermore, it achieved a higher precision of
95.88%, a specificity of 97.89%, an F-score of 95.65%, and a recall of 95.62%. It produced a
2.11% false alarm rate, which was lower than when the model was trained with a complete
feature set. In addition, it can be observed from Table 16 that BidLSTM trained with
17 features could effectively detect 8644 attacks from a total of 9698 attack records in the
NSL-KDDTest−21 dataset. That is, using the NSL-KDDTest−21 test dataset, BidLSTM with
the reduced feature set obtained a detection accuracy of 89.55%, with a low false alarm
rate of 2.71%, as shown in Table 18. It also achieved 90.75% precision, 97.29% specificity,
89.55% recall, and an F-score of 89.77%. A comparison of the performances of our proposed
method and other existing feature reduction methods is shown in Table 19.
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Table 16. Confusion matrix of BidLSTM model trained with 17 features.

Predicted Label Predicted Label

Normal DoS Probe R2L U2R Normal DoS Probe R2L U2R

Normal 9580 0 116 5 10 1968 25 150 0 9
DoS 261 7018 152 0 27 286 3912 94 7 43

Probe 127 1 2293 0 0 52 84 2258 8 0
R2L 142 5 106 2501 0 276 0 175 2303 0

True Label

U2R 34 2 0 0 164 13 7 0 9 171

Test Set NSL-KDDTest+ NSL-KDDTest−21

Table 17. BidLSTM performance results on NSL-KDDTest+ using 17 features.

Class Label Performance Results (%)

Precision Specificity Recall FAR F-Score

DoS 99.89 99.95 94.10 0.05 96.91
Probe 85.98 98.14 94.71 1.86 90.13
R2L 99.80 99.97 90.81 0.03 95.10
U2R 81.59 99.83 82.00 0.17 81.80

Normal 94.44 95.61 98.65 4.39 96.50

Table 18. BidLSTM performance results on NSL-KDDTest−21 using 17 features.

Class Label Performance Results (%)

Precision Specificity Recall FAR F-Score

DoS 97.12 98.45 90.10 1.55 93.48
Probe 84.35 95.57 94.00 4.43 88.92
R2L 98.97 99.74 83.62 0.26 90.65
U2R 76.68 99.55 85.50 0.44 80.85

Normal 75.84 93.53 91.45 6.47 82.92

To broaden the scope of the benchmark, we compared the performance of our χ2-
BidLSTM approach to that of earlier studies that used the NSL-KDD Test+ and NSL-
KDDTest−21 datasets. Figure 7 shows the comparison of our results with some of the
earlier techniques on these two test sets. The proposed approach, which outperforms other
contemporary IDS algorithms, achieved the best detection accuracy based on experimental
findings on the NSL-KDD datasets. In addition to having greater detection accuracy, the
proposed approach outperformed prior approaches significantly in terms of the false-alarm-
rate measure. Our proposed χ2-BidLSTM method achieved greater accuracy of 95.62%
and an F-score of 95.65%, with a false alarm rate of 2.11% on the NSL-KDDTest+ dataset,
using only 17 features. Furthermore, the proposed method obtained an accuracy of 89.55%,
an F-score of 89.77%, and a false alarm rate of 2.71%, with just 17 features, according to
the experimental findings on the KDDTest−21 dataset, which is superior to the χ2-LSTM
method and the other existing approaches based on all the performance measures presented
in Table 19. The table shows that feature selection improves the performance of both the
standard LSTM and BidLSTM models considerably in predicting network intrusion. Chi-
square feature selection, compared to other existing feature-selection-based approaches
(i.e., PCA, information gain, mutual nformation, CFS, and gain ratio), exhibited superiority
in terms of detection accuracy and FAR.
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Table 19. Comparison of results against existing feature-selection-based algorithms on NSL-KDDTest+

and NSL-KDDTest−21.

Approach
Feature

Selection
Method

Number
of

Features
Performance (%)

NSL-KDDTest+ NSL-KDDTest−21

Accuracy F-Score FAR Accuracy F-Score FAR

FSSL-EL [57] PCA 20 84.54 N/A 5.31 71.29 N/A 20.35
TSE-IDS [58] Hybrid 37 85.80 N/A 11.70 72.52 N/A 18.00
CFS-BA [29] CFS 10 87.37 N/A 3.19 73.57 N/A 12.92

FS+GRA-Forest [59] Information
Gain 32 85.06 85.10 12.20 N/A N/A N/A

EM-FS [30] Gain Ratio 35 84.25 N/A 2.79 N/A N/A N/A
MMFSA-CR [60] Hybrid 19 83.98 N/A N/A N/A N/A N/A

LSSVM [61] Mutual
Information 18 76.20 76.10 3.90 N/A N/A N/A

CP-ARM [62] Hybrid 11 79.60 79.50 3.50 N/A N/A N/A
χ2-LSTM Chi-Square 21 91.16 91.32 3.77 80.98 81.68 4.51

χ2-BidLSTM Chi-Square 17 95.62 95.65 2.11 89.55 89.77 2.71

(a) (b)

Figure 7. Comparison of results against existing feature selection methods on NSL-KDDTest+ and NSL-
KDDTest−21. (a) Performance results on NSL-KDDTest+; (b) performance results on NSL-KDDTest−21.

5. Model Complexity and Limitations

This subsection addresses the complexity of the proposed χ2-BidLSTM method and
the time needed for training and testing. Furthermore, we also present the limitations of
the proposed approach.

5.1. Time Complexity

We evaluated the time complexity of our proposed χ2-BidLSTM approach with regard
to the various units of the model implementation: feature ranking using the χ2 statistical
model, optimal feature selection using the forward best search algorithm, and BidLSTM. To
obtain the best feature combination set for training, we first used the χ2 statistical model to
rank all features in a descending order based on their χ2 test scores, as shown in Section 1.
The time complexity is O(n× F), where n is the number of classes and F is the number of
features. After ranking all the features, we used the forward best search algorithm to obtain
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the optimal feature set for each model. The algorithm begins with an empty set. It searches
for the feature with the highest χ2 test score using the evaluation function and appends it
to SELECTED (see Algorithm Section 1; lines 9–28). The algorithm continuously finds the
next feature that can achieve the best evaluation score with the feature(s) in SELECTED
until the desired dimension is reached and no additional features can improve the accuracy.
The algorithm’s time complexity is O(D), where D is the desired dimension.

The core unit of the approach is the BidLSTM model, which trains two LSTM layers (i.e.,
the first layer in the forward direction and the second in reverse order). The time complexity
for training the forward LSTM layer is O((QH) + (QMcBs) + (HU f ) + (McBsU f )), where
Q denotes the total number of output units, H represents the total number of hidden layers,
and Mc represents the total number of memory cell blocks, with Bs as the size of the cell
blocks (Bs > 0). The number of units associated with the memory cells, gates, and hidden
units in the forward direction is denoted by U f . With an equal time complexity needed to
train the reversed order, the time complexity for training the BidLSTM predictive model is
O(2[(QH) + (QMcBs) + (HU f ) + (McBsU f )]) = O(W), where W represents the overall
weights necessary for the network model. Hence, the total computational complexity of
the proposed χ2-BidLSTM with respect to time is O((n× F) + D + W).

5.2. Execution Time Analysis

In this subsection, we analyze the testing and training times of the models used in
this study. To ensure a fair and accurate analysis, we performed all the experiments using
an Intel Core i5 PC with an 8 GB memory. The training and testing times of the various
methods are reported in Figure 8a and Figure 8b, respectively. From Figure 8a, it can be
seen that the BidLSTM approach with the complete set of features requires more time
(9789.24 s) to train than the standard LSTM model (5546.31 s). The reason is that BidLSTM
trains two LSTMs with an entry shape of a dimensional matrix of the data length and the
number of features used. In this domain, the most important characteristic of a model is its
ability to accurately, actively, and effectively detect network intrusion. As such, there is a
trade-off between training time and performance. Therefore, the standard LSTM model
may require a shorter training time, but the BidLSTM model exhibits better accuracies in
detecting intrusions. From Figure 8, it is evident that feature selection reduces the training
and testing times of both methods considerably. With the reduced set of features, the
standard LSTM model requires a training time of 2397.36 s, whiles it takes 4678.62 s to train
the BidLSTM model. Thus, feature selection not only improves the performances of the
various models but also minimizes the computational times of the models.

5.3. Limitations

The experimental findings demonstrate that the proposed method can efficiently detect
network intrusions. However, more study in this domain is still required to improve the
overall performance of the proposed approach further. The proposed χ2-BidLSTM model
has a higher complexity and needs more training time than the standard LSTM model,
as demonstrated by the complexity and runtime analyses of the model. In the real-world
network scenario of computer systems, new forms of intrusions emerge continually, which
may not be captured by the NSL-KDD dataset. The absence of emerging novel attacks in
the dataset can make it difficult for the proposed method to adapt to recently emerging
attacks in a network system. These are the primary limitations of the χ2-BidLSTM-based
intrusion detection model.
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(a) (b)

Figure 8. Training and testing times of the methods used in the study. (a) Training times of the
various methods in seconds; (b) testing times of the various methods in seconds.

6. Conclusions and Future Directions
6.1. Conclusions

Even though various machine learning methods have been proposed to enhance the
performance of IDSs, most existing intrusion detection methods still struggle to achieve
good performance. This study offers a new IDS approach called χ2-BidLSTM that integrates
the chi-square (χ2) statistical model with a bidirectional long short-term memory (BidLSTM)
model. We used the χ2 statistical model to reduce the dataset to the optimal set, to handle
the imbalance and high dimensionality of the data. The NSL-KDD dataset with 10-fold
cross-validation was used to evaluate the performance of our proposed χ2-BidLSTM
approach, and the results were compared to other existing intrusion detection approaches.
The experimental findings indicated that the proposed χ2-BidLSTM method improved the
intrusion detection accuracies of the standard LSTM and BidLSTM models by 3.90% and
4.26%, respectively, on the NSL-KDDTest+ test set, and by 6.49% and 7.50%, respectively,
on the NSL-KDDTest−21 test set. Compared with previously existing techniques that utilize
feature selection, the proposed approach achieved higher detection accuracy and F-scores
on the two test datasets, while maintaining lower false alarm rates. Furthermore, the
proposed χ2-BidLSTM method exhibited good performance in detecting minority attack
types such as User-to-Root (U2R) and Remote-2-Local (R2L) attacks compared to the other
techniques, indicating the robustness and effectiveness of our proposed approach.

6.2. Future Directions

The future direction of this study is to explore more feature selection algorithms to
further improve the intrusion detection rate of our model. Additionally, as mentioned in
Section 5.3, although the proposed approach has a higher intrusion detection accuracy
with a low false alarm rate (FAR), the approach has a significant execution-time cost due
to the BidLSTM deep network architecture and computations within the LSTM mem-
ory cells. Hence, we intend to investigate how to reduce the computational complexity
of the proposed method further while maintaining high detection accuracy and a low
false alarm rate. We also plan to investigate the performance of our approach with the
latest intrusion detection datasets with real-world traffic, such as the UNSW-NB15 and
CIC-IDS2017 datasets.
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DNN Deep Neural Network
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