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Abstract

Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid that is highly enriched in the brain, and the
oxidation products of DHA are present or increased during neurodegenerative disease progression. The
characterization of the oxidation products of DHA is critical to understanding the roles that these products play in the
development of such diseases. In this study, we developed a sensitive and specific analytical tool for the detection
and quantification of twelve major DHA hydroperoxide (HpDoHE) and hydroxide (HDoHE) isomers (isomers at
positions 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19 and 20) in biological systems. In this study, HpDoHE were synthesized
by photooxidation, and the corresponding hydroxides were obtained by reduction with NaBH4. The isolated isomers
were characterized by LC-MS/MS, and unique and specific fragment ions were chosen to construct a selected
reaction monitoring (SRM) method for the targeted quantitative analysis of each HpDoHE and HDoHE isomer. The
detection limits for the LC-MS/MS-SRM assay were 1−670 pg for HpDoHE and 0.5−8.5 pg for HDoHE injected onto a
column. Using this method, it was possible to detect the basal levels of HDoHE isomers in both rat plasma and brain
samples. Therefore, the developed LC-MS/MS-SRM can be used as an important tool to identify and quantify the
hydro(pero)xy derivatives of DHA in biological system and may be helpful for the oxidative lipidomic studies.
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Introduction

Docosahexaenoic acid [DHA, 22:6 n-3] is an n-3 fatty acid
that is highly enriched in the brain. DHA is particularly enriched
in synaptosomal membranes and synaptic vesicles, and this
enrichment suggests a role for this fatty acid in the central
nervous system [1]. DHA is critical for normal brain function,
and changes in the quantity and/or oxidation of DHA are
associated with neurodegenerative diseases [2-5].

DHA has six double bonds and is therefore highly
susceptible to oxidation. In biological systems, DHA can be

oxidized in two ways: (i) enzymatically via cyclooxygenases
(COX) [6,7], lipoxygenases (LOX)[8] or cytochrome P450
(CYP450) [9]; and (ii) non-enzymatically, through reactions with
reactive oxygen species (ROS)[10] and transition metal ions
[11]. Both oxidation mechanisms produce a large variety of
oxidative metabolites, which include a series of hydroperoxide
and hydroxide positional isomers (see Figure 1).

Enzymatically, COX-2 converts DHA to 13-hydroxy-DHA (13-
HDoHE) [7]. In the presence of aspirin (acetylsalicylic acid,
ASA), acetylated COX-2 produces a 17(R)-hydroperoxy-DHA
(17(R)-HpDoHE) intermediate, which is reduced to 17(R)-
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HDoHE and then converted to one of the aspirin-triggered D
series resolvins (At-RvD) [7,12]. DHA is also a substrate for
LOX enzymes. The 15-LOX converts DHA to 17(S)-HpDoHE
and 17S-HDoHE, which can be subsequently converted to D
series resolvins (RvD) and protectin/neuroprotectin D1 (PD1)

[13]. The 12- and 12/15-LOX convert DHA to 14(S)-H(p)DoHE,
which undergoes 13(14)-epoxidation to form maresin 1 (MaR1)
[14]. Alternatively, 12-LOX can also generate 11(S)-HDoHE
[15] and 5-LOX converts DHA into 2 isomers: 4S-HDoHE, and
7(S)-HDoHE; the former is the major isomer [6,16]. The

Figure 1.  Generation of hydroperoxy, hydroxy and epoxy derivatives of DHA by enzymatic and non-enzymatic
mechanisms.  *19- and 5-HpDoHE and HDoHE are specifically formed by singlet oxygen oxidation.
doi: 10.1371/journal.pone.0077561.g001
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cytochrome P450 (CYP450) enzymes also catalyze the
production of two HDoHE (21- and 22-HDoHE) and several
epoxides [17].

DHA is also oxidized non-enzymatically by ROS. The
oxidation mechanism can involve radical or non-radical
species, such as singlet molecular oxygen. This excited
species can be produced under inflammatory conditions by
reactions that involve biological peroxides [18-22]. Both
mechanisms lead to the production of HpDoHE as the primary
products. Free radical-mediated oxidation of DHA generates
ten positional isomers of HpDoHE (20-, 17-, 16-, 14-, 13-, 11-,
10-, 8-, 7- and 4-HpDoHE). In contrast, singlet oxygen-
mediated oxidation generates twelve positional isomers,
including the same ten isomers produced by radical-induced
oxidation and the 5- and 19-HpDoHE isomers. Additionally, the
non-enzymatic oxidation of DHA is also reported to generate a
series of secondary products, including neuroprostanes,
neurofurans and aldehydes (neuroketals and short-chain
aldehydes) [23-27].

Several lines of evidence indicate that lipid hydro(pero)xides
are increase under pathological conditions [28-30]. For this
reason, particular attention has been focused on the study of
the formation and pathophysiological role of lipid
hydro(pero)xides. For example, recent studies on
hydroperoxides and other oxy-derivatives of DHA (e.g.,
resolvins and neuroprotectins) have enhanced our knowledge
of the resolution phase of inflammation and of the roles of ASA
and n-3 in this process [13]. In this context, the identification
and structural characterization of HpDoHE and HDoHE formed
by enzymatic and/or non-enzymatic mechanisms are critical to
reveal new enzymes, products and biological activities [31].
Thus, the aim of this study was to develop a specific and
quantitative analytical method suitable for both HpDoHE and
HDoHE positional isomers.

Liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS) with the selected reaction
monitoring (SRM) method has been widely used for the
identification and quantitation of lipid oxidation products. In this
study, we present a detailed description of the standardization
of a method for qualitative and quantitative LC-MS/MS-SRM
analysis of the twelve different positional isomers of both
HpDoHE and HDoHE as an additional tool for use in lipidomic
studies aiming to dectect DHA oxidation products in biological
samples.

Experimental Section

Chemicals
4Z,7Z,10Z,13Z,16Z,9Z-docosahexaenoic acid (DHA), 5S-

hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic-5,6,8,9,11,12,14,15-
d8 acid (5(S)-HETE-d8) and 12S-hydroxy-5Z,8Z,10E,14Z-
eicosatetraenoic-5,6,8,9,11,12,14,15-d8 acid (12(S)-HETE-d8)
were purchased from Cayman Chemicals Corp. (Ann Arbor,
MI). HPLC-grade methanol, acetonitrile, isopropanol, hexane,
chloroform, as well as standard grade ammonium hydroxide,
phosphoric acid and formic acid were obtained from JT Baker
(Avantor Performance Materials, Mexico). Potassium hydroxide
(KOH), hydrochloric acid (HCl), 2,6-di-tert-butyl-p-cresol (BHT),

deferoxamine mesylate salt, Chelex 100 sodium form and
diethylenetriaminepentaacetic acid were purchased from
Sigma-Aldrich Inc. (St. Louis, MO). Ketamine hydrochloride
and xylazine was obtained from Vet Brands (Sespo Ind. e
Com., Brazil). All aqueous solutions were prepared with
ultrapure water purified by a Direct-Q3 system (Merck Millipore,
Germany) and treated with Chelex 100 before use. Millex Filter
Units (0.22 μm) were purchased from Merck Milipore,
Germany.

Preparation of HpDoHE and HDOHE standards
HpDoHE was synthesized by photooxidation of DHA under

an atmosphere saturated with O2, and methylene blue was
used as the photosensitizer, as previously described (see
supporting information method S1 and scheme S1) [21]. The
conversion of HpDoHE to HDoHE was performed as described
by Terao et al.[32] (see supporting information method S2).
The HpDoHE were analyzed and then purified with a
Prominence HPLC system (Shimadzu, Tokyo, Japan) equipped
with two types of columns: a reverse phase, C18 semi-
preparative column (Luna C18-2 100Å, 250 x 10 mm, 5 μm,
Phenomenex Inc., Torrance, CA), eluted with a mobile phase
of acetonitrile:water:formic acid (70:30:0.005, v/v/v) and water
at 4.7 mL/min; and a normal phase, silica semi-preparative
column (Luna Silica 100 Å, 250 x 10 mm, 5 μm, Phenomenex
Inc., Torrance, CA), with an isocratic mobile phase of
hexane:isopropanol:water (99:1:0.1, v/v/v) at 10 mL/min. The
PDA detector was set to scan from 200 to 500 nm, and the
hydroperoxides were monitored at 205 (all isomers) and 235
nm (isomers with dienes conjugates) (supporting information
scheme S1). The fractions containing the isolated isomers
were dried with a rotary evaporator, and the residue was
solubilized in methanol and stored at -80 °C. An aliquot of each
HpDoHE and HDoHE isomer was checked by HPLC- PDA and
UV absorbance at 235 nm. HpDoHE concentration was also
confirmed by iodometry [33].

Chromatographic standardization
The chromatographic method was developed by a screening

study using an automated and integrated system consisting of
Fusion Method Development software (S-Matrix Corp., Eureka,
CA), Empower 3 chromatography data software (Waters Corp.,
Milford, MA) and an UHPLC system (Acquity UPLC HClass,
Waters Corp., Milford, MA). The screening and optimization
study of the chromatographic method was done considering
the following parameters: number of peaks, resolution greater
than 0.80 and tailing smaller than 2.0. The screening study was
performed with four different reversed phase UPLC columns
(50 x 2.1 mm, 1.7 µm) the HSS T3, HSS PFP, BEH C8 and
CSH Phenyl hexil. Three pH values were evaluated:
phosphoric acid 0.1 % (pH 2.5), phosphoric acid 0.05 % (pH
3.5) and ammonium hidroxide 0.1 % (pH 10). Acetonitrile and
methanol were used as organic modifier. Gradients between 80
- 100 % of the organic solvent was performed from 5 to 10
minutes and three temperatures were also evaluated 25, 35
and 40 °C. The optimized chromatographic condition consisted
of a BEH C8 column (100 x 2.1 mm, 1,7 µm) eluted with a
gradient solvent system of A, 0.1 % ammonium hydroxide in
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water, pH 10; and B, 18 % methanol in acetonitrile at 0.5 mL/
min. Elution was started with 30 % B, was held for 1.55 min,
was followed by a gradient step to 69% B over 15 min; then,
the percentage of B was maintained at 95 % for 2 min and was
restored to 30 % for 4 min to allow equilibration. Column
temperature was set at 40 °C.

MS/MS analysis of HpDoHE and HDoHE
The MS/MS fragmentation pattern for each HpDoHE and

HDoHE isomer was initially analyzed with a Quattro II triple
quadrupole mass spectrometer (Micromass, Manchester, UK)
and API 4000 QTrap (Applied Biosystems Inc., Foster City,
CA). In this preliminary step, each isolated isomer was
identified through a comparison of the obtained fragment ions
with the theoretical fragments (Tables S1 and S2 in the
supporting information). The final fragmentation study and the
establishment of the quantitative method were conducted with
an UHPLC system (Acquity UPLC) coupled to a triple-
quadrupole mass spectrometer (XEVO TQ-S, Waters Corp.,
Milford, MA). Based on the MS/MS spectra, the most intense
and/or specific fragment ions were selected for the SRM
method. The MS and MS/MS analyses were conducted in ESI
negative mode. The source temperature was set to 150 °C, the

desolvation temperature was 550 °C, and the capillary voltage
was set to 3 kV. The dwell time was set automatically as 9
msec. The collision energy and cone voltage were optimized
for each compound (see Tables 1 and 2) by the Intellistart tool
from MassLynx software (Waters Corp., Milford, MA). Minor
adjustments on collision energies were also performed
manually for some of the analytes having poor fragment ion
intensities. In both cases, the optimization was performed by
direct infusion of the isolated standards. The cone energy and
collision energy were chosen as the energies which generate
the strongest precursor signal and the greatest intensity for the
chosen fragment, respectively. Two SRM methods, one for
HpDoHE and the other for HDoHE, were created separately to
ensure maximum sensitivity in the detection and quantification
of the isomers. Peak identification and quantification were
performed with TargetLynx software (Waters Corp., Milford,
MA). The qualitative SRM was set as target trace and the
quantitative SRM was set as quantification trace. The analyte
was only quantified in the presence of both transitions.

Calibration and validation experiments
The method validation was performed as in-house 3-day

protocol to determine linearity, LOD and LOQ, inter- and intra-

Table 1. Optimized mass conditions for LC-MS/MS method for HpDoHE.

Compound SRM (m/z)  CV (V) CE (V) RT (min) LOD (pg)* r2 Calibrated range (ng/µL)
20-HpDoHE (2) 359.10 → 71.10 Quantitative 33 14 6.79 471 0.998 0.25-10
 341.10 → 71.10 Qualitative 33 14     

19-HpDoHE (1) 341.30 → 83.10 Quantitative 41 19 6.66 23 0.992 0.01-1
 359.30 → 83.10 Qualitative 41 19     

17-HpDoHE (4) 341.30 → 111.20 Quantitative 30 12 7.03 1 0.991 0.01-1
 359.30 → 111.20 Qualitative 30 12     

16-HpDoHE (3) 341.20 → 233.20 Quantitative 31 11 7.11 49 0.99 0.01-1
 359.20 → 233.20 Qualitative 31 11     

14-HpDoHE (6) 341.10 → 151.10 Quantitative 29 11 7.28 29 0.991 0.01-1
 359.10 → 151.10 Qualitative 29 11     

13-HpDoHE (5) 341.10 → 121.10 Quantitative 32 16 7.22 1 0.996 0.01-1
 359.10 → 121.10 Qualitative 32 16     

11-HpDoHE (7) 341.10 → 243.20 Quantitative 29 11 7.39 76 0.998 0.01-1
 359.10 → 243.20 Qualitative 29 11     

10-HpDoHE (7) 341.10 → 188.20 Quantitative 31 12 7.39 671 0.983 0.01-1
 359.10 → 188.20 Qualitative 31 12     

8-HpDoHE (8) 359.30 → 108.30 Quantitative 30 16 7.83 116 0.995 0.01-1
 341.30 → 113.10 Qualitative 31 9     

7-HpDoHE (8) 341.10 → 201.20 Quantitative 25 13 7.80 96 0.997 0.01-1
 359.10 → 201.20 Qualitative 25 12     

5-HpDoHE (9) 359.20 → 281.30 Quantitative 32 10 8.73 162 0.981 0.01-1
 359.20 → 147.20 Qualitative 32 8     

4-HpDoHE (10) 341.30 → 115.10 Quantitative 22 15 8.84 502 0.999 0.01-1
 359.20 → 115.10 Qualitative 22 15     
5(S)-HETE-d8 327.20 → 116.10  22 14 7.25    
12(S)-HETE-d8 327.20 → 184.20  30 14 6.13    

Numbers in bold correspond to the peak visualized in the LC-MS analysis (Figure 2). * on column
Optimized mass transitions (m/z), cone voltage (CV), collision energy (CE), retention time (RT), limit of detection (LOD) and linearity (r2).
doi: 10.1371/journal.pone.0077561.t001
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day variation, and recovery for all compounds. Stock standard
solutions of all the HpDoHE and HDoHE isomers were
prepared in acetonitrile:methanol:H2O (52:18:30, v/v/v) and
stored in amber vials at -80 °C. These stock solutions were
diluted to prepare the solutions for the calibration curves. The
following concentrations were used for the calibration curve:
10, 4, 2, 1, 0.5, 0.25, 0.1, 0.05, 0.025 and 0.01 ng/µL for
HpDoHE: and, 4, 2, 1, 0.1, 0.05, 0.025, 0.01, 0.0050, 0.0025,
0.0012, 0.0006 and 0.0003 ng/µL for HDoHE. Isotopically
labeled internal standards were prepared in 100 µL of
acetonitrile:methanol:H2O (52:18:30, v/v/v). For quantitative
analysis, 10 µL of 5(S)-HETE-d8 (12.5 ng/µL) and 12(S)-
HETE-d8 (12.5 ng/µL) were added to the samples. The
injection volume was 10 µL. The calibration curves were
constructed by plotting the ratio of the peak areas of the
analyte and the internal standard as a function of analyte
concentration with linear regression. The linearity of the
method was assessed by performing 5 replicate analyses with
8 different concentrations. For recovery calculations the
phosphate buffer saline solution (PBS) was spiked either
before or after the extraction with 1 ng/µL of each analyte and
the ratios of the peak areas were calculated. The same
procedure was conducted with plasma and brain homogenate.
The accuracy and precision of the assay were assessed by

analyzing blank samples (methanol) spiked with 3 different
concentrations in 3 replicates on the same day and on 3
consecutive days for intra- and inter-day precision and
accuracy. Precision was calculated as the relative standard
deviation (%) and accuracy was determined from the
percentage ratio of the measured concentration to the
expected concentration.

Ethics statement
The experimental procedures were conducted in accordance

with the ethical principles for animal experimentation adopted
by the Brazilian College of Animal Experimentation and were
approved by the ethics committee on Animal Care and Use
(Comissão de Ética em Cuidados e Uso Animal do Instituto de
Química da Universidade de São Paulo – CEUA – IQ-USP)
(Permit Number: 15/2011). All surgery was performed under
anesthesia, and all efforts were made to minimize animal
suffering.

Biological sample preparation
Plasma and brain samples were obtained from four-month-

old Sprague-Dawley rats (n=3). The rats were maintained
under a controlled temperature and light-dark cycle with food

Table 2. Optimized mass conditions for LC-MS/MS method for HDoHE.

Compound SRM (m/z)  CV (V) CE (V) RT (min) LOD (pg)* r2 Calibrated range (pg/µL)
20-HDoHE (12) 343.10 → 241.10 Quantitative 36 15 5.95 2.71 0.998 0.62-100
 343.10 → 285.10 Qualitative 36 13     

19-HDoHE (11) 343.10 → 229.10 Quantitative 32 15 6.10 5.02 0.999 0.62-100
 343.10 → 273.30 Qualitative 32 14     

17-HDoHE (14) 343.10 → 201.10 Quantitative 27 14 6.46 3.89 0.997 1.25-100
 343.10 → 245.30 Qualitative 27 14     

16-HDoHE (13) 343.10 → 233.20 Quantitative 26 13 6.36 1.27 0.996 0.62-100
 343.10 → 261.10 Qualitative 26 13     

14-HDoHE (16) 343.10 → 161.20 Quantitative 30 12 6.71 2.60 0.996 0.25-100
 343.10 → 205.10 Qualitative 30 15     

13-HDoHE (15) 343.10 → 193.20 Quantitative 30 12 6.58 1.16 0.997 0.25-100
 343.10 → 221.10 Qualitative 30 13     

11-HDoHE (18) 343.10 → 149.20 Quantitative 28 13 6.95 5.30 0.993 0.25-100
 343.10 → 165.10 Qualitative 28 13     

10-HDoHE (17) 343.10 → 153.10 Quantitative 28 13 6.84 2.07 0.998 0.62-100
 343.10 → 181.10 Qualitative 28 15     

8-HDoHE (19) 343.10 → 189.20 Quantitative 32 12 7.35 1.63 0.997 0.25-100
 343.10 → 113.10 Qualitative 32 13     

7-HDoHE (19) 343.10 → 141.10 Quantitative 31 15 7.36 0.46 0.994 0.25-100
 343.10 → 109.10 Qualitative 31 13     

5-HDoHE (20) 343.20 → 85.10 Quantitative 26 10 8.07 8.48 0.994 1.25-100
 343.20 → 93.10 Qualitative 26 10     

4-HDoHE (21) 343.10 → 101.10 Quantitative 29 13 8.40 0.50 0.994 0.25-100
 343.10 → 115.10 Qualitative 29 16     
5(S)-HETE-d8 327.20 → 116.10  22 14 7.25    
12(S)-HETE-d8 327.20 → 184.20  30 14 6.13    

Numbers in bold correspond to the peak visualized in the LC-MS analysis (Figure 2). * on column
Optimized mass transitions (m/z), cone voltage (CV), collision energy (CE), retention time (RT), limit of detection (LOD) and linearity (r2).
doi: 10.1371/journal.pone.0077561.t002
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and water offered ad libitum. The animals were anesthetized
with an intraperitoneal dose of ketamine hydrochloride (0.9
mL/kg body weight) and xylazine (0.5 mL/kg body weight).
Blood was collected from the right atrium of the heart by
cardiac puncture into a heparinized tube and centrifuged for 30
min at 4 °C and 1500 x g to separate the plasma. For the
analysis, plasma from 3 rats was combined and stored at -20°C
until use. Following the blood collection, the rats were
immediately decapitated, their whole brains were rapidly
excised, and the cortexes were separated and frozen at -20°C.
Similarly, the cortex samples (0.2 - 0.3 g) from 3 rats were
combined and were homogenized in ice by using an PowerGen
1000 homogeneizer (Fisher Scientific) for 20 s in 5 vol (1.0 -
1.5 mL) of PBS solution (10 mM, pH 7.4) for 2 min on ice.

Lipid extraction
Lipids were extracted from plasma and brain samples after

saponification step by the Bligh and Dyer method, with
modifications [34]. Ice-cold methanol containing BHT (100 µM)
and 5(S)-HETE-d8 (0.25 ng/µL, 500 µL) and KOH (1 M) in
methanolic solution (500 µL) were added to the samples (500
µL plasma or brain homogenate). The mixtures were incubated
for 30 min in the dark at 37°C. The mixture was cooled on ice,
acidified with 60 µL HCl (10 M) and then extracted with
chloroform/methanol/water. The sample was mixed with a
vortex mixer for 1 min and centrifuged at 1500 x g for 5 min at
4°C. The chloroform/methanol layer was dried with nitrogen,
and the residue was resuspended in 100 µL of
acetonitrile:methanol:H2O (52:18:30, v/v/v). Finally, 10 µL of
12(S)-HETE-d8 (12.5 ng/µL) in the same mixture of solvents
was added, and the resulting solution was filtered through 0.22
μm Millex Filter Units before injection into the LC-MS/MS
system. The injection volume was 10 µL.

Statistical analysis
The differences between the concentration levels obtained

for each isomer (mean ± S.D.) were determined by one way
analysis of variance (ANOVA) followed by the Tukey–Kramer
multiple comparison test. A P value of 0.05 or less was used as
the criterion for statistical significance.

Results and Discussion

The specific and quantitative analysis of the HpDoHE and
HDoHE positional isomers is non-trivial due to the structural
similarities and common fragmentation patterns of these
molecules. For this reason, there have been few reports
describing the analysis of HpDoHE and HDoHE by LC-MS/MS
[6,35-38]. To the best of our knowledge, this study is the first
analytical report describing the detailed MS/MS
characterization and the development of an SRM method for
reliably discriminating all twelve positional isomers of both
HpDoHE and HDoHE.

Chromatographic separation of HpDoHE and HDoHE
isomers

The UHPLC chromatographic condition optimized by the
automated screening study consisted of a C8 column eluted

with a gradient solvent system 0.1% ammonium hydroxide in
water (pH 10) and methanol:acetonitrile (18:82, v/v).To confirm
the resolution of the analytes using the optimized
chromatographic condition, a mixture containing all twelve
positional isomers of both HpDoHE and HDoHE was analyzed
by UHPLC-MS. Figure 2 shows the chromatographic
separation of the standardized condition that separates 10
peaks corresponding to the HpDoHE isomers (numbered
sequentially from 1-10) and 11 peaks corresponding to HDoHE
(numbered sequentially from 11-21).

Characterization of HpDoHE and HDoHE isomers by
MS/MS analysis

For the MS/MS method development we initially focused on
the characterization and optimization of MS/MS parameters to
obtain the most selective and sensitive ionization and
fragmentation conditions for all 24 positional isomers. The
HpDoHE and HDoHE generated abundant deprotonated
molecules [M-H]− at m/z 359 and 343, respectively, which were
selected as precursor ions for collision-induced dissociation
(CID) in MS/MS analysis. Additionally, the HpDoHE were easily
dehydrated [M-H-H20]− during ionization to yield an intense ion
at m/z 341. Thus, the MS/MS studies of HpDoHE were
performed by selecting both the deprotonated (m/z 359) and
dehydrated molecules (m/z 341). The fragmentation spectra of
the HpDoHE and HDoHE isomers are shown in Figures 1 and
2, respectively. The MS/MS spectra obtained by selecting the
precursor ions at m/z 359 and 341 were similar (data not
shown).

The fragmentation of fatty acid hydro(pero)xide ions by CID-
MS/MS yields fragment ions that are common to all or more
than one isomer (non-specific fragments) as well as fragments
that are specific and indicative of the position of the
hydroperoxy or hydroxyl group (specific fragments) [39-41].
Non-specific fragments are usually formed through peripheral
cleavages, such as the loss of water, CO2 or both, whereas
isomer-specific fragments are formed through internal
cleavages of the carbon-carbon bond. For the HpDoHE, non-
specific fragment ions were observed at m/z 341, 315 and 297;
for the HDoHE, non-specific fragments were observed at m/z
325, 299 and 281. In contrast, specific fragment ions were
derived from the α- or β-cleavage of the carbon-carbon bond
adjacent to the hydroperoxide/hydroxide group. The α- and β-
cleavages can occur at the carboxy or methyl side, giving rise
to four possible sites of fragmentation (Scheme S2, Supporting
information). Moreover, each of these fragmentation paths
yields two fragments; one containing the carboxy segment, and
the other the methyl segment. For ease of reading, we named
these fragment ions according to the three-letter code
proposed by the Serhan group, with some modifications
(Scheme S2)[37,41]. The expected theoretical fragments
formed through these fragmentation paths were listed for each
isomer (Tables S1 and S2, Supporting Information) and were
compared with the obtained data.

Consistent with previous studies [36,37,39,42], the mono-
hydroperoxy (Figure 3) and hydroxy (Figure 4) derivatives of
DHA exhibited characteristic fragment ions derived from the α-
and β-cleavages followed by one or two hydrogen shifts.

LC-MS/MS-SRM Analysis of DHA Hydro(pero)xides
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MS/MS spectra of the HDoHE isomers showed intense specific
fragment ions derived mostly from α-cleavage; in agreement
with the data reported by Hong et al.[37] For instance, the 20-,
19-, 17-, 16-, 14-, 13-, 11-, 10- and 5-HDoHE isomers showed
intense fragment ions corresponding to the [αcc+H]− and [αcc+H-
CO2]− ions, whereas the 8-, 7- and 4-HDoHE isomers showed
intense fragment ions corresponding to [αmc-H]− and/or [αmm]−

(Figure 4). In contrast, fragmentation pattern for HpDoHE
isomers was more variable. The 20-, 19-, 17-, 16-, 14- and 13-
HpDoHE yielded intense ions that corresponded to [αcc+H]−,
[αcc+H-CO2]− and [βcm+H-H2O]− and the other isomers (11-, 10-,
8-, 7-, 5- and 4-HpDoHE) exhibited the typical α- and β-
cleavages, in addition to other types of chain fragmentations
that were not explored further in this study.

In summary, a comparison of the fragment data obtained in
this study and the theoretically expected data allowed us to
unambiguously identify and characterize each HpDoHE and
HDoHE isomer.

Development of the selected reaction monitoring
method

Based on the MS/MS spectra of each HpDoHE and HDoHE
isomer we developed an SRM method. The selection was
based on the intensity and specificity of the fragment ions
observed in the MS/MS spectra (Figures 3 and 4).Tables S1
and S2 in the Supporting Information provide the selected
fragments used for the SRM method (in red). Figure 5 shows
the mass chromatograms obtained using the newly developed
SRM method.

Specific fragment ions selected for HDoHE isomers were all
derived from α-cleavage, whereas for HpDoHE isomers, the
selected fragment ion was derived mostly from β-cleavage. For
some isomers, such as 11-, 7- and 5-HpDoHE, it was
necessary to select less specific fragment ions to gain
sensitivity in the analysis. As mentioned before, the ESI
ionization of hydroperoxides favors the appearance of its
corresponding dehydrated ion [39]. Therefore, to gain
sensitivity in the analysis, the ion at m/z 341 was also selected
as an alternative precursor ion for the analysis of the
hydroperoxides.

Quantitative method
The fragment ions selected for the LC-MS/MS-SRM

detection of the HpDoHE and HDoHE isomers were chosen to
yield the best resolution, selectivity and the highest signal to
noise ratio for each isomer. Differently to Yang et al. [43] we
did not split the MS method containing all SRM transitions into
different acquisition periods. Instead, we chose to split the
analysis into two separate methods (one to analyze HpDoHE
and the other to analyze the HDoHE isomers) to maintain an
adequate number of data points across each chromatographic
peak (≈ 15 points per peak) and thus increase sensitivity.

The selected mass transitions and the optimized conditions
for the mass spectrometer are presented in Tables 1 and 2.
Two mass transitions were selected for each isomer to
enhance the detection and quantification selectivity. To
determine the limit of detection (LOD) and the linear dynamic
ranges for the different isomers, five batches of calibration
curves containing 8 different concentrations of each analyte

Figure 2.  Analysis of a mixture of HpDoHE and HDOHE isomers by UPLC-MS.  The HpDoHE and HDOHE isomers were
detected through the selection of m/z at 359 (A) and 343 (B), respectively. The identities of the peaks numbered in red are shown in
Tables 1 and 2 and Figure 5.
doi: 10.1371/journal.pone.0077561.g002
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Figure 3.  Fragmentation pattern analysis of the HpDoHE isomers – MS/MS spectra obtained from m/z 359.  The selected
fragments for SRM analysis are depicted in each isomer structure. The numbers in red correspond to the peaks observed in the LC-
MS analysis (Figure 2).
doi: 10.1371/journal.pone.0077561.g003
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Figure 4.  Fragmentation pattern analysis of the HDoHE isomers – MS/MS spectra obtained from m/z 343.  The selected
fragments for SRM analysis are depicted in each isomer structure. The numbers in red correspond to the peaks observed in the LC-
MS analysis (Figure 2).
doi: 10.1371/journal.pone.0077561.g004
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were used. The LOD values were calculated with a signal to
noise ratio of 3. The LOD values were within 1−670 pg for
HpDoHE and 0.5−8.5 pg for HDoHE injected onto the column,
showing that the method is about 10-100 times more sensitive
for the detection of the hydroxides compared to
hydroperoxides. The batches used in the present work gave
linear dynamic ranges of 12.5−1000 pg/µL for HpDoHE and
0.3−100 pg/µL for HDoHE. The r2 values determined by
regression analysis were 0.99 or greater for each isomer.

The recoveries for all tested compounds in PBS were good
and ranged from 80 to 120 %, with the exception of the 20-
HpDoHE which showed a recovery of about 60 % (Table S3
from supporting information). In biological matrices, the

average recovery for the HpDoHE isomers was poor (16 ± 22
% in brain and 22 ± 14 % in plasma) compared to the HDoHE
isomers (84 ± 20 % in brain and 90 ± 13 % in plasma) which
showed good recoveries for all isomers (Table S3 from
supporting information). Considering that hydroperoxide loss
due to sample processing is around 20 %, we can assume that
most of the HpDoHE isomers was either reduced by the
antioxidant machinery or degraded by some components of the
biological sample. In contrast, recoveries for the hydroxides
were good probably reflecting their greater stability in biological
samples compared to the hydroperoxides.

The precision and accuracy of the method showed to be also
good. All tested isomers with the exception of 5-HpDoHE and

Figure 5.  Representative chromatograms of individual SRM transitions selected for each HpDoHE and HDoHE
isomer.  The numbers in red correspond to the peaks observed in the LC-MS analysis (Figure 2).
doi: 10.1371/journal.pone.0077561.g005
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5-HDoHE present relative standard deviation lower than 8 %
and an accuracy higher than 90% (Table S4 and S5 from
supporting information).

Application of the method to biological samples
To demonstrate the applicability of our method as a tool for

HpDoHE and HDoHE lipidomic analysis, we used it to detect
the basal levels of these isomers in rat plasma and brain
samples. All cautions to avoid ex-vivo oxidations were taken,
such as keeping samples at low temperatures and using
antioxidants and chelating agents during sample preparation
and lipid extraction.

As it would be expected from the recovery studies, the
HpDoHE isomers were not detected in the tested biological
samples. Among the HDoHE isomers, eleven were detected in
the rat plasma. The most abundant isomer observed in plasma
was the 14-HDoHE isomer (51.55 ± 9.45 ng/mL), a 12-LOX
product, which was present at a 6-10-fold higher concentration
than the other isomers (Figure 6A, P<0,001). A similar trend
was previously observed by Gomolka et al., who also detected
higher levels of 14-HDoHE (65.40 ± 15.84 ng/mL) in whole
blood samples from mice [38].

In brain samples, all twelve HDoHE isomers were detected
(Figure 6B). To date, the only studies describing the detection
of HDoHE in the brain have been performed in models in which
the brain homogenates were incubated with DHA or were
challenged to produce the oxidized products [6,7,44,45]. To our
knowledge, this is the first study describing the detection of the
twelve isomers in brain homogenates at basal conditions.

Interestingly, we found relatively higher levels of HDoHE in
the brain than in the plasma samples. This is most likely due to
the presence of high concentrations of DHA in nervous tissue.
Among the twelve isomers, 20-, 14-, 11- and 4-HDoHE were
predominant, and these isomers were all present at similar
levels in brain sample (Figure 6B). The 12-LOX is the major
LOX in the brain, and this might explain the high levels of 14-
HDoHE and 11-HDoHE found in this tissue [46,47]. A
predominance of the 20- and 4-HDoHE isomers in brain was
also previously reported by Kim et al [45]. These isomers seem
to be preferentially accumulated through the non-enzymatic
oxidation of DHA [36].

Among the less abundant HDoHE isomers, it should be
pointed out that we could also detect the 19- and 5-HDoHE
isomers, which are known to be specifically formed by singlet
oxygen mediated oxidation. Despite the need of further
investigations, their detection could serve as a fingerprint for
singlet oxygen-mediated oxidation [48,49].

Conclusions

HpDoHE and HDoHE can act as important lipid mediators in
many physiological and pathophysiological events. However,
there is little literature describing the quantification of HpDoHE
and HDoHE isomers in biological samples. Additionally, the
studies that have sought to examine HpDoHE and HDoHE
were based on the analysis of lower number of isomers. In this
study, we have standardized an LC-MS/MS-SRM method for
the analysis of 12 isomers of each HpDoHE and HDoHE. In

Figure 6.  HDoHE profile of rat plasma and brain homogenate samples taken under basal conditions.  The results are the
mean ± SD of three independent analyses. Values not sharing common superscript are significantly different (P<0.05).
doi: 10.1371/journal.pone.0077561.g006
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this way, we are providing a broad and specific method for the
analysis of HpDoHE and HDoHE isomers that can be applied
to the studies that seek to understand the role of DHA and its
oxidation products in biological systems.
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