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Abstract: IL-6 was found to be overexpressed in the adipose tissue of obese individuals, which may
cause insulin resistance. However, the regulation of IL-6 in adipocytes in obesity setting remains to
be explored. Since IL-1β and TNFα are increased in obese adipose tissue and promote inflammation,
we investigated whether cooperation between IL-1β and TNFα influences the production of IL-6.
Our data show that IL-1β and TNFα cooperatively enhance IL-6 expression in 3T3L-1 adipocytes.
Similar results were seen in human adipocytes isolated from subcutaneous and visceral fat. Although
adipocytes isolated from lean and obese adipose tissues showed similar responses for production of
IL-6 when incubated with IL-1β/TNFα, secretion of IL-6 was higher in adipocytes from obese tissue.
TNFα treatment enhanced CREB binding at CRE locus, which was further enhanced with IL-1β, and
was associated with elevated histone acetylation at CRE locus. On the other hand, IL-1β treatments
mediated C/EBPβ binding to NF-IL-6 consensus, but not sufficiently to mediate significant histone
acetylation. Interestingly, treatment with both stimulatory factors amplifies CREB binding and H3K14
acetylation. Furthermore, histone acetylation inhibition by anacardic acid or curcumin reduces IL-6
production. Notably, inhibition of histone deacetylase (HDAC) activity by trichostatin A (TSA)
resulted in the further elevation of IL-6 expression in response to combined treatment of adipocytes
with IL-1β and TNFα. In conclusion, our results show that there is an additive interaction between
IL-1β and TNFα that depends on CREB binding and H3K14 acetylation, and leads to the elevation of
IL-6 expression in adipocytes, providing interesting pathophysiological connection among IL-1β,
TNFα, and IL-6 in settings such as obesity.

Keywords: interleukin-1β (IL-1β); tumor necrosis factor-alpha (TNFα); adipocytes; interleukin-6
(IL-6); H3K14 acetylation

1. Introduction

Obesity is a major health concern that has alarmingly increased worldwide during
recent decades [1]. Obesity is characterized by low-grade, chronic inflammation that
increases the risk of developing several metabolic disorders such as atherosclerosis, Type 2
diabetes, and hypertension [2,3]. Adipose tissue plays a key role in the development of
metabolic inflammation. Inflammation in the adipose tissue is characterized by increased
production of proinflammatory cytokines such as IL-1β, IL-6, and TNFα, and an increase
in the number of macrophages with a switch in the phenotype from anti-inflammatory M2
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to proinflammatory M1 state [4–7]. These proinflammatory cytokines can impair insulin
signaling, and thereby contribute to metabolic dysfunction/insulin resistance [8–11].

IL-6 has emerged as one of the potential cytokines that link obesity-derived chronic in-
flammation with insulin resistance. In vitro study shows that IL-6 causes insulin resistance
at the cellular level in both primary hepatocytes and HepG2 cells [12]. Increased IL-6 levels
have been linked to inhibition of hepatic glycogen synthase, activation of glycogen phos-
phorylase and lipolysis, and increased triglyceride production [13,14]. Circulating levels of
IL-6 have been correlated with adiposity and Type 2 diabetes [15–17]. Macrophages and
monocytes are considered as a predominant source of IL-6 production.

Recent studies suggest that both the adipose and muscle tissue are important sites of
IL-6 production. Adipose tissue has been shown to produce 10–35% of IL-6 in a resting indi-
vidual, and this production increases with increased adiposity [18], indicating that adipose
tissue is a source of the increased circulating IL-6 observed in obesity. IL-6 level is elevated
in patients with lipid abnormalities and insulin resistance [19]. Notably, the mechanism(s)
triggering abnormally high IL-6 levels in obesity remain unclear. Since elevated levels
of IL-1β and TNFα have been previously linked to obesity-induced inflammation and
the development of insulin resistance in adipose tissue adipokines [20], we investigated
whether these two agents interact to trigger IL-6 production in adipocytes. We found that
IL-6 expression was significantly higher in 3T3 L adipocytes or primary human adipocytes
treated with IL-1β and TNFα, compared with individual treatment. Furthermore, similar
results have been seen in primary adipocytes derived from preadipocytes isolated from
lean and obese individuals. Mechanistically, we show that this cooperative and additive
effect of IL-1β and TNFα on IL-6 is dependent on CREB binding and H3K14 acetylation.

2. Materials and Methods
2.1. Differentiation of 3T3-L1 Adipocytes

Mouse 3T3-L1 preadipocytes were purchased from the American Type Culture Collec-
tion (Manassas, VA, USA), and seeded onto 6 -well plates (0.25 million cells/well in Dul-
becco’s modified Eagle’s medium DMEM-medium (Gibco, Life Technologies, Grand Island,
NY, USA) containing 10% FBS (Gibco, Life Technologies, Grand Island, NY, USA), 2 mM
glutamine (Gibco, Invitrogen, Grand Island, NY, USA) and 1% penicillin-streptomycin
(Gibco, Life Technologies, Grand Island, NY, USA) in a humidified atmosphere contain-
ing 5% CO2 at 37 ◦C. Cells were allowed to grow for 2 days, and were then exposed to
DMEM containing a differentiation cocktail (5 µg/mL insulin, 0.25 µM dexamethasone, and
0.5 mM IBMX) supplemented with antibiotics and 2 mM L-glutamine in the presence of a
vehicle (0.01% DMSO), PGE2 (0.1, 1 and 5 µM) for 2 days. Then, differentiation media were
replaced with DMEM containing 10% FBS for 2 days. Finally, the medium was replaced
with fresh DMEM, and then adipocytes were stimulated with IL-1β (10 ng/mL; Sigma,
Street Saint Louis, MO, USA), TNFα (10 ng/mL; Sigma, Street Saint Louis, MO, USA) or
vehicle. After 24 h of treatment, the culture media and adipocytes were harvested. RNA
was extracted from the adipocytes and used for the determination of IL-6 mRNA. Culture
media were used for IL-6 protein determination.

2.2. Differentiation of Human Adipocytes

Human preadipocytes derived from subcutaneous and omental visceral adipose
tissues from lean and obese individuals were obtained from ZenBio (Research Triangle
Park, NC, USA; catalogue numbers: SP-F-1, OP-F-1, and OP-F-3, respectively). The cells
were maintained in preadipocyte growth medium (PM-1, ZenBio, NC, USA). At 80%
confluency, cells were differentiated into adipocytes in differentiation medium (DM-2,
ZenBio, NC, USA) for 10 days, as described by the manufacturers. Then, the generated
primary adipocytes were treated with/without IL-1β, and TNFα alone or in combination.
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2.3. Nile Red Staining of Lipids

Nile red staining was used to visualize intracellular lipid droplets using fluorescence
microscope [21]. Cells were fixed with 4% paraformaldehyde for 15 min and washed three
times with 1× PBS. Then, the cells were incubated in 300 nM Nile Red solution for 30 min.
Cells were washed three times with 1× PBS. Nuclei were stained with DAPI. Yellow-gold
fluorescence was detected using an inverted fluorescence microscope (IX71, Olympus,
Japan). The scale bar was 50 µm.

2.4. Real-Time RT-PCR

Total cellular RNA was extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA,
USA), following the manufacturer’s instructions. Complementary DNA (cDNA) was
synthesized using 1 µg of total RNA following the guidelines from the high-capacity
cDNA reverse transcription kit (Applied Biosystems, Foster City, CA, USA) [22–27].
For each real-time PCR reaction, 50 ng of cDNA template was amplified using Inven-
toried TaqMan Gene Expression Assay products (mouse IL-6: Hs00446190_m1; 1) Pparg:
Mm00440940_m1;Fabp4: Mm00445878_m1; mouse GAPDH:Mm99999915_g; human IL-6:
Hs00985639_m1; Ppar g: Hs01115513_m1; PLIN2: Hs00605340_m1; 1; human GAPDH:
4310884E using two gene-specific primers, one TaqMan MGB probe (6-FAM dye-labeled), a
TaqMan® Gene Expression Master Mix (Applied Biosystems, Foster City, CA, USA), and a
7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) [28–31]. The
target mRNA levels were normalized against GAPDH mRNA relative to the control, and
calculated using the 2−∆∆CT method [32]. Relative mRNA expression was expressed as
fold expression relative to the average of control gene expression. The expression level in
the controls was designated as 1 [23,33,34].

2.5. ELISA

Secreted IL-6 protein levels were measured in supernatants of TNFα and/or IL-1β
stimulated adipocytes using mouse or human IL-6 quantikine ELISA Kits following the
manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA).

2.6. Confocal Microscopy

For detecting protein expression by confocal microscopy, 3T3 cells were seeded on a
coverslip and allowed to settle by incubation for 24 h. Later, cells were treated with 4%
paraformaldehyde for 10 min, and permeabilization was performed with 0.25% Triton
X-100 in PBS for 10 min. Cells were incubated in blocking reagent Bovine Serum Albumin
for 1 h. Anti-IL-6 antibody (GTX17623, Genetex, CA, USA) in 1:200 dilution, anti-tubulin
(ab6160, abcam®, MA, USA) in 1:200 dilution was used and incubated overnight. Cells
were washed three times with PBS–Tris-buffer and incubated in Goat anti-rabbit Alexa
Fluor®488 (abcam® ab150077, MA, USA) secondary antibody and Goat anti-mouse Alexa
Fluor®647 (abcam® ab150115, MA, USA) for 1 h. Cells were washed three times with
PBS, and then the nucleus was counterstained with 4′,6-diamidino- 2-phenylindole DAPI
Vectashield H1500 (Vector Laboratories, CA, USA). Confocal images were collected using
an inverted Zeiss LSM710 Spectral confocal microscope (Carl Zeiss, Gottingen, Germany)
and a EC Plan-Neofluar 40×/1.30 oil DIC M27 objective lens. After sample excitation using
a 405 nm and 488 nm line of an argon ion laser and HeNe 633 laser, optimized emission
detection bandwidths were configured using Zeiss Zen 2010 control software. All samples
were analyzed using the same parameters, and the resulting color markup of analysis was
confirmed for each sample.

2.7. Chromatin Immunoprecipitation-qPCR

ChIP assays were performed using a SimpleChIP® Plus Enzymatic Chromatin IP
Kit (Cell Signaling Technology Inc., Danvers, MA, USA) [35] with minor modifications.
Briefly, 3T3 cells were differentiated into adipocytes, treated with different cytokines, and
were crosslinked with 4% formaldehyde (Sigma, Germany). Chromatin was sheared,
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and a quantity of 50 ug of chromatin was immunoprecipitated with 2 ug antibodies
against CREB (Cell Signaling Technology Inc., Danvers, MA, USA), C/EBPβ (Santa Cruz
Biotechnology, Dallas, TX, USA), H3K14ac (Cell Signaling Technology Inc., Danvers, MA,
USA), or rabbit IgG(Cell Signaling Technology Inc., Danvers, MA, USA), as described
in [36]. The immune complexes were captured using magnetic beads (Thermo Fisher
Scientific, Waltham, MA, USA). CREB, C/EBPβ, and H3K14ac or IgG-bound chromatins
were quantified as a percent chromatin input using QPCR analysis, as described above.
To be considered a true association, each ChIP sample was examined for the enrichment
of a chromatin locus immunoprecipitated with a specific antibody, and compared with
the same chromatin locus immunoprecipitated with a non-specific IgG (ANOVA with
p < 0.05). Data represent mean± SD from three independent biological experiments. QPCR
reactions were performed using the forward primer 5′-ACTTAAGCACACTTTCCCC-3′,
and the reverse primer 5′-ATCTTTGTTGGAGGGTGGG-3′ flanking the CERB and C/EBPβ
adjacent bind sites.

2.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software (La Jolla, CA,
USA). Data were shown as mean ± standard error of the mean, unless otherwise indicated.
Unpaired Student t-tests and one-way ANOVA followed by Tukey’s test were used to
compare means between groups. For all analyses, data from a minimum of three sample
sets were used for statistical calculation. A p value of <0.05 was considered significant. Ns:
not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3. Results
3.1. Stimulation with IL-1β and TNFα Increases IL-6 Expression in Mouse Adipocytes

IL-1β and TNFα levels were elevated, along with high levels of IL-6 in obese adipose
tissue [15,37,38]. To assess whether IL-1β and TNFα together induced IL-6 production in
adipocytes, we used differentiated mouse 3T3L-1 preadipocytes into adipocytes. Differenti-
ation of the preadipocytes into adipocytes was confirmed by Nile Red staining of lipids
(Figure 1A) and expression of markers for adipogenesis (PPARγ, FABP4: Figure 1B). 3T3
adipocytes were challenged either by IL-1β and TNFα alone, or in combination, and IL-6
mRNA and protein were determined. The co-stimulation with IL-1β and TNFα resulted
in substantially greater IL-6 expression at both mRNA and protein levels (Figure 1C–E).
The effect of the combination of IL-1β and TNFα on IL-6 production was greater than the
sum of the individual effects of IL-1β and TNFα, demonstrating additive effects. This
elevated IL-6 expression was also determined by confocal microscopy (green fluorescence)
(Figure 1F,G).

3.2. Stimulation with IL-1β and TNFα Increases IL-6 Expression in Human Primary Adipocytes

Next, we assessed whether a similar cooperative relationship was observed between
IL-1β and TNFα in primary human adipocytes. To this end, preadipocytes of lean in-
dividuals were differentiated into adipocytes. Differentiation of the preadipocytes into
adipocytes was confirmed by Nile red staining and expression of markers for adipogene-
sis (Supplementary Figure S1A,B). Primary human adipocytes of lean individuals were
incubated with IL-1β /TNFα, and IL-6 gene expression was determined. Similar to mouse
adipocytes, human differentiated adipocytes derived from either preadipocytes isolated
from subcutaneous or visceral adipose tissues showed a cooperative effect of IL-1β and
TNFα on IL-6 expression at gene and protein levels (Figure 2A–D). To expand on these
findings, we incubated adipocytes (Supplementary Figure S2A,B) isolated from obese
adipose tissue with IL-1β and TNFα. However, despite similar cooperativity have been
seen for IL-6 production in response to IL-1β and TNFα, the production of IL-6 was noted
relatively high (Figure 2E,F).
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Figure 1. Combined effect of IL-1β and TNFα on IL-6 expression in mouse adipocytes. (A,B) 3T3 L preadipocytes were
differentiated into adipocytes as described in materials & methods. Lipid droplets in adipocytes were determined by
using Nile Red staining. Morphology of adipocytes and adipogenic markers were shown. Scale Bar 50 µm. Mouse 3T3-L
adipocytes were stimulated with IL-1β (10 ng/mL) and TNFα (10 ng/mL) alone or in combination for 24 h. Cells and
culture media were collected. (C) Total RNA was extracted from the cells and IL-6 mRNA was quantified by real time PCR.
Relative mRNA expression was expressed as a fold change. (D) Secreted IL-6 protein in culture media was determined by
ELISA. (E) Different number of cells (1, 0.5, 0.25 million) were treated with IL-1β (10 ng/mL) and TNFα (10 ng/mL) alone or
in combination for 24 h. Cells and culture media were collected, Secreted IL-6 protein in culture media was determined by
ELISA. (F) 3T3 adipocyte cells were stained for confocal microscopy, as described in the Materials and Methods section. IL-6
expression is shown by green fluorescence (inset), whereas nuclei are stained blue with DAPI (original magnification ×40).
Scale Bar 20 µm. (G) IL-6 fluorescence intensity was determined for 10 random images. The results obtained from three
independent experiments are shown. All data are expressed as mean ± SEM (n = 3). ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 2. Combined effect of IL-1β and TNFα on IL-6 expression in human adipocytes. Human primary subcutaneous
adipocytes were stimulated with IL-1β (250 pg/mL) and TNFα (250 pg/mL) alone or in combination. Cells and culture
media were collected. (A) Total RNA was extracted from the cells and IL-6 mRNA was quantified by real time PCR. Relative
mRNA expression was expressed as a fold change. (B) Secreted IL-6 protein in culture media was determined by ELISA.
(C,D). Human primary visceral adipocytes were stimulated with IL-1β and TNFα alone or in combination. Cells and
culture media were collected, and IL-6 were determined. (E,F) Human primary adipocytes isolated from obese adipose
tissue treated as described earlier. Cells and culture media were collected, and IL-6 was determined. Data are expressed as
mean ± SEM (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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3.3. IL-1β/TNFα Stimulation Increases CREB Binding at IL-6 Promoter

IL-1β and TNFα are cytokines that exert their biological function via downstream
signalling pathways, activating transcription factors that in turn regulate gene expres-
sion. Studies have been shown that TNFα increases the DNA binding capacity of cyclic
AMP Response Element-binding protein (CREB) to CRE-like element (CRE) motif [39],
whereas IL-1β enhancing CCAAT/enhancer binding protein beta (C/EBPβ) binds to a
consensus site named nuclear factor that specifically binds to an IL1-responsive element
in the IL-6 gene (NF-IL6) [40]. Notably, adjacent CRE and NF-IL6 motives are mapped at
the IL6 proximal promoter at nucleotides 204–227 upstream from the translation start site
(Figure 3A) [41].

Figure 3. Combined treatment of IL-1β and TNFα increases CREB binding at IL-6 promoter. (A) IL-6 promoter contains an
adjacent CREB and C/EBPβ binding sites. Chromatin from adipocytes treated with IL-1β, TNFα alone or in combination
was subjected to ChIP with antibodies against (B) CREB or (C) C/EBPβ followed by qRT-PCR. CREB or C/EBPβ occupancy
at IL-6 promoter was determined. Data are expressed as mean ± SEM (n = 3). * p < 0.05, ** p < 0.01.
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Since IL-1β and TNFα cooperatively induced IL-6 transcripts, we examined the ability
of CREB and C/EBPβ to bind to the endogenous IL-6 promoter in adipocytes treated
with TNFα, IL-1β, alone or in combination, using chromatin immunoprecipitation (ChIP),
followed by Q–PCR. Relative to the vehicle control treatment, CREB and C/EBPβ bindings
to their corresponding motives were significantly enhanced by 5- and 10-fold in response
to TNFα and IL-1β treatments, respectively (Figure 3B,C). Interestingly, treatment with
both stimulatory factors significantly augmented CREB bindings 60-fold, relative to vehicle
control, but not C/EBPβ bindings (Figure 3B,C). Together, these data suggest that IL-
1β generates temporal binding of C/EBPβ to the NF-IL-6 consensus, which facilitates
CREB binding in response to TNFα treatment. Furthermore, ERK1/2 are involved as the
upstream regulators of CREB and C/EBPβ signalling, following cooperative stimulation of
mouse adipocytes by IL-1β and TNFα. It is further shown that ERK1/2 inhibitors (PD98059
and U0126) block the cooperative induction of IL-6 gene end secreted protein expression
(Supplementary Figure S3A,B).

3.4. Cooperative Induction of IL-6 in Adipocyte Requires H3K14 Acetylation

In response to stimuli, histone acetylation mediates epigenetic modification at IL-6
promoter and induces transcription [42]. To determine if histone acetylation levels were
changed at IL-6 proximal promoter in response to IL-1β and TNFα, alone or in combination,
at the same locus flanking CRE and NF-IL6 motives, ChIP was performed with antibodies
against acetylated H3K14ac as indicative of actively transcribed chromatin [36,43]. Interest-
ingly, the level of H3K14ac was significantly higher at the proximal IL-6 promoter when
treated with both IL-1β and TNFα, as compared to individual treatment (Figure 4A). These
results indicate that IL-6 expression is mainly dependent on the binding of both CREB and
C/EBPβ to their corresponding binding sites in response to IL-1β and TNFα treatments.

To confirm the role of histone acetylation, we examined whether the inhibition of
histone acetyl transferases (HATs) influences IL-lβ/ TNFα additive effect on IL-6 secretion.
Prior to the treatment of the cytokines, adipocytes were pre-treated with the pharmacolog-
ical HAT inhibitor anacardic acid or the naturally occurring inhibitor curcumin, both of
which have been shown to inhibit HATs in vitro [44,45]. Notably, both inhibitors signifi-
cantly reduced IL-6 mRNA and IL-6 secretion from cells treated with either TNFα alone
or in combination with IL-1β (Figure 4B–E). No alteration in IL-6 secretion was observed
in cells incubated with the inhibitors prior IL-1β stimulation (Figure 4B–E), indicating a
secondary role for IL-1β in the process of IL-6 induction and secretion.

Trichostatin A (TSA) is an HDAC inhibitor, and plays a significant role in increasing
histone acetylation and gene transcription [46,47]. To determine whether TSA can promote
IL-6 transcription and secretion, adipocytes were treated with TSA prior to the treatment
of IL-1β/TNFα. Our results show that IL-1β/TNFα additive effect on IL-6 expression, and
secretion was further increased in a significant manner (Figure 5A,B).
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Figure 4. Combined treatment of IL-1β and TNFα increased H3K14 acetylation. (A) 3T3-L adipocytes were incubated
with vehicle, IL-1β and TNFα, alone or in combination, for 5 h. Histone acetylation at IL-6 promoter was determined by
analyzing chromatin that was immunoprecipitated with anti-acetylated histone H3 lysine14 (H3K14ac) or IgG (as a control)
antibody. Levels of histone modifications were measured using PCR primers for IL-6 proximal promoter (B,C) 3T3-L1
adipocytes were incubated with anacardic acid (HATs inhibitor; 4 µM) for 1 h, followed by the stimulation with IL-1β,
TNFα or IL-1β/TNFα for 24 h. IL-6 mRNA and secreted protein were determined by qRT-PCR and ELISA, respectively.
(D,E) 3T3-L1 adipocytes were incubated with curcumin (HATs inhibitor; 20 µM) for 2 h, followed by stimulation with IL-1β,
TNFα or IL-1β/TNFα for 24 h. IL-6 mRNA and secreted protein were determined by qRT-PCR and ELISA, respectively.
Data are expressed as mean ± SEM (n = 3). * p < 0.05, *** p < 0.001, **** p < 0.0001.
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Figure 5. Trichostatin A (TSA) further enhances IL-1β/TNFα expression of IL-6. Cells were treated with TSA (10 nM) for
4 h before stimulation with vehicle, IL-1β, TNFα, or IL-1β + TNFα for 24 h. (A,B) IL-6 mRNA and secreted protein were
determined by qRT-PCR and ELISA, respectively. Data were expressed as mean ± SEM. **** p < 0.0001.

4. Discussion

IL-6 is known as one of the critical cytokine among other immune-modulating cy-
tokines that are dysregulated most frequently in obesity, and increased circulatory levels of
IL-6 have been consistently documented in obese mice and humans [16]. IL-6 plays a role
in T-cell activation, tissue infiltration, and maintenance of memory responses, as well as
orchestrates cellular insulin resistance [48]. Circulating IL-6 levels were found to be related
to body mass indices and lipid profiles in overweight and obese individuals [49].

Similarly, IL-1β and TNFα are two other well-known adipokines that are found to
be upregulated in the circulation as well as in adipose tissue in obesity, and are known
to play key roles in metabolic inflammation and development of insulin resistance, while
the inhibition of IL-1β and/or TNFα led to an amelioration in insulin resistance [50–52].
Not surprisingly, substantial evidence supports both the higher circulatory levels and
adipose expression of these proinflammatory cytokines (IL-6, TNFα and IL-1β) in obesity
settings [15,38,53].

Notably, IL-6 regulation in adipocytes in obesity setting remains unclear. Since TNFα
and IL-1β expression is elevated in obese adipose tissue, which plays a pivotal role in
the maintenance of chronic low-grade inflammation, we determined whether the IL-1
β/TNFα cooperativity could amplify IL-6 expression in mouse and human adipocytes.
We show, for the first time to our knowledge, that IL-1β and TNFα co-induce increased
IL-6 expression in 3T3L-1 mouse adipocytes, as well as in the human adipocytes from
subcutaneous and visceral fat origin. Previously, IL-1β-mediated induction of IL-6 has
been shown in numerous cell types, including MCF7 human breast carcinoma cells [54],
human mast cells [55], fibroblasts, endothelial cells, keratinocytes, and peripheral blood
monocytes [56]. Likewise, TNFα also induces IL-6 production in a variety of cells, such as
glioma cells, osteoblasts, and vascular smooth muscle cells, through distinct transduction
pathways [57–60]. However, our findings that IL-1β and TNFα cooperatively amplify the
expression of IL-6 in human and mouse adipocytes are novel, and not only show that
both IL-1β and TNFα could induce IL-6 expression in adipocytes, but also demonstrate a



Cells 2021, 10, 3228 11 of 15

mechanism as to how IL-1β/TNFα co-expression could lead to elevations in IL-6 levels in
obesity setting.

It is of further interest to note that, although the pattern of IL-6 production was similar
in adipocytes derived from lean and obese adipose tissues, the IL-6 production co-induced
by IL-1β and TNFα was much higher in adipocytes from obese tissue, which implies
that obesity-associated changes may reprogram adipocytes for increased IL-6 production
following exposure to these two prototypical inflammatory cytokines. The clinical data
implicating expression of cytokines/chemokines in obesity/T2D from our group and others
concur with this argument [61].

IL-1β or TNFα activates downstream ERK1/2 and C/EBPβ in various cells [62–64],
and our data show that ERK1/2 are involved as the upstream regulators of CREB and
C/EBPβ signaling following cooperative stimulation of mouse adipocytes by IL-1β and
TNFα. It is further shown that ERK1/2 inhibition block the cooperative induction of
IL-6 gene end secreted protein expression. Regarding further molecular mechanisms
underlying IL-1β/TNFα induced IL-6 gene expression, previous studies of IL-6 proximal
promoter highlighted the importance of the first 300 base pairs nucleotides upstream of
the translation start site. This locus contains consensus sites for CERB, NF-kB, C/EBPβ,
and AP-1 transcription factors are often required for IL-6 expression, depending on the
cell type and stimuli [65–67]. The Interleukin Response Element (ILRE), a short 11 base-
pair sequence, located 125 nucleotides upstream from the transcription start site of IL-6
(Figure 3A), was found to be initial for transactions activation. Promoter mapping studies
have indicated that ILRE is crucial for TNFα and IL-β response [68] and co-transfection
of human monocytic cell line U937 with C/EBPβ and the NF-kB p65 subunit resulted in
strong synergistic activation of an IL-6 promoter-reporter constructs [69]. Interestingly,
promoter deletion mutants at ILRE site resulted in IL-6- transcription abolishment and a
loss of induction by either C/EBPβ or the NF-kB [68,69].

In this study, we used specific primers directed toward a specific locus within IL-6
proximal promoter, which contains adjacent CRE and NF-IL6 motifs and is located 200 bp
upstream from the IL-6 translation initiation site [41,70]. Site directed mutations within
CRE or NF-IL6 motifs reduced IL-6 promoter activity in luciferase assays, and eradicated
CREB and C/EBPβ bindings in electrophoretic mobility shift assays [65,71], suggesting that
these motifs are crucial for IL-6 transcription regulations. Therefore, we investigated the
importance of this regulatory region IL-6 gene expression in response to TNFα and IL-1β
signaling pathways. The synergetic action of TNFα and IL-1β was further defined using
ChIP-qPCR analysis, and showed that the endogenous CREB and C/EBPβ transcription
factors were differentially bound to their consensus DNA binding sites at the IL-6 proximal
promoter. Since remodeling of chromatin within the nucleus is controlled by the degree of
acetylation/deacetylation of histone residues on the histone core around which DNA is
coiled [72], we observed that CREB binding was associated with elevated levels of histone
3 acetylation, suggesting active transcription, at least in part that the described locus of IL-6
proximal promoter. Furthermore, we found that inhibition of acetyltransferases (HATs)
by anacardic acid and curcumin [73], which promote acetylation, resulted in suppression
of the additive effect of IL-1β and TNFα on IL-6 production. However, inhibition of
HDACs further enhanced the synergistic expression and production of IL-6 in response
to IL-1β/TNFα. These findings are clearly highlighting the importance of the acetylation
in this cooperativity. Another study by Yan et al. showed that HDAC9 deficiency led
to reduced inflammation. It could be possibly a cell-type dependent mechanism that
differentially regulates an epigenetic switch in adipocytes vs. effector T lymphocytes [74].
Interestingly, the upregulation of IL-6 gene expression in response to TNFα and IL-1β
treatments indicated that a direct interaction of their downstream effectors CREB and
C/EBPβ with IL-6 regulatory region and the specificized locus.

Notably, treatment with both cytokines induced CREB binding to CRE remarkably, but
not C/EBPβ binding to the NF-IL6 motif. Together, these data suggest that, although both
TNFα and IL-1β are sufficient to induce IL-6 promoter activity, both signaling pathways
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are required for IL-6 active transcription. In the context of our data, we propose that IL-1β
may generate a temporal binding of C/EBPβ to NF-IL-6 consensus, which facilitates CREB
binding in response to TNFα treatment (Figure 6). Meanwhile, TNFα and IL-1β treatments
alone are not sufficient to recruit the binding of their alternate transcription factors, at least
in part at this regulatory region.

Figure 6. Schematic illustration of signaling pathway underlying IL-1β/TNFα-induced expression of IL-6 in adipocytes.

5. Conclusions

Our results show that there is a cooperative interaction between IL-1β and TNFα
that requires CREB binding and H3K14 acetylation, and leads to the activation of IL-6
expression in adipocytes, providing interesting pathophysiological network among IL-1β,
TNFα, and IL-6 in metabolic inflammatory settings such as obesity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cells10113228/s1. Figure S1: Characterization of differentiated human preadipocytes isolated
from lean adipose tissue. Figure S2: Characterization of differentiated human preadipocytes isolated
from obese adipose tissue. Figure S3A: IL-1β/TNFαcooperatively enhances ERK1/2 phosphorylation.
Figure S3B,C: Inhibition of ERK1/2 blocks the cooperative effect of IL-1β/TNFα on IL-6 expression
and protein secretion.
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