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ABSTRACT

RNA-binding proteins (RBPs) play key roles in post-
transcriptional regulation. Accurate identification of
RBP binding sites in multiple cell lines and tissue
types from diverse species is a fundamental en-
deavor towards understanding the regulatory mech-
anisms of RBPs under both physiological and patho-
logical conditions. Our POSTAR annotation pro-
cesses make use of publicly available large-scale
CLIP-seq datasets and external functional genomic
annotations to generate a comprehensive map of
RBP binding sites and their association with other
regulatory events as well as functional variants. Here,
we present POSTAR3, an updated database with im-
provements in data collection, annotation infrastruc-
ture, and analysis that support the annotation of
post-transcriptional regulation in multiple species in-
cluding: we made a comprehensive update on the
CLIP-seq and Ribo-seq datasets which cover more
biological conditions, technologies, and species; we
added RNA secondary structure profiling for RBP
binding sites; we provided miRNA-mediated degra-
dation events validated by degradome-seq; we in-

cluded RBP binding sites at circRNA junction re-
gions; we expanded the annotation of RBP binding
sites, particularly using updated genomic variants
and mutations associated with diseases. POSTAR3
is freely available at http://postar.ncrnalab.org.

INTRODUCTION

RNA-binding proteins (RBPs) are essential regulators of
RNA function in various biological processes (1,2) and are
especially critical in post-transcriptional regulation (3–5).
In recent years, several high-throughput sequencing tech-
nologies based on crosslinking and immunoprecipitation
(CLIP) have been developed to detect genome-wide RBP
binding sites (6,7). Moreover, we are able to investigate
RNA secondary structure in vivo using secondary struc-
ture profiling (structure-seq) (8–10), and degradation of cel-
lular RNAs caused by bound miRNAs using degradome
sequencing (degradome-seq) (11–13). Together with these
high-throughput sequencing technologies, RBP binding
could be associated with RNA secondary structure and
other types of post-transcriptional regulation events, which
would be helpful to understand the post-transcriptional
regulation networks that are coordinated by RBPs. Previous
studies have revealed the relationship between RBP binding
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Figure 1. Overview of POSTAR3 database content. Our database is concentrated in RBP-RNA interaction network and reveals information related to
RBP binding through CLIP-seq. Other types of post-transcriptional regulation events (RNA modification and editing, genomic variants, disease-associated
mutations, secondary structure profile, miRNA-mediated decay, etc.) and translational dynamics from Ribo-seq is associated with RBP binding in order
to give users novel insights to the relationship between these events.

and RNA secondary structure (14,15), as well as miRNA-
mediated degradation (16). Furthermore, other studies have
shown that RBP played an important role in circRNA
formation and function (17,18). A platform summarizing
RBP binding sites recovered by CLIP-seq and other post-
transcriptional regulation events would definitely be helpful
for the study in the field.

We have developed a series of CLIPdb/POSTAR
databases that focus on the functional annotations of RBP
binding sites, as well as their association to other types
of post-transcriptional regulation events (19–21). As both
the types and volume of these high-throughput dataset
have dramatically increased in recent years, it is impera-
tive to update the database to a new version, curating more
comprehensive information for RBP binding and post-
transcriptional regulation. Here, we present POSTAR3, an
update to our existing database of RBP binding records and
RNA post-transcriptional regulation (19–21). POSTAR3
curated 339 new CLIP-seq datasets, which spanned nine
CLIP-seq technologies from human and other six model
species, as well as 300 Ribo-seq datasets covering ∼100
tissue types, cell lines, developmental stages, and exper-
imental conditions from six species, 82 secondary struc-
ture profiling datasets, and 83 degradome-seq datasets
paired with small RNA sequencing (sRNA-seq) data. We
also included RBP binding sites on circRNA junction
regions. We associated the RBP binding sites identified

from CLIP-seq datasets with other levels of information,
including RNA post-transcriptional regulation, genomic
variants, disease-associated mutations, secondary structure
profile and model, and miRNA-mediated decay from vari-
ous sources. We also re-designed and modified our database
interface to provide an informative display of different types
of data and a valuable platform to explore their relationship.
We expect that POSTAR3 would be a valuable resource and
platform for researchers to investigate post-transcriptional
regulation, RNA secondary structure dynamics, miRNA-
mediated decay, and their relationship with RBP binding.

DATA COLLECTION UPDATES AND DATA PROCESS-
ING

Updates on the CLIP-seq dataset collection

To expand the spectrum of RBP binding events in our
database, we manually collected 339 new publicly available
CLIP-seq datasets that used CLIP-seq technologies from
Gene Expression Omnibus (GEO) (22), Sequence Read
Archive (SRA) (23), ArrayExpress (24), and DDBJ Se-
quence Read Archive (DRA) (25) (Supplementary Table
S1 and Supplementary Table S2). We also updated EN-
CODE eCLIP to the latest release (26,27), which contains
225 eCLIP datasets from 150 RBPs (Supplementary Table
S3). By combining the binding sites from our new datasets
with our previous records (21), POSTAR3 contains 1499
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Figure 2. Statistics of data curated in POSTAR3 database. (A) Number of CLIP-seq and Ribo-seq datasets in seven species, compared with our previous
version POSTAR2. (B) Number of newly curated CLIP-seq datasets using different technologies. (C) Number of curated RBPs in seven species. (D) RBP-
RNA interactome network of human in POSTAR3. Arcs on the top represents chromosomes in human, and bottom ones represents RBPs. (E) Number
of structure-seq and degradome-seq datasets curated in POSTAR3. (F) Annotation status of RBP binding sites in different modules. Each dot indicates a
specific set of data. (G) MFE ratio distribution in all degradome duplex across 4 species.

CLIP-seq datasets from 348 RBPs in total (Figure 1 and
Supplementary Table S1), which is a significant improve-
ment in terms of the number of CLIP-seq datasets as well as
the RBPs covered (Figure 2A). In summary, comparing to
the four CLIP-seq technologies in POSTAR2, POSTAR3
has covered 10 various CLIP-seq technologies (i.e. HITS-
CLIP, PAR-CLIP, iCLIP, eCLIP, iCLAP, urea-iCLIP, 4sU-
iCLIP, BrdU-CLIP, Fr-iCLIP and PIP-seq). In total, it in-
cludes 348 RBPs from seven species (i.e. human, mouse, ze-
brafish, fly, worm, Arabidopsis and yeast) (Figure 2B and
C). To our knowledge, POSTAR3 provides the largest col-
lection of RBP binding sites from diverse CLIP-seq tech-
nologies and multiple species.

Identification of RBP binding sites from CLIP-seq datasets

For each newly collected CLIP-seq dataset, we followed
the same analysis procedure as we developed in POSTAR2
(21) with some modifications. To improve the read map-
ping quality, we removed unique molecular identifier (UMI)
in the raw sequencing file using FASTX-Toolkit (http://
hannonlab.cshl.edu/fastx toolkit). The actual number of
nucleotides that needed to be removed was determined ac-
cording to the description in the original publications. We
also updated the technology-specific peak callers: we used
CLIPper (28) (human)/CTK (29) (other species) for HITS-
CLIP related technology (HITS-CLIP, BrdU-CLIP), Mi-
Clip (30) for PAR-CLIP, and PureCLIP (31) for iCLIP re-
lated technology (iCLIP, eCLIP, iCLAP, urea-iCLIP, 4sU-
iCLIP, Fr-iCLIP) with default parameters (Supplementary
Table S4). For ENCODE eCLIP datasets, we obtained the

binding sites from the ENCODE data portal (https://www.
encodeproject.org/, May 2020). We also downloaded hu-
man RBP binding sites on circRNA junction regions from
several recent studies (32,33) and converted the region co-
ordinates to hg38 using liftOver (34). The binding records
curated in our database enabled us to construct an RBP-
RNA interactome network (Figure 2D).

Adding structure-seq datasets

In POSTAR3, we added a novel ‘Structurome’ module,
where we collected 66 structure-seq datasets (Supplemen-
tary Table S5) from GEO (22) and SRA (23) database (Fig-
ure 2E), and processed the data as in the original publi-
cations. We also collected six processed icSHAPE datasets
(Supplementary Table S6) from ENCODE (35). After we
obtained the base-pairing information from these datasets,
we tried to predict the secondary structure model around
RBP binding sites. We extended the RBP binding sites to
150nt flanking the midpoint, and extracted the genomic
sequences from the genomes of their respective species as
well as the matched structural profiles. Notably, we did
this calculation only for the binding sites on long RNAs.
We then predicted the RNA secondary structure using
Fold from RNAstructure (36) and RNAfold from Vien-
naRNA (37) with default parameters, in which the struc-
tural profile was used as soft constraint. Together with other
annotations, POSTAR3 provides users with enough re-
sources to investigate the relationship between RBP binding
and other types of post-transcriptional regulatory events
(Figure 2F).

http://hannonlab.cshl.edu/fastx_toolkit
https://www.encodeproject.org/
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Updates of Ribo-seq datasets

We have collected 129 new Ribo-seq datasets (Supplemen-
tary Table S7), as well as their matched RNA-seq datasets
(Supplementary Table S8) from GEO (22) and SRA (23)
database (Figure 2A). We followed the processing procedure
from our previous paper (21), with modifications as fol-
lows. We used RiboCode (38) to process Ribo-seq mapped
reads and identify all types of putative open reading frames
(ORFs). We then used Ribotaper (39), ORFscore (40) and
RibORF (41) to identify and evaluate translated ORFs in
the newly collected datasets. The translation efficiency of
the ORF was defined as the RPKM ratio of Ribo-seq to
the paired RNA-seq. We obtained the RPKM values of
the ORFs based on the raw read density from Ribo-seq
datasets, as well as the processed read density from Ri-
boCode (38).

Adding Degradome-seq datasets

In POSTAR3, we also added a Degradome module, where
we collected 83 degradome-seq datasets (Supplementary
Table S9) and 111 matched small RNA-seq (sRNA-seq)
datasets (Supplementary Table S10) from public resource
(Figure 2E). To avoid false discovery and unnecessary bias,
we excluded datasets without raw fastq files or matched
sRNA-seq datasets. Briefly, we removed the adapter se-
quence using Cutadapt (42) and filtered low quality sam-
ples based on the trimming results using FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The
cleaned fastq files of sRNA-seq datasets were subsequently
aligned to annotated miRNA sequences using bowtie2 (43)
with the following parameters: -p 12 -n 0 -m 5 –best –strata.
We then identified miRNA-mediated degradation events
with fastq files converted from sRNA bam files and cleaned
degradome-seq fastq files using PAREsnip2 (44) with the
stringent mode, Carrinton rule, and the corresponding tran-
scriptome annotations. In addition, we found that the Mini-
mum Free Energy (MFE) ratio (actual binding MFE versus
theoretical MFE) of the duplex regions are relatively high
in the four species (i.e. human, mouse, fly and Arabidopsis)
(Figure 2G).

Updates on the annotations of RBP and RBP binding sites

Other than the RBP binding sites itself, we also made sig-
nificant efforts to update the annotation of RBPs and RBP
binding sites. We added annotation information for newly-
added RBP and binding sites from zebrafish. We also re-
trieved information on circRNA from circBase (45) and
miRNA from miRbase (46) to annotate respective RNAs.
We included overexpression information of the RBP in re-
spective CLIP-seq experiments. We added ∼78 million SNV
from 1000 genomes (47), ∼679 million SNV from gno-
mAD (48), ∼40 million eQTLs, and ∼16 million sQTLs
from GTEx (49,50) to annotate RBP binding sites with
genomic variants, as well as ∼906k CCLE (51) variants,
∼406k denovo-db (52) variants and ∼7k HmtDB (53) vari-
ants as disease-associated mutations. Detailed annotation
process for RBP and RBP binding sites is described in Sup-
plemental Methods.

DATABASE FEATURES AND APPLICATIONS

Database and website architecture

All data in POSTAR3 were processed and stored in a
MySQL Database (version 5.6.50). We implemented the
client-side user interface by the HTML5 and JavaScript li-
braries, including jQuery (http://jquery.com) and Bootstrap
(http://getbootstrap.com), and the server-side using PHP
scripts (version 5.6) and JavaScript. Plots of query results in
POSTAR3 were generated by plotly.js library (https://plot.
ly) and Highcharts (https://www.highcharts.com). Tables of
query results were produced by the DataTables JavaScript
library (https://www.datatables.net) that allows users to
search and sort results. We generated RNA secondary struc-
ture visualization by forna (54). We used UCSC Genome
Browser (34) to visualize genome in our website. We have
tested the web page in several popular browsers including
Google Chrome, Safari, Microsoft Edge and Firefox. Users
could get access to the website link either on a computer or
mobile device.

Overview of the web interface

In POSTAR3, we have updated the website design, which
provides a user-friendly web interface for searching, brows-
ing, and downloading data from seven species and eight
modules. Here, we briefly describe the implementation of
each module.

The ‘CLIPdb’ module provides the annotation of RBPs
with their binding sites identified from CLIP-seq datasets.
In POSTAR3, we have updated the annotation for the query
RBP such as RNA recognition domains, RBP ontology,
sequence motifs, and structural preferences in this mod-
ule. We also provided the overexpression status of the RBP
in the original experiment when searching for RBP bind-
ing sites. The ‘RBP Binding Sites’ module displays all the
RBP binding sites identified with different CLIP-seq tech-
nologies and peak calling methods when searching the tar-
get gene. The table and network view present the interac-
tion between RBPs and target genes. We also collected ge-
nomic location, associated diseases, and expression patterns
across different cell lines, tissue types, developmental stages,
or conditions for annotation of the target gene. Notably,
we generate an overview of the high-occupancy target re-
gions by defining the ‘RBP binding hotspots’ according to
the number of RNA binding sites of each 20nt bin on the
RNA’s precursor. The ‘RNA Crosstalk’ module provides
the interactions between RBP binding sites and other post-
transcriptional regulation events, including miRNA targets,
RNA modification, and RNA editing. The ‘Genomic Vari-
ants’ module and the ‘Disease Mutations’ module integrate
SNVs and disease-associated mutations with RBP bind-
ing sites to provide insight into the causal variants and the
underlying regulatory mechanisms of human diseases. The
‘Translatome’ module characterizes the translation land-
scape of RNAs with one summary frame and three tables
for seven categories of ORFs, respectively. For each data
table in POSTAR3, we provide ‘Export data to CSV file’
option for users to download the results of the whole table.
Moreover, to provide users with a convenient view of dif-
ferent modules in our database, we have also constructed

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://jquery.com
http://getbootstrap.com
https://plot.ly
https://www.highcharts.com
https://www.datatables.net
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a ‘POSTAR3 Central’ page. At the bottom of each RNA-
centric module, there is a link to this ‘POSTAR3 Central’
page. Users could click the link to enter this page and trans-
fer to other modules by clicking the respective link.

We would like to highlight another two new modules that
are included in POSTAR3. The new ‘Structurome’ mod-
ule is constructed for characterizing the secondary struc-
ture landscape of RNAs. Users can choose a species (e.g.
human, mouse, zebrafish, fly, worm, Arabidopsis or yeast)
and input the desired gene name. POSTAR3 then returns a
genome browser, a network and a table: the genome browser
contains regions for predicted secondary structure and RBP
binding sites corresponding to the table; the network rep-
resents interacting RBPs with the queried RNA; the table
presents structure information of RBP binding sites for the
searched gene. Reactivity score and RNA secondary struc-
ture are plotted at each row in the table. The ‘Degradome’
module provides binding information between miRNA and
other types of RNA which leads to the degradation of the
other RNA validated by degradome-seq data. Users can
obtain detailed information about every validated sRNA-
fragment pair by selecting a species and input a target RNA
name or small RNA name.

Example applications

POSTAR3 provides users with a friendly and informative
platform for exploring the relationship between RBP bind-
ing and various types of post-transcriptional regulation
events, genomic variants, and translational dynamics. Here,
we present two example applications using our database,
particularly the two new modules, to demonstrate how to
decipher potential regulatory mechanisms related to human
disease and response to external stimuli in plants.

In the first example, Ireb2 (also known as Irp2) en-
codes an essential iron responsive element binding protein
in mouse, and its homologous gene has been reported to
be related to iron homeostasis in human cells (55). Fur-
ther studies in mice revealed that Ireb2 could regulate in-
sulin production by influencing iron levels and triggering
downstream biochemical reactions (56). However, little ef-
fort has been made to demonstrate the relationship between
RBP binding and RNA post-transcriptional regulation, es-
pecially the secondary structural change during response to
iron and production of insulin. When we queried ‘Ireb2’ in
‘Structurome’ module in our database, the website returned
a genome browser showing the position of RBP binding
sites, a network view of interacting RBP of this RNA, and
a table displaying all the binding sites and its secondary
structure model enhanced by structure profiling data (Fig-
ure 3A). In one of the SRSF3 binding sites on Ireb2, we
could observe that the binding site was placed at a stem-
loop structure (Figure 3B). At the same time, if we query
‘Ireb2’ in ‘Genomic Variants’ module, we could retrieve ge-
nomic variation information coordinated with RBP binding
sites, including one SNV event from dbSNP in this binding
site, while the score for the RBP binding site was relatively
high (Figure 3C). This variant caused a G changing to an
A, thus affecting the secondary structure of this local bind-
ing site. These results suggest that this variation could have
putative association with the secondary structure change of

Ireb2 mRNA, thus influencing the binding of SRSF3, and
further affect insulin production and development of dia-
betes in mouse and human.

Another example is AT2G33830 (also known as DRM2)
in Arabidopsis. Recent studies have revealed that the expres-
sion of AT2G33830 could be related to plants’ response to
stress and external stimuli, including response to light (57).
However, the mechanism of controlled AT2G33830 expres-
sion has not been fully understood. When we searched
‘AT2G33830’ in the new ‘Degradome’ module, the database
returned a table containing peaks of miRNA binding and
degradation in degradome-seq data (Figure 3D). All these
peaks were identified from a study that investigate the re-
sponse to excessive light in plants (58), with a relatively high
MFE ratio, suggesting stable degradation pairs were formed
between the miRNA and the target RNA. Meanwhile, if
we search AT2G33830 in the ‘Genomic Variants’ module,
one SNV was found in the base pairing region bound by
miRNA, where multiple RBP binding sites with high bind-
ing score resided around this region (Figure 3E). Taking all
these results together, we could propose a possible mech-
anism of light response in Arabidopsis that the expression
of AT2G33830 can be regulated by miRNA binding and
degradation, and also affected by SNPs and RBP binding
in this local region.

DISCUSSION AND FUTURE DIRECTIONS

We systematically updated our database to the new
version, POSTAR3, to enable users to make discov-
eries and decipher regulatory mechanisms underlying
post-transcriptional regulation events related to RBPs.
POSTAR3 records ∼50 million RBP binding sites from
seven species (human, mouse, zebrafish, fly, worm, Ara-
bidopsis, and yeast) and diverse CLIP-seq technologies
(HITS-CLIP, PAR-CLIP, iCLIP, PIP-seq, eCLIP, iCLAP,
urea-iCLIP, 4sU-iCLIP, BrdU-CLIP, Fr-iCLIP). To our
knowledge, POSTAR3 provides the largest collection of
RBP binding sites that are identified from CLIP-seq
datasets. We annotated the binding sites by incorporating
other high-throughput sequencing data, including Ribo-
seq, RNA secondary structure profiling, and degradome-
seq, as well as other types of post-transcriptional regulation
events and genomic variants, shedding light on the relation-
ship between RBP binding and regulatory mechanism at the
post-transcriptional and translational level.

Compared with our previous release of POSTAR2,
POSTAR3 has made the following updates and improve-
ments: (i) POSTAR3 provides more RBP binding sites that
are identified from CLIP-seq datasets and ORFs recovered
from Ribo-seq datasets, covering more species and experi-
mental technologies; (ii) POSTAR3 contains two new mod-
ules: ‘Structurome’ and ‘Degradome’, which provide sec-
ondary structure profiling data and model of RBP binding
sites, and sRNA-fragment binding records leading to degra-
dation of other RNAs validated by degradome-seq; (iii)
POSTAR3 curates RBP binding sites on circRNA junction
regions that were recovered from CLIP-seq datasets; (iv)
POSTAR3 added annotation information for RBPs, espe-
cially the overexpression status information in each CLIP-
seq experiment; (v) POSTAR3 updates the annotation for
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Figure 3. Example applications of POSTAR3: studying Ireb2 in mouse and AT2G33830 in Arabidopsis. (A) Search of mouse Ireb2 gene in ‘Structurome’.
In the ‘Structurome’ module, users could observe the secondary structure model predicted by algorithms enhanced by secondary structure profiling data.
(B) They could also click the ‘RBP location & Structure’ or ‘Reactivity & structure’ button to visualize secondary structure using forna, along with
other layers of information. (C) Search of mouse Ireb2 gene in ‘Disease Mutations’ module. ‘Disease Mutations’ module provides users with information
of disease-associated mutations associated with RBP binding in human. Notice that the score for this binding site was relatively high. (D) Search of
Arabidopsis AT2G33830 gene in ‘Degradome’ module. Search in ‘Degradome’ module returns a table containing knowledge of miRNA–mRNA binding
and degradation peaks, with statistical scores indicating the reliability of the degradation pair. (E) Search of Arabidopsis AT2G33830 gene in ‘Genomic
Variants’ module. ‘Genomic Variants’ module gives us information on genomic variants resided within the RBP binding sites.

RBP binding sites, including post-transcriptional regula-
tion events, genomic variants, and disease-associated mu-
tations; (vi) POSTAR3 re-designed and modified our web-
site to build a user-friendly interface for scientists. Since mo-
bile devices are now used more and more widely, we also in-
vested efforts to ensure a compatible web interface on these
devices.

It is noticed that sometimes, there is discrepancy between
established motifs and motifs discovered from CLIP-seq
data in our database. Nevertheless, in our opinion, this
should not be a problem. Most experimental motif discov-
ery methods were in vitro, such as SELEX or RNAcompete.
However, CLIP-seq experiments were conducted in vivo,
and it is sometimes difficult to identify motifs from CLIP-
seq experiments due to protein cofactor interactions or non-
specific background (59). As a result, it is possible that our
motif discovery process might not be able to find those es-
tablished motifs from the in vitro experiments. We followed
the process pipeline in previous versions of our database to
ensure reliable motif detection.

With the development of novel high-throughput se-
quencing technologies designed to decode the post-
transcriptional regulation and release of high-quality data
for all kinds of regulatory events, datasets that cover more
species and biological conditions will become available to
the public in the near future. We would like to continue to
incorporate new high-throughput data and improve web-
site for better navigation and exploration of curated data.
We will continue to maintain and update our POSTAR3
database to make sure it remains a useful resource for re-
searchers in this area.

DATA AVAILABILITY

POSTAR3 is freely available at http://postar.ncrnalab.org
(also at http://lulab.life.tsinghua.edu.cn/postar). Data in
POSTAR3 can be downloaded and used in accordance with
the GNU Public License and the license of their primary
data sources.

http://postar.ncrnalab.org
http://lulab.life.tsinghua.edu.cn/postar
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Supplementary Data are available at NAR Online.
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