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Abstract: Visual perception-based methods are a promising means of capturing the surface damage
state of wire ropes and hence provide a potential way to monitor the condition of wire ropes.
Previous methods mainly concentrated on the handcrafted feature-based flaw representation, and a
classifier was constructed to realize fault recognition. However, appearances of outdoor wire ropes
are seriously affected by noises like lubricating oil, dust, and light. In addition, in real applications,
it is difficult to prepare a sufficient amount of flaw data to train a fault classifier. In the context
of these issues, this study proposes a new flaw detection method based on the convolutional
denoising autoencoder (CDAE) and Isolation Forest (iForest). CDAE is first trained by using an image
reconstruction loss. Then, it is finetuned to minimize a cost function that penalizes the iForest-based
flaw score difference between normal data and flaw data. Real hauling rope images of mine cableways
were used to test the effectiveness and advantages of the newly developed method. Comparisons
of various methods showed the CDAE-iForest method performed better in discriminative feature
learning and flaw isolation with a small amount of flaw training data.

Keywords: flaw detection; wire rope; autoencoder; isolation forest; few training data

1. Introduction

Flaw detection is an important and challenging task in many disciplines, such as hot strip mill
rolling [1], the maintenance of bearings in rotary machinery systems [2,3], minerals processing [4],
and the maintenance of steel wire ropes (SWRs) [5]. In the present paper, a case in point is the steel
wire rope, which is widely used in lifting, transportation, and traction systems. Wire rope is composed
of several strands of metal wire twisted into a helix forming a composite “rope”. Wire breakage will
largely reduce the safety of wire ropes. At present, manual inspection under low-speed operation is
still the main method used in most cases, which causes problems such as missed detection and false
detection [6]. Therefore, progressive efforts have been devoted to exploring various methods to detect
wire rope damages (e.g., computer vision method, electromagnetic method, ultrasonic guided wave
method, X-ray detection method, etc.) in order to guarantee the reliability and safety of wire ropes [5].
It is known that due to normal friction and abnormal scratch, the early defects mainly occur on the wire
rope surface, which often reflects as wear and broken wire damage [7]. In this work, efforts are devoted
to developing a computer vision method to replace or assist the current manual inspection method to a
certain extent because it can intuitively grasp the surface morphology characteristics of wire rope [7].

Extracting image features and identifying feature patterns are two major steps of computer
vision-based abnormal detection [4]. As to the first step, principal component analysis (PCA) is a
widely used feature extraction method [8]. It separates image data into principal component parts
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and residual parts. The principal component parts explain the highest amount of variance of the
dataset, while the residual parts are less informative [9]. Zhou et al. [5] used the uniform local binary
patterns (LBP) to extract rope texture features. LBP labels the pixels of an image by thresholding the
neighborhood of each pixel and considers the result as a binary number. It is invariant to monotonic
grayscale changes. In their later work [7], to make full use of the surface texture information of steel
wire rope, a multi-texture feature fusion based on LBP and gray-level co-occurrence matrix (GLCM)
was designed. To detect rope deformations, Vallan and Molinari [10] developed an automatic lay length
measurement method, which extracts the rope contour and measures the distance among consecutive
strands. However, the aforementioned feature extraction methods do not have learning ability. They are
not powerful enough to extract important features from abnormal images, which results in poor fault
detection performance [11,12]. To address the problem mentioned above and achieve automated key
features extraction, this paper tries to develop a deep learning feature extraction method. Due to
it being hard to prepare a sufficient amount of representative flaw data in practical applications,
the convolutional denoising autoencoders (CDAEs) that can be trained using an unsupervised learning
method are adopted [12,13]. To fully explore and exploit its learning ability, besides minimizing
the reconstruction error between source images and reconstructed images, based on the flaw score
calculated by a flaw detection model, CDAE is also trained to increase the flaw score difference between
normal data and flaw data.

In previous studies, various classification techniques, including k-nearest neighbor, feedforward
neural network, and support vector machine (SVM), were used to identify feature patterns in wire
rope fault detection [5]. It is known that the performance of these methods relies heavily on the
availability of a representative set of training data [14,15]. However, in real wire rope service, the life
cycle of the cable is long, and it is difficult to collect flaw data. Furthermore, once the cable is severely
damaged, it is replaced immediately. In this setting, it is difficult to prepare a representative set of
industry data to train a well-performed computer vision-based fault classifier. Instead of training a
fault classifier, in this study, we propose to build an Isolation Forest (iForest) model, considering that
it is well applicable to cases with an insufficient amount of fault training data [4,16,17]. Generally,
abnormal detection is formulated as finding the outlier deviating from the majority of observations [18].
In iForest, faulty samples are detected as the instances that have short average path lengths on the
isolation trees (iTrees). This is because it is easy for the anomaly to be partitioned earlier when iTree
grows. To mention a few, Zhang et al. [4] developed a fault detector for abnormal working condition
recognition in froth flotation processes, in which Gabor texture features were extracted and fed to an
iForest model to isolate abnormal instances [19]. In a study by Zhu et al. [20], an ensemble model of
iForest was designed for detecting traffic anomalies within dashcam videos. Specifically, multiple
iForest models at different scales were constructed to keep consistent spatial anomaly results over
different frames. To detect insurance fraud on the basis of selected numeric attributes and distinct
combinations of values of selected nominal attributes, Stripling et al. [21] constructed an iForest model
and ran an analysis that was performed conditionally on well-defined data partitions. To well utilize
the learning ability of deep learning features, this study tries to investigate the feasibility of whether
the anomaly score calculated by an iForest model can be used to guide the finetuning of deep learning
feature extraction models.

In this paper, according to the above investigation, the main contributions are summarized as
follows: (a) a new convolutional autoencoder-based flaw detection method that can work with minimal
flaw training data is developed; (b) the flaw score calculated by iForest is used to guide the finetuning
of the convolutional autoencoder; (c) to show that the newly developed method is promising for
practical wire rope monitoring, an application on the flaw detection of the hauling rope of a mine
cableway is conducted in a real mineral concentration plant.

The remainder of the paper is organized as follows: The problem of wire rope flaw detection
is explained in Section 2. Section 3 proposes the flaw detection method. In Section 4, the proposed
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method is validated through experiments, some comparative studies are conducted, and some key
issues are discussed in detail. Section 5 presents the conclusions of this study.

2. Wire Rope Image Representation

2.1. Preliminaries of Denoising Autoencoder

An autoencoder is a neural network containing an encoder and a decoder [22,23]. The encoder
takes an input vector x and maps it to a latent representation z through a deterministic mapping
z = Eθe(x) = σ(Wex + be), parameterized by θe = {We, be}, while the decoder maps the latent
representation z back to a “reconstructed” vector x̃ in input space x̃ = Dθd(z) = σ(Wdx + bd),
parameterized by θd = {Wd, bd}. θe and θd are optimized to minimize the average reconstruction error:

θ∗e,θ
∗

d = argmin
1
n

∑
i

`(xi, x̃i) (1)

where ` is a loss function, such as the traditional squared error `(x, x̃) =‖ x− x̃ ‖2. However, the criterion,
which encourages latent representation z to retain information of input x alone, is unable to guarantee
the extraction of discriminative image features. This is because this criterion can easily lead to the
simple solution “copy the input” or similarly uninteresting ones that trivially maximize mutual
information [24].

Vincent et al. [13,24] developed a denoising autoencoder, which is trained to reconstruct a clean
“repaired” input from a corrupted version of it. Specifically, the initial input x is firstly corrupted into
a partially destroyed version x̂ by a stochastic mapping x̂ ∼ qD(x̂|x ). Then, the corrupted input x̂ is
mapped to a latent representation z = Eθe(x̂). Next, the original input is reconstructed from z with
x̃ = Dθd(z). To encourage the similarity between x̃ and the uncorrupted input x, encoder and decoder
parameters are trained to minimize the average reconstruction error in (1). Note that unlike the basic
autoencoder, the deterministic mapping Eθe in the denoising autoencoder is applied to a corrupted
input. It thus forces the learning of a far more clever mapping than the identity: one that extracts
features useful for denoising [13].

2.2. Convolutional Denoising Autoencoder-Based Feature Extraction

The convolution denoising autoencoder combines the local convolution connection with the
autoencoder. Specifically, convolutional operations are used to replace fully connected layers in
encoders, while deconvolution operation is used to replace fully connected layers in decoders [25].
Training deep neural networks is complicated by the fact that the distribution of each layer’s inputs
changes during training, as the parameters of the previous layers change [26]. To address the problem,
in this study, instance normalization is introduced in both encoders and decoders.

• Convolution layer: The convolution layer employs the learnable filter to slide with a prescribed
stride and outputs feature maps. Each element in a feature map is the sum of the products of the
filter and the input image (or the previous feature map) with which this filter overlaps. Let the
k-th feature map of the l-th layer be Ok

l ∈ R
wl×hl , and the corresponding filter be wk

∈ Rw′l×h′l . Ok
l is

calculated as follows:

O
k
l (i, j) = σ

(
dl−1∑

k′=1
wk

k′ (i, j) ∗ Ok′
l−1(i, j) + bk

)
= σ

 dl−1∑
k′=1

w′l
2∑

τ1=−
w′l
2

h′l
2∑

τ1=−
h′l
2

wk
k′ (τ1, τ2)O

k′
l−1(i− τ1, j− τ2) + bk


(2)

where dl−1 is the number of channels in layer l − 1; i and j are the row and column indices,
respectively; bk is a bias; and σ is an activation function. A Leaky ReLU with a negative slope of
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0.2 is used in this study. The parameters related to the convolutional operation are the filter size,
the stride, and the number of feature maps.

• Deconvolution layer: The deconvolutional layer also employs filters to slide with a prescribed
stride. Similar to Equation (2), each element in a feature map is the sum of the products of the
filter and the previous feature maps with which this filter overlaps. Different from convolutional
layers, ReLU is used as the activation function. In addition, in order to increase the resolution of
its input, extra zeros are padded to the input feature maps.

• Instance Normalization: Let x ∈ RT×C×W×H be an input tensor containing a batch of T images.

Let xi, j
t,k represent the tkij-th element, where t is the index of the t-th image in the batch, k is the

channel index, and i and j are the row and column indices, respectively.

yi, j
t,k =

xi, j
t,k−µt,k√
σ2

t,k+ε

µt,k =
1

HW

W∑
l=1

H∑
m=1

xl,m
t,k

σ2
t,k =

1
HW

W∑
l=1

H∑
m=1

(
xl,m

t,k −mµt,k
)2

(3)

The architecture of the convolutional denoising autoencoder designed in this study is illustrated in
Figure 1. The encoder contains nine convolutional layers, and correspondingly, nine deconvolutional
layers are used in the decoder. Since it is better to use a larger receptive field in lower convolutional
layers, the first four convolutional layers in the encoder are grouped into two groups. A stride of
one is used in the first convolutional layer in each group, and a stride of two that aims to achieve
subsampling is used in the second convolutional layer. There are no pooling layers; down-sampling in
remaining layers is also implemented with a stride of two. Instance normalization is used after each
down-sampling convolutional (up-sampling deconvolutional) layer.
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Figure 1. The architecture of the convolutional autoencoder. Red circles represent that instance 
normalization is used after convolution. 

  

Figure 1. The architecture of the convolutional autoencoder. Red circles represent that instance
normalization is used after convolution.

Because it is hard to train the convolutional denoising autoencoder from randomly initialized
parameters, the greedy layer-wise procedure is used to pre-train the encoder and the decoder
layer-by-layer with a local reconstruction loss [13]. Specifically, convolutional layers in the encoder
and the corresponding deconvolutional layers in the decoder are short-connected and pre-trained to
minimize a reconstruction loss between the inputs of this convolutional layer and its corresponding
outputs in the deconvolutional layers. After pre-training, convolutional layers and deconvolutional
layers are stacked together as in Figure 1 and finetuned by minimizing the reconstruction loss between
the input image and restored image.
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3. Flaw Detection with Deep Learning Features

3.1. Isolation Forest-Based Flaw Detection

Isolation Forest (iForest) is an unsupervised, tree-based ensemble anomaly detection
method [4,16,17]. The base learner of iForest is the isolation tree (iTree). There are two kinds
of nodes in iTree: One is an external node that has no child. The other is an internal node that has
one test and exactly two daughter nodes (Tl, Tr). An iTree node is created by randomly selecting an
attribute along with a randomly drawn split value. The split value lies between the minimum and
maximum of the selected attribute. In other words, a node consists of a randomly chosen attribute q
and a randomly drawn split value p, such that the attribute q divides the data points into Tl and Tr.
Usually, an iTree is built as follows. Given a training set X = {xi}

N
i=1, xi ∈ Rm, a subset (whose size is

ψ) of data are taken from the training data X without replacement. In a divide-and-conquer fashion,
iTree recursively divides the input space into a progressively smaller subspace by randomly selecting
an attribute q and a split value p until one of the following conditions holds: (i) the tree reaches a
predefined height limit; (ii) |X| = 1, or (iii) all data items in X have the same values. A detailed
algorithm for constructing iTree is summarized in Algorithm 1.

Algorithm 1 Isolation tree construction.

Isolation tree: iTree(X, e, l)
Inputs: X- input data, e - current tree height, l - height limit
Output: an iTree
1: if e ≥ l or |X| ≤ 1 then
2: return exNode{Size← |X|}
3: else
4: let Q be a list of attributes in X
5: randomly select an attribute q ∈ Q
6: randomly draw a split value p from max and min value of q
7: Xl ← f ilter(X, q < p)
8: Xr ← f ilter(X, q ≥ p)
9: return inNode

{
Le f t← iTree(Xl, e + 1, l)

10: Right← iTree(Xr, e + 1, l)
11: SplitAtt← q
12: SplitValue← p

}
13: end if

When a test instance passes through an iTree, to decide whether it should traverse to the left
or right daughter node, its respective attribute value is retrieved and compared to the split value at
each internal node. In iForest, it is assumed that anomalies or flaws only take a very small portion
in the data space, and they are different from normal instances. Thus, flaws are more susceptible to
be isolated in an iTree and tend to reach the terminated external node earlier than normal instances.
Therefore, when a collection of iTrees collectively produces a shorter traverse path for some particular
instances, then these instances are highly likely to be faulty. Let ht represent an iTree. The path length
ht(x) of x traversing ht can be measured by the number of edges that x traverses from the root node to
the terminated external node. To account for the possibility that the isolation of a set of instances at
the external node did not fully succeed, an adjustment function based on the external node size nex is
added to the path length, as shown below:

ht(x) = e + c(nex)

c(nexNode) =


2H(nex − 1) − (nex−1)

nex
ifnex > 2,

1 ifnex = 2,
0 otherwise

(4)
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where H(i) is the harmonic number, which can be estimated by ln(i) + 0.5772156649 (the Euler’s
constant). The flaw score of an instance is defined as follows [23]:

s(x,ψ) = 2−
E(h(x))

c(N) (5)

where E(h(x)) is the average of h(x) in a collection of iTrees.

• If the average path length of x is close to zero (E(h(x))→ 0), the flaw score will be close to one
( s(x,ψ)→ 1), and hence x tends to be a flaw instance.

• If the average path length of x is close to the absolute maximum depth (E(h(x))→ ψ− 1), the flaw
score will be close to zero ( s(x,ψ)→ 0), and hence x tends to be a normal instance.

• If the average path length of x is close to the average path length of a random tree given ψ
(E(h(x))→ c(ψ) ), the flaw score will be close to 0.5 ( s(x,ψ)→ 0.5 ). Then, there are no distinct
flaws in the data.

3.2. Flaw Score-Based CDAE Finetuning

The isolation method assumes that abnormal or flaw instances are different from normal instances
in the feature space. However, CDAE is constructed with no supervised information. To augment the
reliability of iForest and increase the difference gap of CDAE features between flaw images and normal
images, in this study, the flaw score difference between normal data and flaw data is used to finetune
the learnable parameters of CDAE. Hence, a novel penalty term that is calculated as follow is defined:

` f law =
∑
i∈SF

s
(
xF

i ,ψ
)
−

∑
i∈SN

s
(
xN

i ,ψ
)

(6)

where xF
i means a training data sampled from a randomly chosen flaw image subset, and similarly,

xN
i means a training data sampled from a randomly chosen normal image subset, and s is an Euclidian

distance-based similarity function.
The detailed steps of the flaw detection scheme based on CDAE and iForest are presented

as follows:

Stage I: Offline construction

Step 1: Get the sample set X under normal operating conditions and normalize it.
Step 2: Initialize CDAE and pretrain its layers to be greedy to minimize a reconstruction
loss between the inputs of the convolutional layer and its corresponding outputs in the
deconvolutional layer.
Step 3: Adjust the parameters of CDAE by minimizing the reconstruction loss between the input
image and restored image.
Step 4: Build the iForest model with CDAE features.
Step 5: Finetune the parameters of CDAE to increase the gap between flaw scores of normal data
and flaw data.
Step 6: Calculate the flaw score of incoming data.

Stage II: Online monitoring

Step 1: Capture a new data and normalize it.
Step 2: Calculate the CDAE image features of the new data.
Step 3: Calculate the flaw score by feeding CDAE features to iForest model.
Step 4: Determine whether the input data is flaw data or normal data.
Step 5: If it is a flaw data, trigger the flaw alarm; otherwise, capture the next data.
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4. Case Study: Application of Hauling Rope Flaw Detection on Mine Cableway

4.1. Description of Hauling Rope Flaw Detection

The hauling rope of mine cableways is taken as an example in this paper. The wire rope system
is composed of two different rope specifications, which are 50 mm and 32 mm in nominal diameter.
The nominal length of the two types of ropes is 1500 m; the rope with a diameter of 50 mm is used
to carry the bucket wagon with the mine, and the rope with a diameter of 30 mm is used to carry
the empty wagon. The system structure is shown in Figure 2. The system data is stored in a Device
Bucket, which contains industrial control computers, camera power supplies, Gigabit Ethernet switches,
and UPS uninterruptible power supplies. The image acquisition part of the system consists of a GIGE
protocol industrial camera named MV-CA030-10GC (Hikvision, Hangzhou, Zhejiang Province, China)
with a resolution of 1920 × 1440 pixels (large portions of the captured images consist of backgrounds)
and a bit depth of 8 Bit. The camera captures real-time image data at 20 frames per second, and the
traveling speed of the truck is 0.2 m/s. In the wireless network, two signal base stations are responsible
for communication with the two rope base stations to ensure that the system supports remote viewing
of the rope’s real-time maintenance status.
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Figure 2. System structure of the hauling rope flaw detection in mine cableways.

To train and test the performance of our flaw detection method, 113 flaws were collected from
nine hauling wire ropes that were to be replaced. For each hauling wire-rope, there were more than
ten thousand images. Some samples are shown in Figure 3. Due to complex natural light conditions
in an outdoor setting, there are many artifacts in captured images, as shown in the first two images.
It can be observed from the third and the fourth image, the surface of the cable becomes smooth due to
long-term wear and tear, which reduces the contrast of flaw regions. Also, the lubricating oil and dust
will cause highlighted or darkened areas, which result in noises for flaw region detection. The camera
aperture was dynamically adjusted to reduce the disturbance of light reflection on the wire rope surface
when capture hauling rope images.
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4.2. Evaluation Metrics

To measure the performance of the different flaw detection approaches, four evaluation metrics,
named accuracy, precision, recall, and f 1-score, are calculated. These metrics are calculated according to
the following formulae, and detailed descriptions can be found in the literature [5,11].

accuracy =
TP + TN

TP + FP + FN + TN
(7)

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

f 1− score = 2
precision× recall
precision + recall

(10)

where TP is true positive, FP is false positive, TN means true negative, and FN means false negative.

4.3. Experiments and Results

The convolutional denoising autoencoder acts like a method of dimensionality reduction. Thus,
in the first experiment, we compare it to two traditional dimensionality reduction methods: PCA and
stacked autoencoder (SAE). In the experiment, the first 32 principal components are chosen to make
a reconstruction. The encoder in SAE has five fully connected layers, and the output dimension of
these layers is 2048, 1024, 256, 64, and 32, respectively. The input of the encoder is downsampled into
64 × 64. Reconstruction results of five randomly selected wire rope images are displayed in Figure 4.
The reconstructions from the proposed method almost restored all normal and flaw parts of the
original wire rope images. For example, gaps between any two strands of metal wires, which indicate
connectivity of wire ropes, remain in the reconstruction of CDAE. By contrast, it is almost impossible
to distinguish independent wire rope strands from SAE and PCA. In addition, PCA failed to restore
flaw parts.

The signal-noise ratio (SNR) and root mean squared error (RMSE) are used to evaluate the
reconstruction errors. Evaluation results for randomly selected 1000 wire rope images are summarized
in Table 1. As can be seen, the proposed CDAE outperforms its competitors. The achieved RMSE is
18.6% and 57.3% lower than that of PCA and SAE, respectively, and this may indicate that the proposed
method will perform better than its competitors in wire rope feature extraction. PCA assumes that
the principal components with the highest variance contain the most discriminable information that
allows us to separate images by their labels. Thus, it looks at the image set as a whole and determines
the direction of the highest variance. Then it determines the next direction of highest variance, which is
orthogonal to the previous ones, and so on. However, since there are few flaw data, the separation
of flaw images and normal images is not based on the maximum variance. Thus, the use of the
most important components of PCA will not work. The aim of SAE is to train an encoder and a
decoder in such a way that only minimal latent information is required to restore the input image.
Suppose we use too few nodes in the bottleneck layer: in that case, the capacity of SAE to restore
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the input image will be limited, and the synthesized result will be blurry or unrecognizable from the
input image. Thus, the experiment results indicate that CDAE performs better than SAE by adopting
convolutional operations.
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Figure 4. Comparison between the original wire rope images and their reconstructions. (a) The original
wire rope images; (b–d) Images reconstructed by PCA, stacked autoencoder (SAE), and the proposed
method, respectively.

Table 1. Quantitative evaluation of wire rope image reconstruction. SNR: signal-noise ratio; RMSE:
root mean squared error.

Method

PCA SAE Proposed

SNR 6.5656 1.0592 8.4465
RMSE 7.3944 14.1201 6.0218

The second experiment studies the flaw detection performance of the proposed method.
To illustrate its advantages, it is compared with existing representative works in this field, as summarized
in Table 2. Algorithm I [8] uses PCA to extract principal features associated with wire rope features.
Then, an SVM model that trained with the one class-based multi-class optimization algorithm is used
to identify flaw images. In Algorithm II [7], a mixture of LBP and GLCM is used to represent wire rope
images. Then, an SVM model optimized with an improved fruit fly optimization algorithm is used in
flaw identification. In Algorithm III, image encoding results of SAE are used as the representation
of input images, and an SVM-based classifier is used as the flaw identification model. To show the
advantage of Isolation Forest-based flaw identification in the situation that only a limited size of flaw
data is available, a comparison model, which integrates convolutional denoising autoencoder-based
feature representation and SVM-based flaw identification, is constructed and denoted as Algorithm IV.
At the same time, since convolutional layers are used in CDAE, to compare the performance between
CDAE and convolutional neural networks (CNNs), a CNN developed in [27] is reimplemented
and used to extract deep learning features for iForest. In the experiment, we name this CNN and
iForest-based method as Algorithm V. As aforementioned, there are only 113 independent flaw images
in the collected hauling rope data. As shown in Figure 5, to train an SVM classifier, each flaw image
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is copied three times to augment the data set by adopting image operations like applying Gaussian
smoothing, reducing local contrast, and adding shadow. Thus, there are a total of 452 flaw images.
Additionally, 5100 normal images are randomly selected from collected data. To train and test the
above fault detection models, 100 flaw images and 100 normal images are randomly selected as test
samples. The remaining data are used as training data. Due to limited flaw data, the above four flaw
detection models were cross-validated several times (i.e., the training sets and test sets were divided
repeatedly). The model that gave the best performance (least error) was selected as the best-trained
detection model.

Table 2. Temperature and wildlife count in the three areas covered by the study. LBP: local binary
patterns; GLCM: gray-level co-occurrence matrix; CDAE: convolutional denoising autoencoder; CNN:
convolutional neural network.

Method Feature Isolation Model
Metric

Accuracy Precision Recall F1-Score

Algorithm I [8] PCA SVM 0.775 0.784 0.76 0.772
Algorithm II [7] LBP + GLCM SVM 0.805 0.814 0.79 0.802

Algorithm III SAE SVM 0.865 0.884 0.84 0.861
Algorithm IV CDAE SVM 0.885 0.905 0.86 0.882
Algorithm V CNN iForest 0.835 0.876 0.78 0.823

Proposed CDAE iForest 0.93 0.948 0.91 0.929Sensors 2020, 20, x FOR PEER REVIEW 10 of 12 
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Figure 5. Flaw image augmentation. (a) Source images; (b–d) Image augmentation by applying
Gaussian smoothing, reducing local contrast, and adding shadow, respectively.

The experiment results are summarized in Table 2. It can be observed that the performance of
Algorithms V and II are similar. The poor performance of Algorithm V is mainly caused by the limited
amount of flaw training data. Algorithm IV performs better than Algorithms I and III, which use PCA
and SAE features, respectively. Due to the poor performance of PCA on flaw region characterization
(as shown in Figure 4), it is hard for PCA features-based Algorithm I to discriminate flaw images from
normal images. Though SAE performs slightly better than PCA on flaw region characterization, it still
has difficulties in detecting small flaws, and hence results in poor performance in small flaw detection.
Due to limited flaw training data, the proposed fault detection method that combines CDAE with
iForest has higher precision than SVM classifier-based Algorithm IV.

5. Conclusions

In this study, a new wire rope flaw detection method that combines convolutional denoising
autoencoder (CDAE) and isolation forest (iForest) was developed. Different from previous work,
the newly developed method has learning ability and can perform well with a small amount of flaw
training data. It is known that iForest is based on the assumption that abnormal instances are largely
different from normal instances. In this study, a novel penalty term, which was calculated as the flaw
score difference between normal data and flaw data, was defined to adjust the learnable parameters
of CDAE to encourage iForest to separate flaw data with shorter path lengths. The advantages of
the proposed method were verified by comparing it with four other visual perception-based fault
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identification methods. First, image reconstruction experiments demonstrated that the new method
could capture the flaw appearance and structure characteristics. Second, comparative experiments
involving real-world hauling rope flaw identification provided evidence that the new method performs
better than its competitors with few flaw training data.
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