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Abstract
The study of inborn errors of immunity is based on a comprehensive clinical
description of the patient’s phenotype and the elucidation of the underlying
molecular mechanisms and their genetic etiology. Deciphering the
pathogenesis is key to genetic counseling and the development of targeted
therapy. This review shows the power of whole-exome sequencing in detecting
inborn errors of immunity along five central steps taken in whole-exome
sequencing analysis. In parallel, we highlight the challenges for the clinical and
scientific use of the method and how these hurdles are currently being
addressed. We end by ruminating on major areas in the field open to future
research.
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Introduction
Inborn errors of immunity (IEIs) or primary immune deficien-
cies (PIDs) are inherited defects leading to errors in one or more  
components of the immune system. The presentation of IEIs is 
variable, and phenotypes are as diverse as increased susceptibil-
ity to infection, auto-inflammation, autoimmunity, allergy, and  
malignancy. Ever since the description of the first IEI, Bruton  
agammaglobulinemia (1952), their study has been built upon  
(1) a thorough clinical description, (2) the elucidation of the  
crippled cellular pathway and molecular mechanisms, and 
(3) the genetic etiology. Bruton noticed complete absence of  
gammaglobulin in a child with recurrent pneumococcal sepsis and 
postulated a defect in the antibody response1. Race and Sanger 
mapped the agammaglobulinemia locus to the X-chromosome2, 
and ultimately the role of Bruton tyrosine kinase (BTK) in B-cell 
development was recognized3. This three-step approach, trans-
lated in the contemporary detection of IEI by clinical phenotyping, 
testing a genetic hypothesis, and functionally validating a candi-
date variant, remains fundamental to date in both the clinical and  
research setting4.

The tools available for identifying IEIs have evolved over time. 
The introduction of Sanger sequencing for detecting disease- 
causing mutations revolutionized medicine. It allows the genera-
tion of a high-quality sequence of up to 900 nucleotides and has  
a low error rate (0.001%)5. With this technique, mutations in  
223 genes, including BTK, have been shown to underlie IEI.  
However, Sanger sequencing is intrinsically low-throughput,  
time-consuming, and hypothesis-driven. Therefore, the prior  
identification of a region or a set of genes of interest (for instance, 
via linkage analysis, positional cloning, genetic homology  
analysis, or identification of the affected pathway) is essential for 
the identification of a novel disease-causing gene using Sanger 
sequencing. The introduction of next-generation sequencing  
(NGS) in 2010 allowed the genetic study of IEI by sequenc-
ing the whole-exome (WES) or the whole-genome (WGS) or the 
transcriptome (RNA-seq) or a combination of these. NGS tech-
niques use massive parallel sequencing, allowing the generation of  
gigabases of genome-wide information in a single run and thus 
a fast and unbiased approach to identifying the etiology of a  
disease. This resulted in the identification of 47 novel IEIs in the 
last three years (2014–2016). Yet the length of reads is shorter 
and sequencing error rates are higher (up to 2%)5. As these tech-
niques became widely accessible and more affordable and started  
being used in scientific but also clinical settings, it became  
apparent that identifying the disease-causing variant in the pile of 
information generated by WES and WGS, respectively, requires a 
methodology much like the three-step approach elaborated above.

This review presents the recent advances in detecting the genetic 
origin of IEIs using NGS. We will discuss (1) the technical data 
acquisition, (2) the generation of a genetic hypothesis, (3) the  
variant-level interpretation, (4) the gene-level interpretation, and 
(5) the functional validation. We focus on WES, which allows 
the analysis of the exome: the DNA sequence encompassing all 
exons of protein coding genes, microRNA, small nucleolar RNA, 
and large intergenic noncoding RNA in the genome (around 2% 

of the patient’s genome)6. WES is currently the most widely used 
NGS technique for the detection of IEIs. Extensive overviews of 
this approach have recently been published4,7–9; therefore, we will 
elaborate only on the core components here along a structured  
flowchart. We will highlight the challenges for each of the five  
components described.

Advances in testing a genetic hypothesis using 
whole-exome sequencing
Whole-exome sequencing – generation and bioinformatic 
pipeline
The generation of a WES dataset starts with the polymerase  
chain reaction (PCR) amplification of the patient’s genomic DNA. 
The library of primers used for this PCR reaction is designed to  
span the entire human exome (capture step). The nucleotide 
sequences of the short PCR amplified pieces of DNA (amplicons) 
are made available for further analysis in a FASTQ output file.  
A FASTQ is a file that contains base call and quality informa-
tion for all sequence reads that pass filtering. This is the common 
raw electronic data provided after sequencing10. Subsequently, 
data are mapped to a genomic position (alignment) and stored in 
a Binary Alignment/Map (BAM) or CRAM file. BAM is a binary 
file that contains data about the reads’ alignment to the reference 
genome. BAM files are used for downstream annotations and reads  
visualizations11. CRAM files are an alternative format to BAM, 
used in the 1000 Genomes Project12.

Only high-quality reads are kept and compared with a human  
reference sequence. Nucleotides that differ between both 
sequences are “called” into a variant call format (VCF) file. The  
VCF also contains information on coverage or sequencing depth: 
the number of times a specific nucleotide is read. If around  
50% or nearly 100% of the reads show a nucleotide differing 
from the reference genome, the position is called a heterozygous 
or homozygous variant, respectively. A sufficiently high coverage 
(typically, more than 20) is essential to discriminate a sequenc-
ing error from a true variant. Analysis of the sequencing depth  
can also be applied to detect somatic mosaicism where less than 
50% of reads contain an alternative nucleotide; however, in the 
latter case, a greater read depth of at least 50 is recommended13.  
WES typically generates over 100,000 high-quality variants 
per patient. At most, two of these underlie monogenetic disease 
in a patient. Subsequently, filtering of variants on the basis of a 
carefully considered genetic hypothesis is needed to maximize 
removal of false positives (removing maximum noise to work on a  
small manageable number of variants) while minimizing false  
negatives (not removing the true mutation by a too stringent  
filtration) and finally for properly prioritizing the remaining  
variants (Figure 1).

Genetic hypothesis
A rigorous clinical description of the IEI is paramount in the  
generation of a genetic hypothesis as it will influence all steps 
in the WES analysis: it aids grouping patients with homogenous  
phenotypes and hypothesizing on the potential mode of inher-
itance, expected allele frequency (AF), and cellular pathways  
that may underlie the disease.
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Figure 1. Approach to the use of whole-exome sequencing for the detection of inborn errors of immunity. A schematic overview of the 
different steps taken during whole-exome sequencing analysis (black boxes) with the challenges identified in recent research that need to 
be accounted for in future research (blue dashed boxes). AD, autosomal dominant; AR, autosomal recessive; CADD, Combined Annotation 
Dependent Depletion; DN, dominant negative; GDI, gene damaging index; GOF, gain of function; IEI, inborn errors of immunity; LOF, loss of 
function; MAF, minor allele frequency; MQ, Mapping Quality; MSC, mutation significance cutoff; RD, read depth; XL, X-linked.

Assuming high penetrance, analysis of a multiplex kindred (mul-
tiple patients in the same kindred) allows for the reduction of 
candidate variants to those shared by the diseased but not by the 
healthy relatives. High penetrance implies that a large propor-
tion of individuals carrying a particular genotype also present the  
associated clinical trait. The same genetic homogeneity can be 
expected in at least a subset of unrelated patients with the same  
disease. As an example, 8 out of 18 families with isolated con-
genital asplenia (ICA) had deleterious mutations in RPSA whereas  
only one loss-of-function (LOF) mutation (p.Trp176*) has been 
detected in 121,156 control exomes sequenced by the Exome  
Aggregation Consortium (ExAC)14. This enrichment of RPSA  
mutations in the ICA cohort made RPSA the candidate gene for 

ICA by genetic and phenotypic homogeneity (#1 candidate in a 
gene burden test) even though the mechanism of disease remains 
enigmatic15.

Pedigree analysis also contributes to generating a hypothesis on 
the mode of inheritance. Consanguineous families are more likely 
to suffer from an autosomal-recessive (AR) inherited disease16; 
diseases affecting only males suggest X-linked (XL) inherit-
ance. This model can then be applied to the WES dataset: for AR  
disease, homozygous or compound heterozygous variants are 
selected; for autosomal dominant (AD) disease, heterozygous  
variants are selected; and for XL disease, variants called to the  
X-chromosome are prioritized.
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Variant-level interpretation
In IEI research, typically variants predicted to cause LOF of the 
studied gene are prioritized, as a defective immune response is 
hypothesized. LOFs are indel, frameshift, start-loss, stop-gained, 
missense, and essential splicing mutations. It must be kept in  
mind that mutations can also lead to disease if they result in a  
dominant negative effect (for example, interferon-gamma  
receptor 1 (IFN-γR1)17) or in a gain of function (GOF) (for example, 
signal transducer and activator of transcription 3 (STAT3)18).

Next, it is important to consider the frequency of the disease  
studied. Individual IEIs are rare diseases; thus, it would be highly 
unlikely that a disease-causing variant has an AF of more than  
1% in the general population—that is, in public databases such 
as the Single Nucleotide Polymorphism Database (dbSNP), 
1000 Genomes, ExAC, and the Genome Aggregation Database 
(gnomAD). The last of these also includes control WGS data14.

An additional parameter to select a candidate variant is its predicted 
deleteriousness. Various predictions tools have been developed to 
calculate the effect of a nucleotide change on a gene: the sorting 
intolerant from tolerant (SIFT) score19, the polymorphism phe-
notyping v2 (PolyPhen2) score20, and the Combined Annotation 
Dependent Depletion (CADD) score21, which adds information 
on evolutionary conservation, gene regulation, and transcription to 
the SIFT and PolyPhen2 calculations. Typically, disease-causing  
variants that are predicted deleterious by SIFT and PolyPhen 
or that have a CADD score above 15 (or both) are prioritized  
in the WES analysis. Yet false-negative rates for all three methods’ 
fixed genome-wide cutoffs are high22. Also, deleteriousness does 
not imply pathogenicity: it is indeed possible that a highly deleteri-
ous variant does not explain the patient’s phenotype, for example, 
as there are other pathways compensating for the defect23.

Gene-level interpretation
Some genes, such as titin (TTN) and mucin 16 (MUC16), har-
bor many rare (low AF) LOF mutations that are predicted to be  
deleterious in the general population. They are typically not pri-
oritized as a candidate gene for a life-threatening condition as 
are many IEIs24, although variants in these genes per se could be  
promising candidates. A measure for this principle is the gene  
damage index (GDI)25. GDI is calculated for each human gene 
by summing up the CADD scores of each of its 1000 Genomes 
Project phase 3 alternative alleles—minor allele frequency (MAF) 
of less than 0.5, missense/nonsense/frameshift/in-frame indels/
splice variants—normalized by the corresponding expected 
CADD scores for alleles with the same MAF and multiplied 
by the AF. The lower the GDI of a particular gene, the lower  
the accumulated damage prediction score of the alleles in this 
gene are reported in the general population. The mutation signifi-
cance cutoff (MSC) uses the CADD/PolyPhen2/SIFT scores of all 
known disease-causing mutations for each protein-coding human 
gene from the Human Gene Mutation Database (HGMD) and 
ClinVar database26,27 and generates the lowest predicted clinically/
biologically relevant CADD/PolyPhen2/SIFT cutoff value for a  
specific gene to enable safe removal of benign variants from 
NGS data. A variant with a CADD score under the MSC is likely  

benign (even if the CADD score is greater than the popular  
cutoffs of 15 or 20) and can be safely removed as the true posi-
tive rate is 98%22. For example, a gene with a CADD-based  
99% confidence interval MSC cutoff of 25 and a variant in this  
gene having a CADD score of 23 can be safely filtered out.  
Conversely, when a gene has a CADD-based 99% confidence  
interval MSC cutoff of 5 and a variant in this gene has a CADD 
score of 7, the variant should not be filtered out on the basis of 
CADD score. Lastly, the information already available on the 
pathogenicity of a gene must be taken into account. If a gene is  
known to underlie an IEI and the patient’s phenotype corresponds 
to the phenotype previously described, the variant can be disease-
causing even if the damage prediction is low28. Also, as has been 
shown for the Toll-like receptor 3 (TLR3) pathway, mutations 
in genes that are biological interaction partners can lead to the 
same disease, in this case herpes simplex encephalitis (HSE). The  
Human Gene Connectome has been developed to calculate the  
biological distance and route from a core gene (typically a known 
IEI gene) to other genes: 95% of all new IEIs (discovered in 2014) 
are within the top 1% of at least one known IEI gene29.

Functional validation
After confirmation of the candidate disease-causing variant  
by Sanger sequencing, the final but crucial step is its functional 
validation. This should include at least three steps:

First, the impact of the patient’s alleles on transcription and pro-
tein expression of the gene of interest needs to be tested. If an  
allele leads to loss of expression of the protein studied, this is a 
strong argument in favor of the deleteriousness/pathogenic-
ity of the variant. Expression can be predicted using publicly  
available databases, such as bioGPS (mRNA)30 and the Human  
Protein Atlas (mRNA and protein expression)31.

Second, the cellular phenotype of the patient should be investi-
gated in a relevant experimental system, preferably the patient’s  
cells and healthy control cells. The function of the pathway 
of interest in patient-derived primary cells or cell lines can be 
compared with that of controls given that the protein is endog-
enously expressed in the chosen experimental system. Ideally, a 
positive (known responder) and negative (known LOF) control is 
included in the experimental set-up. If a variant is LOF, the cellular 
defect can be quantified and rescued by the reintroduction of the  
wild-type protein.

Third, the genotype and cellular phenotype of the patient should 
be linked to his or her clinical presentation. This is often the most  
challenging step as even in an appropriate ex vivo system,  
physiological mechanisms of the organism as a whole cannot be 
fully mimicked.

Remaining challenges in detecting inborn errors of 
immunity by whole-exome sequencing
Whole-exome sequencing – generation and bioinformatic 
pipeline
WES provides information on the exonic part of the genetic  
code only (compare with definition above). Yet, in recent 
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years, it has become apparent that intronic regions can harbor  
IEI-causing mutations too. Using WGS, Starokadomskyy et al. 
showed that a deep-intronic mutation that damages POLA1, encod-
ing the catalytic subunit of DNA polymerase-alpha, underlies 
XL reticulate pigmentary disorder (XLPDR)32. Additionally, we 
learned that WES does not cover all parts of the exome equally  
well. This is due both to the PCR capture step inducing (for  
example, polymerase errors) and to hybridization difficulties (for 
instance, of sequences with high guanine-cytosine content). Also, 
IEIs caused by copy number variations of a gene, such as dele-
tion or insertion spanning a sequence longer than an amplicon,  
will be missed, as only the second allele will be amplified.  
Therefore, the biggest pitfall of WES is that the gene or mutation of 
interest lies outside the exome covered by the WES kit.

Second, certain genes have duplicated in evolution and resulted 
in pseudogenes that have a sequence that parallels the “mother”  
active gene yet have reduced or lost function33. During the anno-
tation step, variants in a gene can incorrectly be mapped to the  
pseudogene, preventing the detection of mutations in the active 
gene. Inhibitor of nuclear factor kappa B kinase subunit gamma 
(IKBKG) is an example of this difficulty known to the IEI field:  
the gene and its pseudogene copy (IKBKGP) have a complex,  
partially overlapping genetic sequence that is not correctly mapped 
by WES. Therefore, functional tests and alternative sequenc-
ing approaches to capture mutations in IKBKG are necessary  
(Figure 1).

Genetic hypothesis
For various IEIs, individuals with a proven pathogenic genotype 
have been found to be asymptomatic. This phenomenon of incom-
plete clinical penetrance is an important pitfall and the genetic 
hypothesis; especially in the AD/AR/XL hypothesis, this pos-
sibility should never be neglected. It occurs when an individual 
has not yet encountered the key pathogen such as Epstein-Barr 
virus in X-linked lymphoproliferative disease. However, it can 
also occur in people who have been exposed. HSE, for example,  
is incompletely penetrant in individuals with TIR-domain- 
containing adapter-inducing IFN-β (TRIF) deficiency: the patho-
genic TICAM1 mutations identified in patients with HSE have 
been found in their “healthy” relatives, some of whom had a 
serologically proven history of herpes simplex virus 1 (HSV-1) 
infection34. Likewise, the presence of diseased female carriers 
in an XL disease can evoke an AD model. This has been shown  
for chronic granulomatous disease35 and Wiskott-Aldrich  
syndrome36 and can be explained by skewed X-inactivation of  
the wild-type allele resulting in haploinsufficiency: a single  
functional copy of the IEI gene leads to disease.

Lastly, non-Mendelian and non-monogenic forms of inheritance 
must be considered also when studying WES data of patients with 
IEI. Seemingly unaffected parents can harbor a somatic mosai-
cism as has been described in severe congenital neutropenia37.  
On the other hand, the possibility of revertant mosaicism 
explaining the milder phenotype of some patients with severe  
combined immune deficiency (SCID), Wiskott-Aldrich syndrome, 

and XL ectordermal dysplasia and immunodeficiency must 
be recognized38. WES has already proven useful in detecting 
somatic mosaicism and has great potential for the future detection  
of revertant mosaicism39. Non-monogenic etiologies of IEIs  
have hardly been studied by WES to date. Yet digenic inheritance 
has already been identified in severe congenital neutropenia40,  
and Timberlake et al. have elegantly shown the potential of WES 
in elucidating two-locus inheritance41. Non-monogenic inherit-
ance should be included in future genetic hypotheses, especially 
in patients with complex PID phenotypes. As the detection of 
non-monogenic etiologies of IEIs is more complex, grouping  
patients with similar disease to look for genetic homogeneity will 
become even more important.

Variant-level interpretation
The importance of exonic variants that are not predicted to be  
LOF, especially synonymous variants, is increasingly being rec-
ognized. Synonymous mutations, typically with a lower CADD 
score than LOF variants, can affect splicing or alter the timing 
of cotranslational folding42. A recent example is the identification 
of a synonymous pathogenic mutation that resulted in an alterna-
tive splicing of interleukin-7R (IL-7R) in a patient with SCID43.  
When a variant’s AF is considered, it is important to realize that 
the AF varies among different ethnicities44 and that some ethnic 
groups such as Native Americans are underrepresented in pub-
lic exome/genome databases. Belkadi et al. therefore developed 
a model based on principal component analysis to identify the  
ethnicity of a person from his or her exome data45. The ethnicity- 
specific AF should be used in the choice for a candidate vari-
ant. Also, in several IEIs, such as Nijmegen breakage syndrome,  
IFNγ-R1 deficiency, and FOXN1-deficient SCID, a founder  
mutation has been identified46–48: the same mutation on the same 
allelic background is found in all patients. Typically, the frequency 
of carriers in the founder population is much higher than that in 
publically available databases.

For the interpretation of the deleteriousness prediction scores,  
one should realize that some genes have altered reading frames 
or are alternatively spliced, resulting in different isoforms. WES  
data are “called” to the canonical transcript and the CADD score 
is calculated on the basis of the predicted effect of the variant  
on the canonical isoform. However, it has been shown that  
patients with mutations in HCLS1-associated protein X-1 (HAX1), 
underlying severe congenital neutropenia, have a different 
phenotype depending on the isoform that is mutated49. Thus, 
when a genetic hypothesis is made on the basis of the phenotype, 
it is important to consider that the impact of a variant might be  
different from the effect predicted computationally on the basis of 
the canonical transcript.

Gene-level interpretation
First, a constraint of the currently available deleteriousness  
prediction models, and also of the MSC and GDI, is that pre-
dictions are based on data on the full gene while the tolerance 
to functional genetic variations can vary per exon or region of a 
gene. Gussow et al. therefore introduced the sub-region Residual  
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Variation Intolerance Score (subRVIS)50. Further research into  
predicting sub-region and domain-specific deleteriousness is 
urgently needed.

Second, the MSC is dependent on published data. With the report  
of pathogenic mutations in a specific gene, the MSC may change 
and the gene is predicted to be less or more tolerant to mutations.

Third, genes are expressed differently throughout tissues.  
Therefore, it is possible that a protein encoded by the same gene 
has alternative, organ-specific interaction partners. This informa-
tion was recently made available in the Genome-scale Integrated  
Analysis of gene Networks in Tissues (GIANT), which allows  
functional networks to be built around a core gene capturing its  
tissue-specific functional interactions51. Lastly, for known IEI 
genes, the originally described phenotype can expand or change 
through WES research. After the publication of IFN-stimulated  
gene 15 (ISG15) deficiency as a novel genetic etiology of  
Mendelian susceptibility to mycobacterial disease, the pheno-
type was expanded to include cerebral calcifications and auto- 
inflammation by WES identification of additional ISG15-mutated 
individuals52,53. Thus, Mutations in known IEI genes with an (at first 
sight) unrelated phenotype should not per se be excluded.

Functional validation
When human disease is studied in vitro or in vivo, be it in  
(patient-derived) cell lines or animal models, the limitations of 
the system used should be considered. Fibroblasts have proven  
useful to study viral susceptibility. The alleles of the first reported  
patients with TLR3 deficiency have been studied in depth in  
SV40 and primary fibroblasts54. Yet, recently, it has been shown 
that the impaired intrinsic immunity to HSV-1 in TLR3 deficiency 
can be more precisely studied in TLR3-deficient central nerv-
ous system (CNS) cells derived from human-induced pluripotent 
stem cells (iPSCs)55. Hence, the field has shifted to the use of  
iPSC-derived CNS cells for the study of novel genetic etiologies of 
HSE. Also, other organ-specific IEIs with susceptibility to infec-
tion—for example, fulminant myocarditis (myocytes56) and severe 
influenza (lung epithelial cells57)—are increasingly researched in 
patient-specific iPSCs.

Lastly, we progressively grasp the complexity of the human  
immune response itself and the non-genetically encoded factors 
that contribute to the clinical phenotype of the patient. As an  
example, Israel et al. demonstrated that the only patient who  
developed staphylococcal disease out of eight patients with  
Toll/interleukin-1 receptor domain-containing adapter protein 
(TIRAP) deficiency was the one who lacked (staphylococcal) 
lipoteichoic acid–specific antibody (anti-LTA Ab) and for whom 
the adaptive immune response thus could not rescue the innate 
immune defect58.

Future perspectives and conclusion
We are only beginning to appreciate the full potential of WES. 
In addition to the detection of the monogenic etiology of a spe-
cific IEI and modifier genes or variants in mutations that show 
incomplete penetrance, WES could be applied for detecting  

mutations in genes belonging to the same pathway in patients  
with the same disease. An example is the TLR3 pathway. Currently, 
all genes of the pathway have been identified individually. It is  
not unthinkable that, with the use of the human gene connectome 
and by combining a large set of exome data from patients with 
HSE, novel genes in the TLR3 pathway or patients with bigenic 
TLR3 pathway defects can be identified. This approach can also 
be envisioned for other “pathway” diseases such as Mendelian  
susceptibility to mycobacterial disease (IL-12/23R - IFNγ – JAK/
STAT), chronic mucocutaneous candidiasis (CMC) (Th17 circuit), 
and the detection of novel circuits that are currently not associated 
with a phenotype.

A second route that is largely unexplored is the genetics of  
resistance against infection59. Although it will be harder to prove 
exposure to a specific pathogen, WES can also be used to identify 
variants that render the host immune to a specific pathogen as has 
been shown for the CCR5-delta32 mutation in HIV resistance60 and 
the sickle cell allele in malaria61.

Third, the genetic understanding and detection of IEI open the 
way to specific therapy. A first success has been booked by the  
introduction of the JAK 1/2 inhibitor ruxolitinib in the treat-
ment of CMC and autoimmunity in patients with STAT1 GOF  
mutations62. Another mechanism of disease-specific interven-
tions might be gene therapy such as that for patients with SCID  
due to adenosine deaminase–deficiency. In the far future, one can 
even foresee the introduction of CRISPR-Cas9 (clustered regu-
larly interspaced short palindromic repeats–associated protein-9  
nuclease) modification of blood cell DNA into clinic. IEIs would 
be the ideal candidates for CRISPR-Cas9 application as they are  
rare, monogenic defects that often can be importantly improved 
by a partial reconstitution, as is the case naturally in revertant  
mosaicism.

In conclusion, this review shows the unique potential of WES  
to detect known and novel IEI-causing mutations. We also dem-
onstrate the challenges for the clinical and scientific use of the  
method, how these hurdles are currently being addressed, and  
major areas open to future research.
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