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Abstract

Panel based next generation sequencing was performed on a discovery cohort of AML with 

RUNX1-RUNX1T1. Supervised machine learning identified NRAS mutation and absence of 

mutations in ASXL2, RAD21, KIT and FLT3 genes as well as a low mutation to be associated 

with favorable outcome. Based on this data patients were classified into favorable and poor genetic 

risk classes. Patients classified as poor genetic risk had a significantly lower overall survival (OS) 

and relapse free survival (RFS). We could validate these findings independently on a validation 

cohort (n=61). Patients in the poor genetic risk group were more likely to harbor measurable 

residual disease. Poor genetic risk emerged as an independent risk factor predictive of inferior 

outcome. Using an unbiased computational approach based we provide evidence for gene panel-

based testing in AML with RUNX1-RUNX1T1 and a framework for integration of genomic 

markers toward clinical decision making in this heterogeneous disease entity.
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Introduction

Acute myeloid leukemia (AML) with t(8;21)(q22;q22) that results in the RUNX1-
RUNX1T1 chimeric gene fusion is one of the commonest subtypes of AML. It is 

characterized by a distinct morphology and a unique immunophenotype and is thus 

recognized as a specific entity amongst ‘AML with recurrent genetic abnormalities’ [1]. 

Traditionally, this AML has been recognized as having a favorable outcome as evident by 

superior survival rates when compared to intermediate and poor cytogenetic risk AMLs [2]. 

Unfortunately, the treatment outcome in these cases is not homogeneous as evident by 

relapse in a significant number of patients despite achievement of morphological complete 

remission (CR) [3,4]. In fact, studies claim that only half the patients of AML with RUNX1-
RUNX1T1 get cured [5,6]. This heterogeneous outcome has been explained, in part, by 

cooperating somatic mutations in genes involved in signaling pathways such as FLT3 and 

KIT [7].

In the last few years, largely due to next generation sequencing (NGS) technologies, we have 

identified somatic mutations affecting diverse cellular pathways in AML [8]. Some of these 

mutations are clinically relevant affecting prognosis or are amenable to targeted therapy. 

Somatic mutations have been identified in nearly 90% of AML with t(8;21) and commonly 

include genes encoding for chromatin modifiers (e.g. ASXL1, ASXL2, EZH2, KDM6A), 

cohesin complex (e.g. RAD21, SMC3, SMC1A) and signaling pathways (e.g. KIT, FLT3, 

NRAS) [4,9]. Whereas a general consensus exists amongst researchers that the above sets of 

genes are recurrently mutated in AML with RUNX1-RUNX1T1, an accurate prognostication 

scheme that guides a treating physician is largely lacking. It is imperative that better 

approaches be developed so that we can identify patients who are at a high risk of relapse in 

this rather common subtype of AML.

Machine learning (ML) is a subset of artificial intelligence that holds promise in deciphering 

complex gen-omic datasets. ML has been used to develop algorithms for diverse 

applications such as identification of regulatory regions in the genome to prediction of 

cancer susceptibility, recurrence and survival [10,11]. ML has also been recently used for 

prediction of drug response in AML based on gene expression profiles as well as discovery 

of novel antibiotics [12,13]. We have recently developed a supervised ML based algorithm 

for prognostication of AML with mutated NPM1 based on the underlying genomic data 

[14]. To decipher the clinical significance of the large numbers of genetic variables we used 

an unbiased computational approach and identified that NPM1 mutation type and corrected 

NPM1 variant allele fraction (VAF), presence of DNMT3A R882 mutation, FLT3 internal 

tandem duplication VAF and IDH2 mutations were clinically relevant. Based on these ML 

derived variables we developed a scoring system. The genetic score could classify AML 

with mutated NPM1 into three classes with vastly different outcomes.
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Given the heterogeneity in treatment outcomes that is observed in AML with RUNX1-
RUNX1T1 we questioned if such ML based approaches can be applied to AML with 

RUNX1-RUNX1T1. In this manuscript, we develop a ML based genomics driven 

prognostication model for AML with RUNX1-RUNX1T1 and demonstrate that this model 

correlates with measurable residual disease (MRD) and clinical outcome.

Methods

A Patient Details

a. Patient Accrual: The study was cleared by the institutional ethics board (IEC III 

Project 163 and IEC III Project 900613). We accrued a total of 131 patients of 

AML with RUNX1-RUNX1T1. These patients were accrued over a 7-year 

period from March 2012 to April 2019. Diagnosis, immunophenotyping and 

cytogenetic analysis were performed as previously described [3].

b. Patient Treatment and Evaluation of Outcome: Patients were divided into a 

discov ery cohort (n=70) and an independent validation cohort (n = 61). All 

patients were treated with conventional induction ‘3+7’ chemotherapy consisting 

of daunorubicin (60 mg/m2 D1-D3) and cytarabine (100 mg/m2/day D1-D7). For 

the validation cohort, 13 out of 61 patients had baseline fungal pneumonia or 

multidrug resistant bacterial colonization and were treated with oral metronomic 

chemotherapy to stabilize the patient prior to intensive ‘3+7’ chemotherapy. 

Complete remission (CR), overall survival (OS) and relapse free survival (RFS) 

were calculated as previously described [3,14,15]. One out of 13 patients not 

achieving morphological CR was treated with palliation and the rest were treated 

with conventional therapy, at discretion of the treating physician.

B Genetic Testing on Diagnostic Sample

a. Cytogenetics: Only patients who were con firmed to have RUNX1-RUNX1T1 by 

conventional karyotyping and/or fluorescence in-situ hybridization (FISH) were 

included.

b. Panel Based NGS and Data Analysis: Details of the single molecule molecular 

inversion probe (smMIP) based myeloid sequencing panel and bioinformatics 

approaches used to analyze this dataset are as previously described in detail 

(please see supplementary methods) [14].

c. Machine learning based genetic score: We developed a supervised ML based 

approach for identification of prognostic variables most likely to influence 

outcome in AML with RUNX1-RUNX1T1 as described previously [14]. 

Additional details pertaining to ML can be seen in the Supplementary Methods 

that accompanies this manuscript. Based on the results of the ML model we 

scored each vari able as ‘-1’ if the results were predictive of an unfavorable 

outcome and ‘+1’ if otherwise. A sum of these scores was finally derived to 

generate a final score. Based on this final score patients were classified into 

favorable and poor genetic risk (GR).
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C Measurable Residual Disease Assessment using Multiparametric FCM (FCM-MRD)

FCM-MRD was detected using a two tube 10 color assay as described previously by our 

group [3]. Patients were called as FCM-MRD negative if they were negative on two 

consecutive MRD time points (post induction and post consolidation). Everyone else was 

MRD positive.

D Correlation of ML Derived GR with FCM-MRD and Treatment Outcome

Chi squared test was used to correlate FCM-MRD with ML derived GR classes. The impact 

of GR defined classes was also evaluated against OS and RFS using Kaplan-Meier technique 

and log-rank test.

Results

Table 1 is a summary of clinical and laboratory parameters of the entire cohort.

A Patient Details

The median follow-up for the entire cohort (131 patients) was 27.6 months. The median 

overall survival (OS) was 30.7 months (95% CI: 23.0-38.4 months) and the median relapse 

free survival (RFS) was 32.9 months (95% CI: 27.7-38.1 months). Out of 131 patients only 4 

underwent allogeneic bone marrow transplantation. Due to small numbers their outcome was 

not different from the rest with respect to OS (p = 0.25) or RFS (p = 0.9). These patients are 

therefore not considered separately. The clinical and laboratory parameters of the discovery 

and validation cohorts can be seen in Supplementary Tables 1 & 2 respectively.

B Genetic Testing on the Diagnostic Sample

a. Cytogenetics and gene mutations: Details of conventional karyotyping and FISH 

can be seen in supplementary data accompanying this manuscript. At least one 

somatic mutation was detected in 85.5% of all patients (median coverage: 983.5, 

range: 402-2793X). An overview of these mutations can be seen in Figure 1. 

Supplementary Figure 1 high lights the frequencies of commonly occurring 

mutations seen in our cohort.

b. Machine Learning Based Modeling: Performance characteristics of ML model as 

well as results of feature selection can be seen in supplementary methods 

(Supplementary Tables 3-5 and Supplementary Figure 2) accompanying this 

manuscript. Based on the ML modeling on the discovery cohort, mutations in 

FLT3, NRAS, ASXL2, RAD21, KIT genes as well as mutation burden (≥2 as 

high mutation bur den) were determined as important variables likely to predict 

outcome.

c. Machine Learning Derived Genetic Score: High mutation burden, mutations in 

FLT3, RAD21, ASXL2 and KIT genes were associated with an inferior 

prognosis and assigned a negative score whereas mutations in NRAS were 

associated with a favorable outcome and a positive score if present. These 

features were used to generate a scoring system as is seen in Figure 1. Based on 

the prognostic impact of these variables a score was allotted to each feature [14] 
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the sum of which resulted in classification of patients into favorable (score ≥4) 

and poor genetic risk (score ≤3). In the discovery cohort, patients classified as 

poor genetic risk were associated with inferior OS and RFS (Supplementary 

Table 1 and Supplementary Figure 3). We reconfirmed the clinical relevance of 

these findings by an independent validation on a cohort of pediatric RUNX1-
RUNX1T1 rearranged AML (Supplementary Table 2 and Supplementary Figure 

4).

C Measurable Residual Disease Assessment using Multiparametric FCM (FCM-MRD)

The presence of FCM-MRD was significantly associated with inferior OS and RFS 

(Supplementary Figure 5).

D Correlation of ML Derived GR with FCM-MRD and Treatment Outcome

We observed a strong correlation of ML derived genetic risk classes with FCM-MRD where 

cases which were classified as poor genetic risk were more likely to be MRD positive 

(Supplementary Figure 6). Lastly ML derived GR based risk classes were highly predictive 

of outcome as seen in Figure 1 and Table 1. The clinical relevance of individual components 

of the ML derived scoring system can be visualized in Supplementary Figure 7.

Discussion

In the last decade several studies have analyzed the prognostic relevance of signaling 

pathway mutations in core binding factor AML as reviewed by Boissel et al. [16]. However, 

there is little consensus amongst investigators with respect to clinical relevance of these 

mutations. This could be attributed to various reasons, such as technical issues associated 

with low sensitivity assays like sanger sequencing. Some investigators have indicated that 

allelic abundances of mutations are important [9,17]. Others have indicated that even within 

a single gene, mutational hotspots such as KIT D816 [18] or FLT3-TKD [19] may have 

different prognostic connotation in core binding factor AML. Krauth and colleagues 

indicated mutation burden may be an additional determinant of outcome [20]. Studies 

employing high throughput sequencing technologies have indicated that beyond signaling 

pathways the mutational landscape of AML with t(8;21) may be unique characterized by 

high frequencies of mutations in genes encoding for cohesin complex and chromatin 

modeling pathways [9,21]. As a result of lack of consensus, current guidelines group AML 

with RUNX1-RUNX1T1 as a single disease entity [22,23].

Instead of selecting individual genes, we analyzed all commonly (>5%) occurring mutations 

in AML with RUNX1-RUNX1T1 in an unbiased manner using a supervised machine 

learning algorithm. The threshold of including mutations occurring at a frequency of >5% 

(from a 50 gene panel) is chosen empirically. This is keeping in mind a balance between 

applicability of the model to AML with RUNX1-RUNX1T1 and inclusion of 

nongeneralizable data (typically seen with rare mutations). This will presumably prevent 

‘overfitting’ into the dataset [24]. ML approaches allow us to identify interactions between 

data that are not readily visible using legacy approaches. Our approach enabled us to 

develop a scoring system based which we could classify AML with RUNX1-RUNX1T1 into 
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two prognostic subgroups with different outcomes. In a multivariate analysis this was found 

to be an independently important predictor of outcome.

Based on these data, we propose a risk stratification of AML with RUNX1-RUNX1T1 that 

incorporates somatic mutations in FLT3, NRAS, ASXL2, RAD21, KIT genes as well as 

mutation burden. From data that has been published previously we expected that KIT [18] 

and FLT3 (exon 20) [19] gene mutations would be prog-nostically relevant. In addition, 

based on scant published data we also suspected that mutation burden would influence 

outcome [20]. However, using AI we could additionally infer the prognostic impact of 

NRAS, RAD21, FLT3-ITD, ASXL2 mutations. The latter were not expected from legacy 

data. Micol et al and other studies, have previously demonstrated a high frequency of 

ASXL2 mutations in this subset of AML and possible inferior outcome [20,25]. Recently 

Ishikawa et al indicated that only exon 17 mutations were prognostically relevant in AML 

with RUNX1-RUNX1T1. In comparison, we determined that all KIT mutations may be 

relevant as determined by ML modeling. Cohesin gene mutations have been associated with 

inferior outcome in myeloid malignancies [26]. In our study, we identify RAD21 mutations 

as a mutation associated with possible inferior outcome, especially in the context of ML 

derived scoring system. NRAS mutations have been described in AML with RUNX1-
RUNX1T1, however, have failed to demonstrate a clear survival advantage [27,28]. We 

think, a more global approach which takes into account the complex interaction of these 

mutations rather than a simplistic evaluation as evident by our scoring system is warranted 

for prognostication of this seemingly homogeneous AML.

A disadvantage of our study could possibly be not including recently described newer gene 

mutations including ZBTB7A [29]. Nonetheless, our approach provides additional evidence 

for gene panel-based testing in AML with RUNX1-RUNX1T1 and a general framework for 

the integration of genomic markers toward clinical decision making. The potential 

limitations of this study include a retrospective analysis and a limited number of patients. 

This machine learning derived genomics score for AML with RUNX1-RUNX1T1 should be 

validated prospectively by other investigators.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The above circos plot (A) highlights the spectrum of mutations and their interaction in AML 

with RUNX1-RUNX1T1. Commonly occurring gene mutations are colored. The machine 

learning derived scoring system is described in (B). The Kaplan–Meier plot in the top right 

section (C) shows the clinical impact on overall survival (OS) and for relapse free survival 

(RFS, D), lower right).
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Table 1
Prognostic significance of machine learning derived genetic risk in AML with t(8;21).

Parameter Observation (%)

Demographics:

    Age Range: 2–60 years; Median: 20 years

    Sex Male:Female : 2.2:1

Clinical characteristics:

    Total number of patients accrued 131

    Cases not in morphological remission 13

Remission characteristics:

    Complete remission (CR) 50

    CR with incomplete hematologic recovery (CRi) 81

Bone marrow transplantation:

    Patients who underwent BMT 04

Laboratory characteristics:

    Blood counts at presentation

     1. More than 50,000/mm3 08

     2. Less than 50,000/mm3 123

Individual parameters of genetic risk score:

     1. Mutation burden (>2) 53 (40.4%)

     2. Any KIT mutation 44 (33.5%)

     3. NRAS mutation 25 (19.1%)

     4. RAD21 mutation 11 (8.4%)

     5. Any FLT3 mutation 11 (8.4%)

     6. ASXL2 mutation 17 (13%)

Classification according to genetic risk:

    Favorable genetic risk (Fav GR) 63 (48.1%)

    Poor genetic risk (Poor GR) 68 (51.9%)

Post induction flow MRD (n = 131):

    MRD positive 58 (44.2%)

    MRD negative 73 (55.7%)

Post consolidation flow MRD (n= 99):

    MRD positive 13 (13.1%)

    MRD negative 86 (86.8%)

Paired MRD analysis (n = 87):

    Any MRD positive 46 (52.8%)

    Dual time point MRD negative 41 (47.1%)

Univariate Cox analysis

Machine learning derived Overall survival (OS) Relapse free survival (RFS)

genetic risk HR (95% CI) p HR (95% CI) p

Favorable genetic risk 1 0.0001 1 0.0008
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Parameter Observation (%)

Poor genetic risk 3.5 (1.88–6.55) 2.5 (1.43–4.33)

Machine learning derived Overall survival (OS) Relapse free survival (RFS)

genetic risk HR (95% CI) p HR (95% CI) p

Favorable genetic risk Mean OS: 44.6 months;
95% CI (40.6–48.6 months),
Median OS: not reached

0.0001 Mean RFS: 37.7 months;
95% CI (32.8–42.6 months),
Median RFS: 72.6 months
95% CI (35.1–72.6 months)

0.0008

Poor genetic risk Mean OS: 29.6 months;
95% CI (23.7–35.6 months),
Median OS: 30.5 months;
95% CI (16.0–42.1 months)

Mean RFS: 24.4 months;
95% CI (19.0–29.9 months),
Median RFS: 16.7 months;
95% CI (12.7–32.6 months)

Dual time point FCM-MRD Overall survival (OS) Relapse free survival (RFS)

HR (95% CI) p HR (95% CI) p

MRD Negative 1 0.01 1 0.01

MRD Positive 2.5 (1.16–5.50) 1.6 (0.87–3.18)

Dual time point FCM-MRD Overall survival (OS) Relapse free survival (RFS)

HR (95% CI) p HR (95% CI) p

MRD Negative Mean OS: 62.8 months;
95% CI (53.1–72.4 months),
Median OS: 74.1 months;
95% CI (74.1–74.1 months)

0.01 Mean RFS: 49.5 months;
95% CI (39.4–59.7 months),
Median RFS: 72.6 months
95% CI (29.2–72.6 months)

0.01

MRD Positive Mean OS: 52.9 months;
95% CI (40.3–65.4 months),
Median OS: not reached

Mean RFS: 43.0 months;
95% CI (30.3–55.7 months),
Median RFS: 23.5 months;
95% CI (15.4–32.6 months)

Overall survival (OS) Relapse free survival (RFS)

Multivariate cox analysis HR (95% CI) p HR (95% CI) p

Dual MRD positive 1.6 (0.77–3.47) 0.202 1.3 (0.67–2.58) 0.41

Poor genetic risk 3.7 (1.69–8.08) 0.001 2.3 (1.17–4.60) 0.01

OS: Overall Survival; RFS: Relapse Free Survival; HR: Hazards ratio; CI: confidence interval; MRD: Measurable Residual Disease. FCM-MRD 
was assessed in 87 patients in morphological CR (<5% blasts).
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