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Abstract

We have explored the genetic basis of variation in vernalization requirement and response in Arabidopsis accessions,
selected on the basis of their phenotypic distinctiveness. Phenotyping of F2 populations in different environments, plus fine
mapping, indicated possible causative genes. Our data support the identification of FRI and FLC as candidates for the major-
effect QTL underlying variation in vernalization response, and identify a weak FLC allele, caused by a Mutator-like
transposon, contributing to flowering time variation in two N. American accessions. They also reveal a number of additional
QTL that contribute to flowering time variation after saturating vernalization. One of these was the result of expression
variation at the FT locus. Overall, our data suggest that distinct phenotypic variation in the vernalization and flowering
response of Arabidopsis accessions is accounted for by variation that has arisen independently at relatively few major-effect
loci.
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Introduction

An important debate in evolutionary biology is the influence of

few major-effect versus many minor-effect changes in the

adaptation of organisms to different environments [1]. An

important adaptive trait in plants is the timing of flowering. This

significantly influences their fitness and so is tightly regulated,

however, variation in this trait is required to enable plants to

adapt to different environmental conditions. The regulatory

network and molecular mechanisms mediating the impact of

environmental cues on the timing of the floral transition have

been extensively studied in Arabidopsis [2]. The data so far point

to an integrated network of pathways that converge on a set of

common targets to quantitatively regulate genes required to

switch the vegetative apical meristem to a floral fate [2]. The

natural variation in Arabidopsis flowering is extensive and several

loci have been identified which contribute to this variation:

FRIGIDA (FRI), FLOWERING LOCUS C (FLC), FLOWERING

LOCUS M (FLM), CRYPTOCHROME 2, HUA2, PHYTO-

CHROME C and FLOWERING LOCUS T (FT) [3,4,5,6,

7,8,9,10,11,12,13,14,15]. We have focused on vernalization, the

acceleration of flowering by a prolonged period of cold, namely

winter. Different Arabidopsis accessions show variation in the

length of cold required to satisfy the vernalization requirement

and this correlates with the ability to epigenetically silence FLC

[6]. Initial analysis of four F2 populations mapped the QTL

contributing to the variation in FLC epigenetic silencing to broad

genomic regions and concluded that, unexpectedly, none of them

corresponded to the trans-factors currently known to regulate

vernalization [10]. Further analysis was therefore required to

identify the genes involved.

We have continued to explore the basis of variation in

vernalization requirement and response in these four accessions,

plus two additional accessions, with vernalization requirements

but low FLC levels, from N. America. Our logic was that

analysis of phenotypically distinct accessions might reveal

independent adaptations of the vernalization process. We

conclude that major-effect alleles at relatively few loci can

provide the basis for adaptively important variation in

Arabidopsis accessions.
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Results

QTL profile in accessions selected for their distinct
vernalization response

Four Arabidopsis accessions Lov-1, Ull-2-5, Var-2-6 and Edi-0

had previously been selected for QTL analysis [10]. Lov-1 was

collected in N. Sweden from a rocky, south-facing slope on the

Baltic coast (Lat/Long 62.5/18.1); Ull-2-5, from S. Sweden, was

collected from a dry, sandy meadow that had not been tilled for 80

years (Lat/Long 55.3/14.2); Var-2-6, also from S. Sweden, was

collected from a gravel beach in a nature reserve on the Baltic

coast (Lat/Long 56.1/13.5) and Edi-0 collected from the Botanical

Gardens in Edinburgh, Scotland (Lat/Long 56.0/3.0) [10]. The

accessions had been selected as they showed particular features of

interest in their vernalization response: Lov-1 is insensitive to 4

weeks of cold but responded strongly to five or more weeks of cold;

Ull-2-5 is very late flowering even after extensive vernalization (10

weeks of cold); Var-2-6 is typical of many Scandinavian accessions

showing a quantitative acceleration with increasing weeks of cold,

saturating at 10 weeks; Edi-0 is very late-flowering when not

exposed to low temperature but responded strongly to 4 weeks of

cold. To record flowering time we counted total leaf number at

flowering after specific treatments: Lov-1 6 Col-0 and Edi-0 6
Col-0 F2 seedlings were vernalized for 4 weeks, Ull-2-5 6 Col-0

and Var-2-66Col-0 F2 seedlings were vernalized for 8 weeks. To

obtain further phenotypic data from these populations the mean

flowering time, based on days-to-flowering of F3 plants, was

determined after no vernalization and saturating vernalization (14

weeks) (Fig. S1A–D). The QTL were mapped onto the genetic

maps using Composite Interval Mapping (CIM) (Fig.1, Fig. S2,

Table S1). Table 1 indicates the QTL position, strength and

dominance, found in each population under the different

conditions, plus potential candidate genes. The major QTL on

chromosome 4 corresponds to the FRI gene and was expected

given that Col-0, which has a non-functional FRI, was used as the

recurrent parent [3]. FRI accounts for the highest percentage of

the phenotypic variation in the Lov-1 6Col-0, Var-2-6 6Col-0

and Edi-0 6Col-0 populations. The additive allelic effect of, and

variance explained, by FRI decreases with increasing vernalization

(Fig. S3). This is most evident in the Lov-1 6 Col-0 population;

with no vernalization it explains 68 % of the variance, after a 4

week vernalization this is reduced to 48 %, and with a 14 week

vernalization it is no longer significant. Interestingly, in the Edi-0

6 Col-0 population, there is a second QTL at 13.9 cM on

chromosome 4 (Fig. 1D), which might account for the rapid

vernalization response of Edi-0, however, this region contains no

obvious candidate flowering time genes. A QTL in a similar

position has been identified in a RIL population derived from a

cross between accessions Nok-3 and Ga-0 [14].

The extent of the flowering variation attributed to the FRI QTL

varied between populations and the flowering time of individuals

homozygous for the four active FRI alleles differed (Fig. S3A). This

might correlate with the slight amino acid variation in FRI; Edi-0

and Var-2-6 have common FRI alleles differing in two amino

acids compared to Lov-1, G146E and M148I, while Ull-2-5 has

R74C and D167E, compared to Lov-1. It will be interesting to test

whether these amino acid differences affect FRI function [16].

This could also be explained by differing expression levels of FRI

alleles amongst the accessions; Var-2-6 FRI being expressed more

strongly than the other FRI alleles. [6].

Multiple QTL are resolved on chromosome 5
The different vernalization treatments resolved multiple QTL

on chromosome 5. The major QTL, detected in populations that

had not been vernalized or had a short period of vernalization,

covered the region containing FLC (At5g10140). FLC is a likely

candidate gene as our previous analysis had shown that the

stability of FLC epigenetic silencing differed in the accessions, with

some requiring a much longer period of cold than others before

stable silencing was achieved [10]. The effect of this QTL was

maximal in populations that had experienced a short vernalization

period (Table 1). However, the breadth of the QTL in the Ull-2-5

6 Col-0 population and the complex profile of the QTL in the

Lov-1 6Col-0 population treated with 4 weeks of cold suggested

additional genes contribute to the variation. In Lov-16Col-0, the

QTL peak was centred over FLC in plants given a 4 week

vernalization but the QTL peak mapped several cM away after a

14 week vernalization (Fig. 1A). F2 individuals were backcrossed

four times to Col-0 carrying an active FRI allele to dissect the

QTL. Analysis of recombinants suggested at least two closely

linked QTL in this region, one was mapped in the FLC interval

,1.5–3.4 Mb – where FLC is at 3.17 Mb, with a second one

mapped between 4 and 6 Mb (Fig. S4B, Table S2). This second

interval contains several possible candidates: FY [17], AGL15 [18],

FRL1 [19], LHP1/TFL2 [20], CONSTANS (CO) /CONSTANS-LIKE

1 (COL1) [21] (Table 1).

The QTL positioned on chromosome 5 in the Edi-0 6 Col-0

population maps near to HUA2 (Fig. 1D). The Edi-0 allele in this

chromosomal region causes lateness, therefore if it corresponds to

HUA2 it is likely to be a gain-of-function allele similar to that

found previously in accession Sy-0 [12]. Potential candidate genes

for other QTL on the lower arm of chromosome 5 include VIN3,

VIP4, TOC1, ELF5, LEAFY and the MADS AFFECTING

FLOWERING gene family (MAF2-5) (Table 1); similar QTL have

been found in other studies [14,22,23,24,25,26].

The major QTL on chromosome 1 is caused by FT
expression variation in Ull-2-5

A QTL at ,24 Mb on chromosome 1 appears common to most

of the populations (Fig. 1). This was differentially affected in the

various populations by the length of vernalization and is no longer

significant after a 14 week vernalization in the Lov-1 6 Col-0

population. In contrast, it is the principal QTL in the Ull-2-5 6
Col-0 population, accounting for 43 % and 24 % of the variance

after an 8 week and 14 week vernalization respectively (Table 1).

In the Edi-06Col-0 population it is only significant after a 4 week

vernalization. The candidate gene for this QTL is FT (At1g65480),

or linked genes (for example, LDL1, SPL4, VIP5, FKF1). FT has

been the focus of many recent studies as FT protein appears to

function as the physiologically described ‘florigen’ [27] moving

from the leaf phloem to the apical meristem to promote floral

transition [28,29,30]. To identify the causative gene, we developed

a mapping population from the Ull-2-5 6 Col-0 F3 lines. We

selected lines that were late flowering and carried the Ull-2-5 allele

in the major QTL region on chromosome 1, and Col-0 alleles in

the QTL regions on chromosome 4 and chromosome 5, and

backcrossed them to Col-0. The QTL was mapped to a 9 kb

interval between markers CAF5 and FT28, which included the

upstream region of FT and a small part of the linked FAS1 gene

(At1g65470) (Fig. 2A, Table S2). The entire genomic region was

sequenced (deposit number: GQ370818) and compared to the

Col-0 sequence. Three nucleotide changes were found in the Ull-

2-5 FAS1 gene, located in introns, whilst two synonymous

polymorphisms and seven intronic polymorphisms were found in

FT. Multiple single nucleotide differences and several large indels

were found in the intergenic region between FAS1 and FT (Table

S3). Analysis of FAS1 and FT expression in different recombinants

showed that the 9 kb Ull-2-5 genomic region common in two
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recombinant plants, Rec17 and Rec18 (Fig. 2B, C) contained the

causative polymorphism. Rec17 and Rec18 were crossed to Col-0

to generate F2 populations. In each population, the progeny were

genotyped into F2-Ull-2-5 and F2-Col groups using marker

12INS. The Ull-2-5 allele was clearly associated with late

flowering and the Col-0 allele with early flowering, confirming

that the regulatory region of FT is underlying the QTL on

chromosome 1 (Fig. 2D, E). These results indicated that the

natural allelic variation of Ull-2-5 is through regulation of FT

expression and not in protein function. Recently, Schwartz and

colleagues also mapped a flowering time QTL in the FT

regulatory region in a population from a cross between Est-1 x

Col-0 [15]. We therefore compared the FT cis-regulatory

sequences between the Ull-2-5 and Est-1 alleles and although

these two alleles are very distinct, with only short regions in

common, and different to those in Col-0 (Table S3), they both

influence the FT expression profile.

Since variation in FLC silencing is also associated with these

accessions we asked whether the delayed flowering caused by the

FT regulatory polymorphism was dependent on FLC down-

regulation. Backcrossed Ull-2-5 plants were crossed to the flc-2

mutant [31], and the flowering time of F2 plants with different

genotypes was determined. The Ull-2-5 FT allele delayed

flowering irrespective of whether a functional FLC or non-

functional flc-2 allele was present (Fig. 3A), suggesting this FT

cis-element variation does not require FLC–mediated FT regula-

tion. We therefore asked whether this variation affected FT

response to photoperiod. Groups of plants homozygous for either

Ull-2-5 FT or Col FT (from a self of the third backcross BC3S2-Ull

and BC3S2-Col selected using marker 12INS) were selected.

BC3S2-Ull plants flowered much later than BC3S2-Col under

long day (16 h) growth conditions, but in short days (8 h) the

difference in flowering time was subtle (Fig. 3B). This is similar to

the behaviour of the ft mutant whose late flowering phenotype

largely disappears in short day conditions [32]. In addition we

found FT expression level in BC3S2-Ull was much lower than that

of BC3S2-Col in long day conditions, but in short days the FT

expression level in both genotypes was quite low (Fig. 3C). This

reduced induction of the Ull-2-5 FT allele by long day

photoperiods resulted in later flowering of Ull-2-5. In general,

late-flowering Arabidopsis plants remain in the vegetative phase

longer thus producing more leaves and larger inflorescences.

Consistent with this, mature, flowering Ull-2-5 plants were found

to be much larger and more robust than the other accessions in

this study (Fig. 3D), and in the population of selfed BC3 plants,

BC3S2-Ull individuals were also more robust than BC3S2-Col

(Fig. 3E). Ull-2-5 was collected from a population growing in a

meadow that has been undisturbed for approximately 80 years

(Nordborg M, unpublished). It is possible that this robust, late-

flowering character, caused by variation at FT, may facilitate

competition with other plants and so be beneficial for the fitness of

Arabidopsis in this particular habitat.

Minor QTL on chromosome 1 are present in the Lov-1 and

Ull-2-5 populations after 8 and 14 weeks vernalization. Whether

these represent variation in the same or different genes was not

established but several flowering time genes map to this region,

including SEX1, which we have found influences flowering time

(CL and CD unpublished) (Fig. 1A). The QTL on the lower arm

became much broader when given 14 weeks’ vernalization

compared to that of 8 week’s vernalization, covering more

candidate genes around FT, including SPL4, VIP5, LDL1 and

FKF1.

Two accessions from N. America with novel variation in
vernalization requirement and response

Two accessions from N. America, Kno-18 and RRS-10 flower

relatively late but have low FLC expression despite putatively

functional FRI alleles [6]. RRS-10 also responds relatively poorly

to 8 weeks of vernalization [6]. To investigate if additional floral

repressors might be functioning in these accessions, Kno-18 and

RRS-10 were analysed. RRS-10 and Kno-18 are closely related,

originating probably from a recent European founder event

[33,34,35]. However, they are two of the least closely related N.

American accessions from the Nordborg 96 set [36]. F2

populations were generated from the two accessions after crossing

to Col-0 and flowering time assayed by total leaf number (Fig.

S1E, F). The Kno-18 6Col-0 F2 population was grown with no

vernalization to identify the loci accounting for the discrepancy

between low FLC expression and the late flowering phenotype.

The RRS-10 6 Col-0 F2 population was given 8 weeks of

vernalization to analyse the basis of reduced vernalization

response.

The expected FRI QTL appeared on chromosome 4 in both

populations accounting for 43% of the variance in the Kno-18 6
Col-0 population and approximately 15% in the RRS-10 6Col-0

population, despite 8 weeks of vernalization (Fig. 4, Table 1). A

shoulder to the FRI QTL, in a similar position to that in Edi-0

(,13 cM) was also found in both populations and may represent

the contribution of an unknown gene on chromosome 4. Possible

minor effect QTL were found on chromosome 1 in both

populations. The Col-0 alleles in both cases conferred earliness,

which was recessive in the Kno-18 6Col-0 population and semi-

dominant in the RRS-10 6Col-0 population (Figs. S5B, S6B). In

the Kno-18 6 Col-0 population the QTL mapped near FT,

perhaps consistent with a less-responsive FT allele in the Kno-18

accession contributing to late-flowering (Fig. 4A, Fig. S5A). In the

RRS-10 6Col-0 population the QTL mapped near FRL2, which

is an interesting candidate given the relatively poor vernalization

response of RRS-10 (Fig. 4B) [37].

A QTL on chromosome 5 mapped close to FLC in both

populations but the alleles conferred different flowering time

phenotypes, depending on the cross and environmental condition.

In non-vernalized individuals the Kno-18 FLC allele conferred

earlier flowering than the Col-0 allele (Fig. S5C). In contrast, in

individuals vernalized for 8 weeks, the RRS-10 FLC allele (and

linked genes) conferred later flowering than those carrying the

corresponding Col-0 alleles (Fig. S6C).

To further analyse allelic diversity at FLC and continue

investigating the basis of the QTL, the FLC alleles, including

2,769 bp upstream of the FLC start codon and 1,344 bp

downstream of the stop codon, were sequenced from both

Figure 1. QTL analysis for variation in vernalization response. Composite interval mapping was used to identify genes contributing to the
variation in vernalization response after treatment of Arabidopsis populations with different lengths of cold. (A) Lov-1 6Col-0, (B) Ull-2-5 6Col-0,
(C) Var-2-6 6Col-0 and (D) Edi-0 6Col-0. Each chromosome with significant QTL (chromosome 1, 4 and 5) is shown separately and the positions (in
cM) of the markers used are indicated as triangles. LOD (Logarithm of odds) scores were calculated by QTL Cartographer with a 5 % significance
threshold (shown as dashed lines) determined from a 1000 permutation test. For (B) Ull-2-5 x Col this resulted in a high threshold due to segregation
distortion, which is widespread in this cross (Figure S2). Each chromosome was tested individually and chromosome 3 identified as the cause of the
high threshold. The permutation analysis was then performed excluding chromosome 3.
doi:10.1371/journal.pone.0019949.g001
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accessions. Kno-18 and RRS-10 were found to have identical FLC

alleles (Fig. S7). The SNPs between the Col-0 and Kno-18/RRS-

10 alleles are distributed throughout the regions of FLC which

have been previously identified as important for regulation; one

SNP in particular is in a putative b-ZIP binding domain in the

FLC promoter [38]. In addition to the numerous SNPs, the Kno-

18 and RRS-10 FLC alleles contain a 1.19 kb insertion at +490 bp

in intron 1 (FLCTE490). This insertion has 95.5 % similarity to the

MULE (Mutator-like element) transposable element (TE) found in

the Landsberg erecta (Ler) FLC allele [39], however the TE in RRS-

10 and Kno-18 is in the opposite orientation to that in the Ler FLC,

and has a different insertion site. It is flanked by a 9 bp sequence

59- TTTCATTAT -39 resembling a target site duplication, which

is only present once in Col-0 FLC (Fig. S8). Five other accessions in

Table 1. QTL characteristics and candidate genes mapping to the interval.

Accession 6Col Weeks V QTL Peak cM LOD A D R2x100 Candidate genes

Chr. 4 Lov-1 0 0.01 39.06 54.96 10.85 68.19 FRI

4 0.01 52.24 37.99 22.08 48.39 FRI

14 0.01 ns

Ull-2-5 8 0.01 30.52 12.49 6.86 20.8 FRI

14 0.01 ns

Var-2-6 8 0.01 24.70 7.64 7.05 34.92 FRI

Edi-0 0 0.01 31.60 23.16 7.93 73.88 FRI

4 0.01 54.01 15.56 11.62 66. 9 FRI

4 13.9 30 nd nd nd

Kno-18 0 0.01 28.51 48.44 52.76 43 FRI

RRS-10 8 0.01 11.15 8.86 4.88 14.46 FRI

Chr. 5 Lov-1 0 16.21 8.85 27.89 5.41 13.83 FLC, FY, AGL15, CO, COL1

4 12.6 31.93 37.16 12.44 33.13 FLC

14 19.21 8.87 1.81 20.39 25.23 FLC, FY, AGL15, CO, COL1, FRL1, LHP1

Lov-1 14 82.11 5.57 21.42 20.29 16.92 VIN3, VIP4, TOC1, ELF5, LFY, MAF2-5

Ull-2-5 8 9.81 22.19 12.0 22.67 18.1 TFL1, ELF6, FLC, FY, AGL15, CO, COL1, FRL1,
LHP1

8 72.70 4.56 5.65 21.61 4.2 FRL3,EMF2

14 5.81 5.92 1.52 20.63 10.46 TFL1, ELF6, FLC, FY

Var-2-6 8 18.51 16.34 6.18 20.62 18.57 FLC, FY, AGL15, CO, COL1

Edi-0 0 18.91 3.53 6.60 1.01 2.71 HUA2

4 18.37 4.52 2.34 2.12 3.59 FLC, FY, AGL15, CO, COL1, FRL1, LHP1, HUA2

Kno-18 0 14.4 7.51 238.7 3.46 15.92 FLC, FY, AGL15, CO, COL1, FRL1, LHP1, HUA2

RRS-10 8 10.8 24.5 14.39 25.9 39.26 FLC, FY, AGL15, CO, COL1, FRL1, LHP1, HUA2

Chr. 1 Lov-1 14 15.21 4.66 0.92 20.47 13.49 SEX1

Lov-1 0 89.41 5.60 16.80 2.37 8.85 VIP5, LDL1, FT, FKF1

4 81.9 4.44 17.00 0.82 4.15 VIP5, LDL1, FT, FKF1

14 ns

Ull2-5 8 77.81 46.93 11.94 25.06 43.17 LDL1, FT

8 21.11 4.16 3.38 20.33 1.9 GI, SEP3

14 74.21 20.18 2.05 20.40 24.44 SPL4, VIP5, LDL1, FT, FKF1

Ull-2-5 14 13.91 3.91 1.25 20.87 9.08 SEX1

Var-2-6 8 74.61 14.58 7.33 0.48 20.82 SPL4, VIP5, LDL1, FT, FKF1

Edi-0 0 ns

4 82.81 6.67 7.57 25.33 9.86 VIP5, LDL1, FT, FKF1

Kno-18 0 77.5 5.04 28.23 217.2 12.2 VIP5, LDL1, FT, FKF1

RRS-10 8 40.9 2.54 3.79 2.15 4.53 FRL2

A: Additive effect of the QTL i.e. the contribution of one accession allele to the phenotypic variation. Values are shown with respect to the non-Col allele.
D: Dominance effect of the QTL i.e. the deviation of the heterozygote phenotype from that expected based on the additive effect. Values are shown with respect to the
non-Col allele.
R2: Phenotypic variation explained by the QTL.
ns not significant.
Bold numbers are flowering time based on leaf number, rest are flowering time based on days to flowering measured when the inflorescence reached 3 cm
Shoulder on chromosome 4 QTL in Edi-0 population is associated with a high number of apparent double recombinants in the region – no clear candidate maps to this
interval.
doi:10.1371/journal.pone.0019949.t001
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the Nordborg 96 set, all from N. America (Yo-0, PNA-10, RMX-

A02, Kno-10 and Dem-4) have the same 1.19 kb insertion as

RRS-10 and Kno-18. To check if the transposon insertion causes

the changed FLC expression, the TE was cloned from Kno-18 and

inserted into Col-0 FLC to create a chimeric FLC allele, known as

Col FLCTE490, and introduced by transformation into Col FRI flc-2.

The FLC expression of the Col FLCTE490 transformed lines was

comparable to Kno-18 (Fig. 5). Corresponding to low FLC levels in

non-vernalized plants the transformants all flowered early,

averaging 15 leaves and this was not significantly affected by

vernalization. Therefore the late-flowering of RRS-10 and Kno-18

would appear to be the result of a small contribution (4–12 %)

from the chromosome 1 QTL and additional genes under the

chromosome 5 QTL. These might include FY, AGL15, CO, COL1,

FRL1 and LHP1 and HUA2 (Table 1).

Discussion

Arabidopsis accessions provide an excellent resource in which

to explore the molecular basis of natural variation. We have

been studying variation in flowering time and vernalization

response between Arabidopsis accessions to address how

Arabidopsis has adapted to growth in varying climates. In a

previous study we undertook a preliminary QTL analysis on

populations derived from four winter annual types, with very

different vernalization responses crossed to the rapid cycler,

Columbia. We established that the variation in vernalization

response did not appear to map to any of the trans-factors

currently known to mediate vernalization. Unexpectedly, despite

the varying phenotypes of the parents most of the QTL mapped

to very similar locations in the different populations. In this study

we specifically aimed to further define these QTL by additional

phenotypic analysis of the populations, both without vernaliza-

tion and with longer, saturating, periods of vernalization. We

also extended the analysis to include two N. American

Arabidopsis accessions that showed interesting variation in

flowering and FLC levels [6]. Our data indicate that just a few

major QTL account for a large proportion of the flowering time

variation in the six accessions analysed. The map positions of

these QTL and their response to different vernalization periods

suggest they may be caused by common loci. Smaller-effect QTL

were also revealed particularly after saturating vernalization,

which is consistent with a recent report based on genome wide

association analysis of flowering time in natural accessions [40].

The common QTL corresponding to FRI on the top of

chromosome 4 was expected given the use of Col-0, which carries

a null fri allele, as the common parent. This QTL has been seen

influencing flowering time in many other QTL studies

[3,5,8,11,14,22,23,25,41], but here we show that it is also

important in determining variation in vernalization response.

Our data suggest that FRI activation of FLC still occurs even when

expression of FLC has been partial silenced by vernalization and

only when the vernalization requirement is fully saturated by

extended periods of cold is FRI no longer able to influence FLC

levels. This may reflect the difference between the silencing phase

and the fully silenced state of the FLC locus [10].

Figure 2. Fine-mapping and allelic analysis of the QTL on chromosome 1. (A) Fine-mapping of the QTL – the later flowering time variation
co-segregated with marker 538D and 12INS. (B) FAS1 expression in Col-0 and two recombinants plants Rec17 and Rec18. (C) FT expression in Col-0,
Rec17 and Rec18. FT expression level was normalized to UBC. (D and E) Segregation analysis of the F2 population obtained from Rec17 (D) and Rec18
(E) crossed to Col-0 respectively. Error bars in (B) and (C) show S. D. from three experimental replicates, in (D) and (E) shows S. D. of at least 20
individuals.
doi:10.1371/journal.pone.0019949.g002
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Multiple QTL were resolved on chromosome 5 with a major

effect QTL at the top of chromosome 5. This chromosomal

region has been detected in QTL analyses of flowering time in

many studies [5,9,14,22,23,25]. Fine mapping of this region in

recombinants from the Lov-1 6 Col-0 population resolved at

least two closely linked QTL in this region, one mapping near

FLC (1.5–3.4 Mb) and a second between 4 and 6 Mb. Simon et al.

(2008) also identified a number of candidates for a QTL at the

top of chromosome 5 [25]. In two populations (Cvi 6Col-0 and

Shahdara 6Col-0) a QTL close to FLC at 3.5 Mb was identified,

while in a third population (Bur 6 Col) a QTL at 5.9 Mb was

suggested to be LHP1 [20]. Here we show that the QTL near

FLC has differential affects after different vernalization treatments

- a strong effect in plants that had not been vernalized, or had

intermediate vernalization, and no significant effect after

saturating (14 weeks of cold) vernalization. This is consistent

with it being the result of FLC variation between the accessions

and with our previous analysis, which found that epigenetic

silencing of FLC quantitatively accumulated during the cold and

the rate of this accumulation varied in different Arabidopsis

accessions [10]. For Lov-1, Ull-2-5 and Var-2-6, a relatively short

cold period (4 to 8 weeks) repressed FLC expression but the

expression was reactivated when plants were returned to warm

conditions. Their different behaviours suggest that although FLC

is a common QTL the various Swedish accessions carry

independent FLC alleles. The FLC alleles from Col-0, Lov-1,

Ull-2-5 and Var-2-6 all encode the same protein so allelic

variation is likely to represent changed expression, consistent with

our previous study [10]. In a genome wide comparison of

polymorphisms Ull-2-5 and Var-2-6 are two of the most

dissimilar accessions from southern Sweden and they group

independently from the N. Swedish Lov-1 accession [36],

consistent with them carrying independent FLC alleles. Recent

evidence supports the presence of rare alleles of large effect

influencing flowering time in Arabidopsis accessions [42].

FLC also emerged as a QTL for flowering time and

vernalization in populations derived from the two N. American

accessions Kno-18 and RRS-10 crossed to Col. Kno-18 and RRS-

10 share an identical FLC allele with a low expression level and a

relative insensitivity to vernalization. These effects appear to be

caused by insertion of a 1.19 kb Mutator-like transposable element

insertion in intron 1, as judged by the experiments inserting the

transposable element into the Col allele. The allelic effect of the

QTL switches in individuals homozygous for this FLC allele; non-

vernalized, they flower earlier than those carrying the Col allele,

and later once they have been vernalized. The transposon

insertion appears, therefore, to attenuate pathways that up-

regulate FLC before vernalization and silence FLC during

vernalization. On this basis, the small phenotypic variation

between Kno-18 and RRS-10 would appear to be the result of

other genes very closely linked to FLC and to the QTL on

chromosomes 1 and 4.

Figure 3. Functional analysis of the Ull-2-5 FT allele using backcrossed populations. (A) Comparison of the contribution of Ull-2-5 and Col-
0 FT alleles to flowering time with or without a functional FLC. (B) Comparison of flowering time between BC3S2-Ull and BC3S2-Col in long and short
day growth conditions. (C) FT expression of Col-0 and Ull-2-5 alleles in response to different day lengths (D) Final size of plants vernalized for 10
weeks and then grown in a greenhouse. (E) Plant size of BC3S2-Col (left) and BC3S2-Ull (right) in long day growth condition. Error bars in (A) show
S. D. of 20 individual plants, in (B) and (C) they show S. D. from three experimental replicates.
doi:10.1371/journal.pone.0019949.g003
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Five other N. American accessions (but no accession outside N.

America) share the 1.19 kb Mutator-like transposable element

insertion (FLCTE490) at the 59 end of intron 1 and they show similar

phenotypic flowering behaviour. Other Arabidopsis accessions also

have transposon insertions in intron 1 of FLC, and these generally

give rise to weak alleles [39,41,43]. Indeed, TE490 is almost identical

to the insertion found at the 39 end of intron 1 in the Ler FLC allele, a

weak allele caused by siRNAs generated from homologous copies of

the TE directing H3K9 methylation to the FLC locus and reducing its

transcription [39,44]. A similar mechanism may arise in the FLCTE490

allele given the homology to the other endogenous elements.

A clear candidate for the QTL at ,24Mb on chromosome 1 is

FT (24.3 Mb). QTL for flowering time have been previously

mapped to this region [23] [14,25], and Schwartz et al [15] recently

showed that allelic variation in a 6.7 kb fragment in the FT

promoter leads to expression polymorphism and flowering time

variation. In this study, the refinement of the QTL on chromosome

1 in the Ull-2-5 6 Col-0 population followed by fine-mapping

pointed to polymorphism in a similar genomic region resulting in

allelic variation at FT. The sequences of FT regulatory region in Ull-

2-5 and Est-1 are very different, but they both caused impaired FT

expression pattern in response to long day induction. The interval

mapped in Est-1 and Ull2-5 contains the functional block B and C

identified by Adrain et al in the FT promoter region [45]. We

compared these blocks in Est-1 and Ull2-5, and found no difference

between them for the block B sequence, but within block C, which

might contain crucial elements required for the response to

CONSTANS [45], we found one polymorphism in the CCAAT

box in Ull2-5, but not in Est-1 (Table S3). We now need to

determine the exact causative variation in these two unrelated

accessions, and to determine how FT expression is altered. The

variation in the FT cis-regulatory regions is yet another pertinent

example in the debate over the importance of regulatory and coding

sequence variation in evolution. There is increasing evidence to

show that mutations within cis-regulatory regions underlie a variety

of interesting and ecologically significant phenotypic differences

[46] and the observed variation at FT supports this view. Since FT is

the target of many different flowering pathways [2] variation

affecting protein function would constitutively influence flowering

time. In contrast, variation in regulatory regions could lead to a

specific adaptation to one type of environmental cue via the tuning

of FT activation through just one pathway. Analysis of the Col-0

genomic sequence revealed that the gene density around FT region

is very unusual for Arabidopsis; FT is the only gene within a 20 kb

region. Given the number of pathways regulating FT this region

may contain many regulatory cis-elements; indeed this unusual

pattern of genome organization may be the result of the

accumulation of regulatory sequences which control a central

regulator of a major adaptive trait, i.e. flowering. It will be

important in the future to identify the exact causative polymorphism

to further understand its role in FT evolution.

The variation in the Ull-2-5 FT region makes flowering in the

Ull-2-5 accession less sensitive to long day induction compared to

the Col-0 genotype. This effect is most strongly revealed after 14

weeks of vernalization suggesting that in Sweden this variation is

most important in spring, after the vernalization requirement has

been satisfied. The Ull-2-5 accession was collected form disturbed

ground in a meadow, a more competitive habitat than is generally

envisaged as the typical Arabidopsis niche, thought to be open,

disturbed ground. The delayed flowering would intuitively seem to

provide a fitness advantage in this more competitive habitat through

extension of vegetative development leading to larger more robust

plants with high seed yield. We need to combine ecological analyses

with our molecular dissection to test these ideas.

Figure 4. QTL analysis of vernalization requirement and
response in two accessions from N. America. QTL were found
on chromosome 1, 4, and 5 (chromosomes 2 and 3 not shown). Dashed
line shows 5 % significance threshold, as calculated from a 1000
permutation test. The positions (in cM) of the markers used are
indicated as triangles. (A) KNO-18 6 Col F2 population scored for
flowering time without vernalization. (B) RRS-10 6 Col F2 population
scored for flowering time after 8 weeks of vernalization.
doi:10.1371/journal.pone.0019949.g004

Figure 5. FLC expression level of Col FRI flc lines containing
FLCTE490 compared to controls. FLC RNA levels measured by qRT-PCR
and normalised to UBC. Error bars show standard error from three
experimental replicates.
doi:10.1371/journal.pone.0019949.g005
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Materials and Methods

Construction of mapping populations
Arabidopsis accessions Lov -1, Ull-2-5, Var-2-6, and Edi-0 were

crossed to Col-0 and the resulting F1 plants allowed to self; 184 F2

lines per population were generated [10]. F2 seeds were sown on soil

in plastic pots (7 cm67 cm) and stratified at 5uC with an 8 hour

photoperiod and constant humidity (70%) for 3 days. Seeds were

moved to a growth room at 23uC, with a 16 hour photoperiod, for 7

days to allow germination and pre-growth. The seedlings were then

transferred back into 5uC for a treatment of either 4 weeks (Lov-16
Col-0 and Edi-06Col-0) or 8 weeks (Var-2-66Col-0 and Ull-2-5

6Col-0). After vernalization, F2 seedlings were transplanted into

trays with 40 cells of 2 cm62 cm and moved back to 23uC with a

16 hour photoperiod. Trays were moved regularly to random

positions to prevent any positional effects on plant growth. For the

subsequent re-phenotypic analysis of the population 50 % of the F2

lines were chosen at random and 20 F3 seed from each F2 line were

grown as described above, without vernalization (Lov-1 6 Col-0,

Edi-0 6Col-0) or after 14 weeks of vernalization (Lov-1 6Col-0,

Ull-2-5 6 Col-0). Plants were transplanted in a semi-random

manner, and trays were randomised within the growth room.

Phenotypic data collection
Flowering time was scored as either total leaf number (rosette

leaves plus cauline leaves at flowering) or bolting time. The

number of leaves was counted to a maximum of 150 so individuals

that had not flowered were given the value 150. For bolting time

the number of days-to-flowering as scored when the inflorescence

stem reached 3 cm. The mean and standard error of up to 20

plants per line was calculated.

Marker scoring
SNP markers were designed (from the SNP information

generated in the laboratory of Magnus Nordborg, USC, USA),

screened and verified at the MPI, Tuebingen. In total 56 - 59

markers distributed across the five chromosomes with an average

distance of 2–3 Mb and near to possible candidate flowering time

genes were chosen [47] . DNAs from all F2 plants were genotyped

for these SNP markers by Genaissance Pharmaceuticals Inc (New

Haven, CT). FRI was scored on the populations using primers

spanning the 16 bp deletion in Col-0. Parental F2 genotyping data

was also used for the F3 phenotypic analysis.

Genetic mapping and QTL analysis
Segregation analysis was performed and the linkage map

generated using MAPMAKER version 3.0 b [48]. The recombi-

nation fractions were converted to centiMorgans (cM) using the

Kosambi mapping function. Marker segregation distortion was

calculated using Windows QTL Cartographer version 2.5 chi2 test

result, at 0.1 % significance level. Markers that had a high failure

rate were discarded in the segregation analysis as they were likely

to show distortion for technical rather than biological reasons.

Trait data was assessed for normality in Genstat version 10.1.

The QTL analysis was performed with Windows QTL

Cartographer version 2.5 using Composite Interval Mapping

(CIM) method with Model 6: Standard model. Cofactors were

identified with forward and reverse regression, the window size

was set at 5.0 cM, the walk speed at 2.0 cM and the probability for

into or out of set at 0.05. The threshold for significance was

calculated by 1000 permutations test for 0.05 probability.

The effect of the QTL and the variance they accounted for was

calculated in QTL Cartographer version 2.5 using Multiple

Interval Mapping (MIM). QTL found in the CIM model were

entered into the MIM model, which then identified the effect of

the QTL. The percentage variance explained by the QTL is the

R2 value multiplied by 100.

RNA extraction and real-time quantitative PCR analysis
Total RNA was prepared and first strand cDNA was synthesized

using Invitrogen Reverse Transcription kit (No. 12371-09) accord-

ing to manufacturer’s instructions. Real-time Quantitative PCR was

performed using Sigma SYBR Green Jumpstart kit (No. S4438).

Primers for the UBC internal control for FT expression analysis are:

Forward: 59-CTGCGACTCAGGGAATCTTCTAA-39 and Re-

verse: 59-TTGTGCCATTGAATTGAACCC-39; Primers for FT

are: Forward: 59-CTGGAACAACCTTTGGCAAT-39 and Re-

verse: 59-AGCCACTCTCCCTCTGACAA-39. Normal RT-PCR

was applied to analyse the expression of FAS1. Primers for FAS1 are:

Forward: 59-CTTCCCATTCTTCATCACTATCAACTTC-39

and Reverse: 59-TGTTCAGGCAATTGACAACGC-39. UBQ10

was used as internal control as described before [49].

FLCTE490 transformant lines
The FLC transposon from Kno-18 was amplified by PCR and

cloned into pENT-ColFLC plasmid using SapI/BsgI, known as

pENT FLC TE490. The GatewayH recombination system was used

to recombine pENT-FLCTE490 and pDEST-SLJ to create the final

pDEST-SLJ-FLCTE490 construct. The construct was transformed

into E. coli and transferred to Agrobacterium tumefaciens by a tri-

parental mating. Col FRI Sf2 flc-2 and Col FRI Sf2 flc-3 plants

were grown to flowering and transformed using the floral dip

transformation protocol with the Agrobacterium containing the

pDEST-SLJ-FLCTE490 construct. T1 lines were selected by

BASTA spraying and homozygous T3 plants were used for the

final experiments.

Supporting Information

Figure S1 Histograms showing flowering time of differ-
ent populations. The flowering time is shown on the x-axis as

days-to-flower (F3 populations) or final leaf number (F2 popula-

tions), and number of individuals on the y-axis. The parental

accessions and average of the F2 or F3 progeny are shown by

arrows. (A) Lov-1 x Columbia (B) Ull-2-5 x Columbia (C) Var-2-6

x Columbia (D) Edi-0 x Columbia (E) Kno-18 x Columbia (F)

RRS-10 x Columbia.

(TIF)

Figure S2 Genetic map of the 6 populations showing
markers used in the QTL analysis. Markers with segregation

distortion at 0.1% significance level are marked with asterix,

segregation bias towards Columbia *, segregation bias towards

other parent **. A) Lov-1 x Col, B) Ull-2-5 x Col, C) Var-2-6 x

Col, D) Edi-O x Col, E) Kno-18 x Col, F) RRS-10 x Col.

(TIF)

Figure S3 Average flowering time of the QTL popula-
tions grouped into genotype classes.

(TIF)

Figure S4 Flowering time of specific genotypes from
inbred lines generated from backcrossing Lov-1 6Col-0
plants to Col FRI.

(TIF)

Figure S5 Flowering time of Kno-18 6Col-0 F2 popula-
tion without vernalization grouped by genotype at
marker underlying the QTL.

(TIF)
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Figure S6 Flowering time of RRS-106Col F2 population
after 8 weeks vernalization grouped by genotype at
marker underlying the QTL.

(TIF)

Figure S7 Polymorphisms within FLC genomic frag-
ment of Kno-18 and RRS-10.

(TIF)

Figure S8 FLCTE490 transposon insertion in RRS-10 and
Kno-18.

(TIF)

Table S1 Markers and their alternative names used to
generate the genetic maps.

(XLSX)

Table S2 Primer sequences of mapping markers devel-
oped in this study.

(DOC)

Table S3 Alignment of FT regulatory sequences of Col-
0, Ull-2-5 and Est-1.
(DOC)
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