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Routing algorithms as tools 
for integrating social distancing 
with emergency evacuation
Yi‑Lin Tsai1*, Chetanya Rastogi2, Peter K. Kitanidis1,3,4 & Christopher B. Field3,5,6

One of the lessons from the COVID-19 pandemic is the importance of social distancing, even in 
challenging circumstances such as pre-hurricane evacuation. To explore the implications of integrating 
social distancing with evacuation operations, we describe this evacuation process as a Capacitated 
Vehicle Routing Problem (CVRP) and solve it using a DNN (Deep Neural Network)-based solution 
(Deep Reinforcement Learning) and a non-DNN solution (Sweep Algorithm). A central question is 
whether Deep Reinforcement Learning provides sufficient extra routing efficiency to accommodate 
increased social distancing in a time-constrained evacuation operation. We found that, in comparison 
to the Sweep Algorithm, Deep Reinforcement Learning can provide decision-makers with more 
efficient routing. However, the evacuation time saved by Deep Reinforcement Learning does not come 
close to compensating for the extra time required for social distancing, and its advantage disappears 
as the emergency vehicle capacity approaches the number of people per household.

As of August 11, 2021, COVID-19 had caused over 204 million confirmed cases and over 4.3 million deaths 
around the world1. However, floods, wildfires, earthquakes, and landslides do not take a break during a pan-
demic. We have to prepare for the challenges of responding to a catastrophe like a major hurricane (also known 
as typhoon or cyclone) while also managing the risk of spreading severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2)2. More generally, we must prepare for multiple overlapping disasters3,4. Furthermore, the 
complexity of evacuation operations and shelter management increases when a major disaster happens during a 
pandemic5–9. Social distancing is an indispensable containment measure against the spread of SARS-CoV-210,11 
and many other agents that could lead to pandemics. Maintaining social distancing during rescue operations is 
a logistical and time-management challenge.

Although governments worldwide are ramping up COVID-19 vaccination, many challenges remain. Further-
more, integrating social distancing with emergency evacuation is relevant to planning for future disasters even 
after COVID-19 fades as a major risk. Looking beyond COVID-19, we need to be ready for the next pandemic, 
especially given the fact that increasing emergence and transmission of infectious diseases and pandemics, such 
as influenza, SARS-CoV-1, and SARS-CoV-2, have been associated with climate change for several decades12–15. 
One of the important lessons from COVID-19 is the need to anticipate future pandemics and take social distanc-
ing into account in compound-disaster preparedness and response.

Here, we focus on the interaction of social distancing and flood evacuation scheduling during a pandemic. 
As of April 8, 2021, tropical cyclones were the weather and climate disasters in the U.S. that led to the largest 
economic losses ($1,011.3 billion, CPI-adjusted to 2021 prices), the highest number of deaths (6,593 people), and 
the highest average event cost ($19.4 billion per event, in 2021 prices) from 1980 to 202116. 30.1 million people 
were affected and 3,134 people were killed worldwide by 65 flood events that overlapped with the COVID-19 
pandemic in 202017.

The Natural Hazard Mitigation Saves Study18 found that every dollar invested by federal agencies in disaster 
mitigation saves society $6 in post-disaster recovery costs, but spending on disaster recovery is almost nine times 
higher than on disaster prevention19. The much better benefit to cost ratio of effective preparation than recovery 
is a strong argument for studying ways to improve evacuation planning. One possibility is that DNN-based 
methods can add substantial efficiency to emergency evacuation route planning.
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Machine learning and deep neural networks (DNN) find diverse applications in Earth system science stud-
ies to build new data-driven models. Examples include identifying multi-hazard and extreme weather patterns, 
predicting river runoff in ungauged catchments, and precipitation nowcasting20–24. These state-of-the-art geo-
scientific tools help us better predict important phenomena. Increasingly, we can use deep neural networks to 
improve behavioral responses to these weather and climate disasters. In particular, machine learning and DNN-
based techniques have the potential to enhance climate change mitigation and adaptation, from smart buildings 
and climate modeling to disaster management25.

Deep reinforcement learning, combining traditional reinforcement learning and deep neural networks, has 
been widely applied to computer games, self-driving cars, the game of Go, and robotics26–30. Applications of 
deep reinforcement learning to facilitate disaster responses are beginning to appear in the literature31–37. In any 
disaster situation, the efficient delivery of assistance can contribute to limiting damages38–41. However, to the 
best of our knowledge, none of the existing research applies the state-of-the-art deep reinforcement learning to 
enhance the routing efficiency of disaster evacuation operations during a pandemic.

This study aims to improve evacuation operations in compound events that involve both a pandemic and a 
well-forecast disaster like a major hurricane. Specifically, we investigate the role of social distancing in extending 
evacuation timelines and increasing the number of emergency vehicles required to evacuate a city, and we explore 
the potential to increase evacuation efficiency through using optimized vehicle routing based on a DNN-based 
method (deep reinforcement learning)42 in comparison to a non-DNN method (sweep algorithm). Unlike the 
sweep algorithm, which requires pre-defined operational rules for picking up evacuees, deep reinforcement learn-
ing uses deep neural networks (DNN) to learn the best possible strategies and adaptively look for optimal routing.

We chose New Orleans as the inspiration and case study, starting with its plans, population, and area, though 
not the specifics of its geography. New Orleans has a 72-h hurricane evacuation timeline, which plans to pick up, 
from their homes, evacuees who signed up for the Special Needs Registry and transport them to the city-wide 
rescue center, the Smoothie King Center, during a 42-h window before tropical storm winds reach the coast43,44 
(see “Methods”).

Therefore, we can describe this pre-hurricane evacuation process as a Capacitated Vehicle Routing Problem 
(CVRP) where, for each neighborhood, there is one vehicle repeating the process of starting from a local rescue 
center, going to several houses to pick up people, and returning to the rescue center when its vehicle capac-
ity is reached, until the vehicle picks up every resident on the special needs registry in the neighborhood (see 
“Methods”).

New Orleans’ special needs registry is intended to address the extra challenges faced by a known population 
of elderly and disabled individuals. For instance, the elderly are usually more vulnerable in flood events, as docu-
mented for Hurricane Katrina and the 1953 flood in the Netherlands45–47. People with disabilities are less likely 
to move to a rescue center by themselves and thus need more assistance from rescue teams during a flood event.

The COVID-19 pandemic adds significantly to the complexities of evacuation planning and execution. Craig 
Fugate, a former Federal Emergency Management Agency (FEMA) Administrator, said48, “We’ve been telling 
people: stay home, stay home, stay home, stay home. And then you’re going to turn around and tell them they 
need to evacuate. That’s going to be a hard message.” Also, according to FEMA’s COVID-19 Supplement for Plan-
ning Considerations: Evacuation and Shelter-in-Place, one of the critical questions for state, local, tribal, and 
territorial governments is “Have you incorporated social distancing considerations when calculating evacuation 
clearance time (e.g., reduced load capacity, additional vehicles, increased loading time)?49” However, to the best 
of our knowledge, there is no previous research that aims to help jurisdictions answer this question.

Although New Orleans asks evacuees to include face coverings in their “go-bag”43, social distancing is still 
important. But social distancing, implemented through decreasing the number of people per rescue vehicle, 
adds to the time and distance vehicles need to cover. To assess the feasibility of social distancing as part of an 
evacuation operation, we explore: (1) total time of picking up and transporting evacuees from their houses to a 
rescue center; (2) sizes of neighborhood that one emergency vehicle serves for evacuation operations; (3) degrees 
of social distancing enforced in an emergency vehicle; and (4) the number of emergency vehicles needed to 
evacuate the whole city.

Results
Trade‑offs in size of neighborhood and social distancing.  In this section, we analyzed the trade-
offs in size of neighborhood and social distancing by simulating the CVRP process of an emergency vehicle 
repeatedly starting from a rescue center to collect residents house by house until its vehicle capacity is met. In 
this study, we used the locations of nodes (or “houses”) and a depot (a rescue center) in the standard CVRP 
benchmarking datasets published by50,51. We generated the demand of each node (household size or the number 
of people in each house to be picked up by the rescue vehicle) using the average household size in New Orleans 
(see “Methods”). The sizes of neighborhood in the four datasets we used in this study were 20, 35, 52, and 68 
houses on the special needs registry. Social distancing limited the number of passengers allowed in one rescue 
vehicle, with capacities of 64, 32, 16, 8, 4, and 2 passengers per rescue vehicle. One can think of this range of 
vehicle capacities as representing the span from no social distancing to very strict social distancing in a large bus. 
But it can also be a way to explore modest distancing (2- to 4-fold capacity changes) in vehicles ranging from a 
large bus to a small van or sedan.

After the emergency vehicle picked up every resident on the special needs registry in the neighborhood, 
we summed the total time and the number of routes as the outputs (see Supplementary information for more 
information about the outputs). Figure 1 is an example of the output.

New Orleans plans to pick up residents starting 54 h before the storm reaches the coast and collect the last 
residents by 30 h before the storm reaches the coast, for a 24-h window (Fig. 2)43,44. Between 30 h and 12 h before 
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Figure 1.   An example of DNN-based and non-DNN solutions. Information in each legend box is in the 
format42 “R0, #6, c 14/16, t: 0.86 h”. R0 is the first route, R1 is the second, etc. “#6” means that the emergency 
vehicle visits 6 houses in that route. “c 14/16” indicates that the emergency vehicle whose passenger capacity is 
16 people picks up 14 people in route R0. Finally, “t: 0.86 h” means that the emergency vehicle spends 0.86 h in 
route R0. To make the routing pattern easy to read42, we hide the first and the last line going from and back to 
the black square, which represents the transition point for transit to the depot. The total time and the number 
of routes required to pick up every resident on the special needs registry are shown at the top of Fig. 1. This 
example is for vehicle capacity = 16 and transit time = 0.

Figure 2.   72-h evacuation timeline in New Orleans. This pre-hurricane evacuation timeline is adapted 
from43,44.
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the storm reaches the coast, the city may continue the evacuation operation if necessary44. Therefore, to evaluate 
the performance of the DNN-based and non-DNN models, we used 42 h and 24 h as the thresholds to determine 
if the vehicle completed the evacuation missions within the desired timelines. Further, we classified the time 
performance as Satisfactory (< 24 h), Borderline (24–42 h), and Not Allowed (> 42 h).

To accommodate the transit time required to travel from each neighborhood to the centrally located Smoothie 
King Center and back, we added 0, 0.5, 1, or 2 h to each evacuation route. In a realistic city layout, transit times 
would differ among neighborhoods, but they should be similar for each route within a neighborhood. With zero 
transit time, the de facto assumption is that the Smoothie King Center is in each neighborhood. With additional 
fixed transit time per route, the black squares in Fig. 1 and other figures in Supplementary information represent 
the closest freeway on-ramp or intersection with a major thoroughfare, marking the transition from collecting 
people within a neighborhood to transporting people to the Smoothie King Center.

Size of neighborhood.  With any level of capacity per rescue vehicle (social distancing), the total time for evacu-
ations increased as the size of neighborhood (number of people on the special needs registry) increased (Fig. 3). 
The total time of both DNN-based and non-DNN solutions rose more steeply with stronger social distancing 
across all sizes of neighborhood. For example, with 32 people in an emergency vehicle instead of 64, increasing 
the neighborhood size from 20 houses to 68 (a factor of 3.4), increased the total time by 1.89 h and 4.79 h for 
DNN-based and non-DNN solutions respectively. However, with more stringent social distancing (2 people per 
vehicle), increasing the neighborhood size from 20 houses to 68 increased the total time by 23.37 h and 22.18 h 
for DNN-based and non-DNN solutions respectively.

The average total time across six vehicle capacities (2, 4, 8, 16, 32, and 64 people per emergency vehicle) and 
two algorithms (deep reinforcement learning and sweep algorithm) rises with the neighborhood size, and the 
change is linearly proportional to the change in neighborhood size (Fig. 4). For example, with 16 people per 
emergency vehicle, increasing the neighborhood size from 20 houses to 68 (a factor of 3.4), increased the total 
time by 2.37-fold and 2.97-fold for cases with the minimum (+0 h/route) and the maximum (+2 h/route) transit 
time respectively. Compared to the cases without adding any transit time to each route, the relationship between 
neighborhood size and the average total time is closer to linearly proportional in the cases with longer transit 
time added to each route.

Without adding any transit time to each route, a disaster manager can evacuate everyone on the special needs 
registry in all sizes of neighborhood within 24 h (achieving the Satisfactory threshold) (Fig. 4). In addition, the 
smaller the neighborhood size, the more likely every resident on the special needs registry can be evacuated 
within 24 h (Satisfactory threshold) or 42 h (Borderline threshold). With a transit time of 2 h per route, only the 
smallest neighborhood can be fully evacuated by the end of 42 h. Of course, the trade-off is that dividing a city 
into smaller neighborhoods increases the number of neighborhoods to evacuate.

Social distancing.  As expected, for any neighborhood size, algorithm, and transit time, stricter social distanc-
ing increases the total evacuation time (Fig. 5). For the strictest social distancing (2 people per vehicle), the 
evacuation time is less than 42 h only when transit time is zero. With milder social distancing (32 people per 
vehicle), the sensitivity of evacuation time to passenger limit is approximately the same in the DNN-based and 

Figure 3.   Impacts of neighborhood size and vehicle capacity on total time. [x axis: size of neighborhood (unit: 
the number of houses with people on the special needs registry), y axis: vehicle capacity due to social distancing 
(unit: people per vehicle), z axis: total time (unit: hours)].
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non-DNN solutions. For example, without any additional transit time per evacuation route, decreasing vehicle 
capacity from 64 to 32 increases evacuation time 1.13–1.17-fold and 1.12–1.23-fold in DNN-based- and non-
DNN solution respectively. However, with stricter social distancing, evacuation times for the DNN-based solu-
tions are more sensitive to vehicle capacity than are the non-DNN solutions (Fig. 5). Across the full range of 
neighborhood sizes, decreasing vehicle capacity from 64 to 2 increases evacuation time by up to 8.94-fold with a 
DNN-based solution and 5.41-fold in a non-DNN solution.

One of the critical elements of an evacuation plan is the number of vehicles to allocate. A rough estimate 
for this can come from the ratio of the size of the special needs registry to the number of people evacuated by a 
single vehicle within the 42-h target window (Fig. 6). With stricter social distancing, the number of emergency 
vehicles increased. Stricter social distancing also increased the risk that one emergency vehicle could not fully 
evacuate one neighborhood within 24 or 42 h (Figs. 5 and 6).

Efficacy of DNN‑based and non‑DNN solutions.  Across all of the scenarios without additional transit 
time in each route, the DNN-based solution generated a shorter total evacuation time than the non-DNN solu-
tion in 66.67% of the cases (Fig. 7). The DNN-based solution required fewer routes than the non-DNN solution 
in 8.33% of the scenarios. On average, the DNN-based method took less time but used more routes. With addi-
tional transit time in each route, the advantage of the DNN-based algorithm decreased (Fig. 7). In general, the 
DNN-based solutions outperformed the non-DNN solutions, except when neighborhood size was very small 
(Fig. 7a) or vehicle capacity was very low (Fig. 7a–d). The DNN-based solutions that took less time were the ones 
that needed fewer or the same number of routes. When DNN-based solutions took more time, they required 
more routes.

Overall, 63.54% of the DNN-based solutions met the threshold for evacuation within 24 h, see Fig. 2, the same 
as the non-DNN solutions (Fig. 5). Times were greater than 42 h in 22.92% and 21.88% of the DNN-based and 
non-DNN solutions respectively. In 1.04% of the cases, the non-DNN solution was enough better than the DNN-
based solution to shift the time performance from > 42 h to between 24 and 42 h. Even though the DNN-based 
solutions used less time than the non-DNN solutions in 57.29% of the cases, none of the DNN-based solutions 
were enough better than the non-DNN solutions to shift a result from > 42 to 24 to 42 or from 24 to 42 to < 24.

DNN-based solutions outperformed non-DNN solutions by up to 40.18% (Fig. 7). The advantage of the 
DNN-based approach was largest with high-capacity vehicles, mild social distancing, and larger neighborhoods 
(Fig. 7b–d). In visual terms, the DNN-based method outperformed the non-DNN method because its routing 
patterns were smoother loops compared to the non-DNN method, which wasted a lot of time going back and 
forth among houses with its more “spiky” routing (Fig. 1 and the other figures in Supplementary information).

However, with the non-DNN approach, the vehicle always picked up passengers until it reached its capacity, 
while in some of the DNN-based solutions, the vehicle returned to the rescue center before reaching full capac-
ity (see Supplementary Fig. S1). This led to the DNN-based solutions sometimes using more routes than the 
non-DNN solutions. An added transit time was effectively a penalty on the number of routes per neighborhood, 
leading to DNN-based solutions using up to 75.38% more time than the non-DNN solutions (Fig. 7a).

(1)Percentage Change in Evacuation Time (%) =
TimeDNN-based − TimeNon-DNN

TimeNon-DNN
× 100

Figure 4.   Trade-offs between size of neighborhood and average evacuation time. The y-axis is the average time 
across both algorithms and all vehicle capacities (passenger limit= 2, 4, 8, 16, 32, and 64 people per emergency 
vehicle). The red dashed line represents the 42-h window (54–12 h before tropical storm winds reach the coast) 
while the yellow dashed line represents the 24-h window (54–30 h before tropical storm winds reach the coast).
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The number of routes required for DNN-based and non-DNN solutions were approximately the same most 
of the time (Fig. 8). In 58.33% of the cases the difference is within ±10% . In 33.33% of the cases, DNN-based and 
non-DNN solutions used the same number of routes (Fig. 8b). In these cases, the transit time per route did not 
impact total evacuation time too much, and the advantage of the DNN-based solutions was expressed (Fig. 7b–d).

The advantage of deep reinforcement learning faded with smaller vehicles or stricter social distancing. When 
the vehicle capacity was close to the number of people in each household, the DNN-based solution performed 
about the same as or even worse than the sweep algorithm. It is not surprising that the DNN-based method did 
not work well when vehicle capacity was close to the household size. This is a situation known as the demand of 
a single node in the Capacitated Vehicle Routing Problem. If the vehicle collects two people from one house and 
then returns to the rescue center, the problem collapses to one of determining the shortest path between each 
node and the depot (Supplementary Fig. S6). The order of visiting houses might be different, but no version of 
a DNN-based approach would outperform a non-DNN approach.

We did not specifically train the DNN-based model for vehicle sizes close to the number of people in a house, 
largely because the fact that all solutions converge at some point indicates that this retraining could provide no 
more than marginal improvements. In addition, a DNN-based model is more complicated than is appropriate 
for these simple edge cases.

Across all scenarios, the DNN-based method required 1.67 more routes (20.96%) than the non-DNN solu-
tion but saved 0.73 h (14.78%), 0.1 h (6.86%), 0.93 h (2.11%), and 2.6 h (3.59%) on average for the cases with 

(2)Percentage Change in the Number of Routes (%) =
RoutesDNN-based − RoutesNon-DNN

RoutesNon-DNN
× 100

Figure 5.   Social distancing and total evacuation time for a neighborhood. The x-axis indicates different 
social distancing protocols (the number of people allowed in an emergency vehicle) and y-axis indicates 
the total time required to evacuate a neighborhood. Red and yellow dashed lines indicate the 42-h and 24-h 
windows, respectively (Fig. 2). (a) Neighborhood 1 has 52 people and 20 houses on the special needs registry. 
(b) Neighborhood 2 has 83 people and 35 houses. (c) Neighborhood 3 has 126 people and 52 houses. (d) 
Neighborhood 4 has 168 people and 68 houses.
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additional transit times of 0, 0.5, 1, and 2 h per route respectively compared to the non-DNN method. However, 
64% of the cases in which the non-DNN solution required less time than the DNN-based solution occurred 
when vehicle capacity was limited to 2 or 4 (Fig. 7a–d). When the DNN-based method required less evacuation 
time than the non-DNN method, it saved 2.1 h (18.57%) on average. When the DNN-based method required 
more evacuation time, it needed 4.51 h more (13.1%) on average.

Although deep reinforcement learning can provide more efficient evacuation routing, the time performance 
boost from implementing the DNN-based solution was not large enough to fully compensate the time penalty 
from stricter social distancing without other compromises (Figs. 5 and 7). Evacuation plans can be modified to 
accommodate social distancing, but the modifications will require operational changes like increasing the number 
of vehicles (and decreasing the size of the neighborhood each serves) or extending the evacuation timeline. The 
magnitude of the required operational changes becomes larger as the social distancing becomes more aggressive. 
Even if the addition of DNN-based evacuation plans can make a real contribution to efficiency and could, in criti-
cal cases, be the difference between a successful evacuation and one that is not completed in the allowed window, 
it is imperative for disaster managers to re-examine the evacuation timeline and incorporate additional disaster 
relief resources, such as more emergency vehicles, into any evacuation operation that requires social distancing.

Discussion
Artificial intelligence has been employed to solve various hard problems in operations research, computer sci-
ence, business, healthcare, and other fields. We showed how human-centered AI techniques can augment the 
efficiency of an evacuation, but its benefit decreases and eventually disappears with stronger requirements for 
social distancing. The findings from our research are relevant to other disaster evacuations that are based on 

Figure 6.   Social distancing and the number of vehicles required to evacuate a city. The x-axis is vehicle capacity, 
and the y-axis indicates the number of vehicles required to evacuate 4000 people. If it is impossible to evacuate 
one neighborhood within 42 h, data points are not shown. (a) Neighborhood 1 has 52 people and 20 houses on 
the special needs registry. (b) Neighborhood 2 has 83 people and 35 houses. (c) Neighborhood 3 has 126 people 
and 52 houses. (d) Neighborhood 4 has 168 people and 68 houses.
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a registry of people to be collected. The efficiency improvements that come from implementing a DNN-based 
solution can be substantial, but they may not compensate for the extra time required for adding social distanc-
ing to each evacuation route.

In general, the DNN-based solutions were not useful for cases where vehicle capacity was close to the size 
of a single household (node). In typical CVRP simulations and benchmarking research42,52, the vehicle capacity 
is much larger than the demand of each node. In future work, the DNN-based model could be retrained for 
scenarios with low-capacity vehicles. However, when the vehicle goes to only one house and then returns to the 
rescue center, all possible solutions collapse to the same performance. Furthermore, with low-capacity vehicles, 
the total time both DNN-based and non-DNN methods need is far from achieving the threshold, and a modest 
performance boost from a DNN-based solution would be unlikely to change this pattern, especially in larger 
neighborhoods (Fig. 5d).

On the other hand, when vehicle capacity is much larger than the size of each household, multiple households 
can be combined in a route, and it is non-trivial to come up with an efficient routing strategy. In cases like these, 
the DNN-based model can reinforce itself by learning from various possible solutions. It is not guaranteed that 
a DNN-based method can always outperform a non-DNN method, especially in settings without sufficient data 
(possible routing solutions) for learning and reinforcing the DNN-based model. The limitation of DNN-based 
method can be a part of the planning for evacuation routing, suggesting cases where DNN-based approaches 
have and do not have the potential to be helpful.

To accommodate the challenges in disaster evacuations during a pandemic, the approach used in this study 
could be extended in many ways. For example, both DNN-based and non-DNN methods could be modified 

Figure 7.   Performance comparison between DNN-based and non-DNN solutions in terms of total evacuation 
time for one neighborhood. The x-axis is vehicle capacity and the y-axis is the percentage change in evacuation 
time is calculated as Eq. (1). Points below the red dashed line indicate that the DNN-based solution saves time. 
(a) Neighborhood 1 has 52 people and 20 houses on the special needs registry. (b) Neighborhood 2 has 83 
people and 35 houses. (c) Neighborhood 3 has 126 people and 52 houses. (d) Neighborhood 4 has 168 people 
and 68 houses.
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to address the split delivery vehicle routing problem (SDVRP—where an emergency vehicle cannot pick up all 
people from a house and needs to return for the remaining people). Further, one could add details like interme-
diate staging points, making this a Vehicle Routing Problem with Pickup and Delivery (VRPPD) in addition to 
a CVRP. Other variations might allow, for example, elimination of social distancing for family members of fully 
vaccinated individuals, or a rescue fleet with vehicles of many sizes.

A transit time to a central evacuation center, required in any real-world situation, tends to decrease the 
advantage of an efficient routing algorithm (Fig. 7). For our analysis, it creates an additional burden on the 
DNN-based approach. This arises from the fact that the DNN algorithm is attempting to minimize the time 
collecting people, without regard to the number of routes. But because transit adds a fixed time to each route, it 
penalizes any solution that requires additional routes. In future work, it may be possible to address this through 
multi-objective optimization (minimizing both the evacuation time and the number of routes) or to design test 
neighborhoods with depots located at some distance.

When social distancing is required, evacuations become more complicated, and they require additional 
resources. Disaster managers will need to accommodate these complexities both through capitalizing on tools 
for more efficient routing and in other aspects of the evacuations. Specifically, they may want to explore options 
for (1) extending the evacuation timeline, (2) increasing the number of evacuation vehicles that serves each 
neighborhood, or (3) partitioning the evacuation area into a larger number of smaller neighborhoods, each 
served by a single vehicle. In any particular setting, the preferred option will be determined by local resources 
and constraints. In every location, however, it will be wise to plan ahead for the possibility of an evacuation with 
social distancing.

One of the durable lessons from COVID-19 is that governments, NGOs, and community members should 
have all-hazard emergency operations and evacuation plans that consider the interactive effects of both a pan-
demic and a wide range of possible disasters. Disaster managers should also take advantage of every efficiency 
they can find, including DNN-based vehicle routing. Consistent with the FEMA suggestion that jurisdictions 
incorporate social distancing into emergency evacuation during the COVID-19 pandemic53, this study investi-
gates the impacts of social distancing on an evacuation timeline and the number of emergency vehicles required 
to evacuate a city.

Methods
Dataset and problem formulation.  Vehicle Routing Problems (VRPs) in the context of pre-disaster 
evacuation are both critical and complex54. Although we cannot include all real-world constraints, we can 
roughly formulate the problem of pre-disaster evacuation as the most studied variant of VRPs, the Capaci-
tated Vehicle Routing Problem (CVRP) with a rescue center (typically called depot) and a given set of n houses 
denoted nodes or customers, N = {1,2,...,n}42,55.

Traditionally, there are homogeneous vehicles K with the same capacity C, where K = {1, 2, . . . , |K |} , C > 0. In 
this study, we calculate total evacuation time based on one emergency vehicle for each neighborhood (with all 
neighborhoods the same size and being evacuated in parallel), so K is the same vehicle for every route in K in a 
neighborhood, and |K | is the number of routes required to evacuate each neighborhood. The number of people 
on the special needs registry to be picked up (typically referred to as demand) from each house is dj , where 0 < 
dj ≤ C, j ∈ N. Let E = {e = {i, j} = {j, i} : i, j ∈ {0, 1, 2, . . . , n}, i �= j} be the edge set55. An emergency vehicle mov-
ing from house i to j incurs travel cost cij for {i, j} ∈ E or evacuation time in this study42,55. We define an integer 

Figure 8.   Performance comparison between DNN-based and non-DNN solutions in terms of the number of 
routes. Negative numbers on the y-axis means that the DNN-based solution required fewer routes than the non-
DNN solution. The x-axis is vehicle capacity and the y-axis is the difference in the number of routes (a) and the 
percentage change in the number of routes (b) is calculated as Eq. (2).
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decision variable xij , where xij =1 if the emergency vehicle moves from house i to j while xij =0 if the emergency 
vehicle does not move from house i to j55–57.

The vehicle starts from the rescue center, goes to a subset of houses S ⊆ N to pick up people, and finally returns 
to the rescue center before or until the vehicle capacity C is reached55. This process constitutes one route. The 
vehicle repeats this process until it collects every resident on the special needs registry, visiting each house only 
once (Fig. 1 and the other figures in Supplementary information)55. The goal is to evacuate every person on the 
evacuation registry within the minimum possible evacuation time. Results for a rescue operation consist of the 
routes utilized by this vehicle, evacuation time, the number of routes, and other detailed information about 
each route (see Supplementary information). The formulation of the CVRP can be expressed mathematically 
as follows55–57.

According to the parameters we defined earlier55–57, (3) is the objective function which minimizes the overall 
costs (total evacuation time) for the neighborhood. Constraint (4) makes sure that each house is visited only 
once. Constraint (5) indicates that the emergency vehicle can leave the rescue center only once for each route in 
K. Constraint (6) requires that the number of the emergency vehicles arriving at and leaving each house or the 
rescue center is the same (1 in this study). Constraint (7) ensures that the number of people picked up by the 
emergency vehicle in a single route is no more than the vehicle capacity C. (8) is called the subtour elimination 
constraint, which avoids any route that is disconnected from the rescue center55,56,58. Lastly, constraint (9) denotes 
that the integer decision variable should be either 1 (visited) or 0 (not visited).

To analyze the efficacy of pre-disaster evacuations using Deep Reinforcement Learning (DNN-based solution) 
and Sweep Algorithm (Non-DNN solution), we consider four datasets in this study.

Dataset selection.  In our experiments, we used the A-n36-k5, A-n53-k7, A-n69-k9 datasets, commonly used 
in studies of capacitated vehicle routing problems50,51. Each dataset contains a unique set of coordinates of one 
depot and several nodes in a two-dimensional Cartesian coordinate system, plus the demand of each node and 
vehicle capacity. Since we are interested in exploring how size of neighborhood and social distancing policy 
could impact the total time and the number of routes in evacuation operations, we selected the first 20 locations 
in the A-n36-k5 dataset as our Dataset 1. We used all 35 locations in A-n36-k5 as our Dataset 2. Our Dataset 3 
and 4 are A-n53-k7, A-n69-k9 datasets which contain 52 and 68 houses respectively. To accommodate the pos-
sibility that the depot is outside the neighborhood, we allowed for a series of fixed times (0, 0.5, 1.0, and 2.0 h) 
for transit to and from a central depot.

Dataset formation.  In structuring the problem, we use the city of New Orleans, Louisiana, USA, as the refer-
ence case. New Orleans experienced massive losses and disruption in Hurricane Katrina (2005)59–63 and has 
implemented comprehensive plans to prepare for a future major hurricane. While our analytical framework is 
general, details like the average number of people in a household and the length of the time window for complet-
ing the evacuation are specific to New Orleans.

In New Orleans, the elderly, disabled, and those at high risk for severe illness from COVID-19 can sign up 
online or call 311 for the Special Needs Registry (SNR) before a mandatory evacuation order is announced43,44. 
The 72-h evacuation timeline announced by the City of New Orleans specifies a window of 42 h to collect 
evacuees from their houses and transport them to the Smoothie King Center, which serves as a transfer and 
processing center, and from there, evacuees will board a bus to state or federal shelters in other cities43. Finally, 

(3)Minimize
∑

k∈K

n∑

i=0

n∑

j=0,i �=j

cijx
k
ij ,

(4)
∑

k∈K

n∑

i=0

n∑

j=1,i �=j

xkij = 1,

(5)
∑

j∈N

xk0j = 1, ∀k ∈ K ,

(6)
n∑

i=0,i �=j

xkij =

n∑

i=0

xkji , j = {0, 1, . . . , n},∀k ∈ K ,

(7)
n∑

i=0

n∑

j=1,i �=j

djx
k
ij ≤ C, ∀k ∈ K ,

(8)
∑

k∈K

∑

i∈S

∑

j∈S,i �=j

xkij ≤ |S| − 1, ∀S ⊆ {1, 2, . . . , n},

(9)xkij ∈ {0, 1}, ∀k ∈ K , {i, j} ∈ E
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the city government will bring evacuees back to their homes or local shelters once it becomes safe to return to 
New Orleans43. As of February 23, 2021, the special needs registry for New Orleans included approximately 
4000 individuals64.

We considered four datasets, each consisting of a depot (rescue center) and several nodes (houses) randomly 
distributed within a flat 2D grid world. The distance metric is Manhattan distance, as in an urban area laid out 
in blocks (see Supplementary Fig. S29 online). Each dataset is in the shape of a square (about 3 km × 3 km)65. 
The land area of New Orleans is 438.8 km2 ( 169.42mile

2)66 so the size of each dataset represents about 2% of the 
area of the city.

To enhance the efficiency of computation, we normalize the neighborhood as a 1 × 1 box, and transform the 
normalized distance back to actual distance to get total evacuation time.

To estimate the number of people in each house, we used the average household size (2014-2018), which is 
2.44 persons per household in New Orleans, based on the American Community Survey (ACS) of U.S. Census 
Bureau66, assuming a normal distribution with mean=2.44 and standard deviation=0.5. If the household size is 
not an integer, it is rounded to the nearest integer. So, the household size ranges from 1-4 people. For simplicity, 
we assume that, if one person in a house is on the special needs registry, then all of the people in that house are 
on the registry as well. Supplementary Table S1 contains the summary of the datasets used in our study.

We ran the sweep algorithm and the pre-trained deep reinforcement learning model on a GPU NVIDIA 
Tesla K80, which enabled us to complete all experiments within one second with a batch size of 25642. For our 
conceptual model of a pre-planned evacuation map, calculation time is not relevant, but the possibility of quick 
calculation is consistent with real-time adjustments. In particular, a timely and scalable solution is of vital 
importance in real-world disaster response and evacuation route planning.

Emergency vehicle and social distancing.  We chose the average speed of 8 km/h (equivalent to 5 mph) 
for our simulation, based on the idea that emergency vehicles usually move slowly during evacuation operations, 
especially when the elderly and people with disabilities need extra time to get on and off the vehicles. To inves-
tigate how social distancing in an emergency vehicle impacts the total time and the number of routes in disaster 
evacuation operation, we consider a nominal evacuation vehicle as a bus that seats up to 64 people. Social dis-
tancing could decrease that to 32, 16, 8, 4, or 2 people per emergency vehicle. The analysis can also be applied 
to a nominal capacity of 32, 16, 8, or 4, with an increasingly restricted range of social distancing. To our knowl-
edge, this study is the first research which incorporates FEMA’s official guidelines53 into the investigation of the 
impacts of social distancing on emergency evacuation. In light of FEMA’s guidance on Recommended Evacuee 
Queuing and Boarding Process53, with social distancing protocols, only up to 25-28 passengers are allowed in a 
56-passenger motor coach, which is the most widely available motor coach. In other words, the vehicle capacity 
decreases to half of its original value when social distancing is applied. All of the specifics like the size of the 
neighborhoods, vehicle speed, and vehicle capacity are reasonable, chosen to illustrate the general issues.

Evacuees and evacuation planning.  This is a model for a pre-planned evacuation, with a map of loca-
tions and the number of people per location known in advance. Such a map could be based on a registry of 
advance requests for evacuation assistance, or it could be developed in parallel with the forecast leading to an 
evacuation. With this concept, we know in advance the spatial distribution of the demand in the capacitated 
vehicle routing problem. In addition, we considered the rescue center to have unlimited accommodation capac-
ity. Consistent with the Guide of City-Assisted Evacuation (CAE) for Hurricanes in New Orleans, people trans-
ported from their houses to the rescue center will be moved from there to be treated by appropriate emergency 
health care services at other disaster relief centers, such as state or federal long-term shelters43,67.

Algorithm design.  In this section, we described the general design of the DNN-based and non-DNN algo-
rithms in this study.

Non‑DNN solution–Sweep Algorithm.  The sweep algorithm is a computationally efficient non-DNN solution 
typically used in real-world evacuations, business logistics, and supply chain management68,69. It starts with an 
arbitrary line from the depot (the rescue center). The order of houses to be visited by an emergency vehicle is 
determined by sweeping this line counter-clock wise and adding houses one by one when the line intersects 
these houses. In addition, the emergency vehicle must return to the rescue center when it reaches its passenger 
limit. After sweeping the line for 360 degrees, the evacuation operation is complete.

DNN‑based solution–Deep Reinforcement Learning.  In this study, we selected deep reinforcement learning as 
the DNN-based solution. Deep reinforcement learning is good at searching for optimal solutions in a relatively 
short period of time and is well-known for its capacity of adaptively resolving similarly complex problems, such 
as the Game of Go, robotics, and computer games. In particular, we used the Attention Model (AM)42 because 
this algorithm outperformed several common baseline algorithms and models for various routing problems, 
including the Capacitated Vehicle Routing Problem (CVRP). The Attention Model integrates the REINFORCE 
algorithms70 with greedy rollout baseline to the attention-based Transformer model71 and the variant of Graph 
Attention Networks (GATs)72 whose Convolutional Neural Networks (CNNs) with masked self-attention layers 
analyze graph-structured data efficiently. For all of our experiments of deep reinforcement learning, we adapted 
the algorithm designs in42 to our scenarios of evacuation with social distancing.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19623  | https://doi.org/10.1038/s41598-021-98643-z

www.nature.com/scientificreports/

Evaluation of DNN‑based and non‑DNN solutions.  According to the 72-h hurricane evacuation 
timeline announced by New Orleans43, there will be only 42  h to pick up evacuees (Fig.  2). To evaluate the 
performance of DNN-based and non-DNN solutions, we used 24 and 42 h as the thresholds of categorizing the 
results into three levels of performance: satisfactory (< 24 h), borderline (24–42 h), and not allowed (> 42 h) 
(Fig. 2).

Disclaimer.  This disclaimer informs readers that this study should only serve as their own references rather 
than official guidelines for any jurisdictions. The scenarios of simulations performed in this study are only exam-
ples for the purpose of academic research. Any actions, including but not limited to decisions, policies, and stud-
ies, taken based on any part of this study is the sole liability of readers, not authors in this study.

Data availability
The datasets generated during and/or analyzed during the current study are available in the Capacitated Vehicle 
Routing Problem Library (http://​vrp.​galgos.​inf.​puc-​rio.​br/​index.​php/​en/) and from the corresponding author 
on reasonable request.
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