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Abstract

Uniformly pigmented Eisenia andrei (Ea) and striped E. fetida (Ef) lumbricid earthworms are

hermaphrodites capable of self-fertilization, cross-fertilization, and asymmetrical hybridiza-

tion. The latter was detected by genotyping of F1 and F2 progeny of the controlled Ea+Ef

pairs by species-specific sequences of maternal mitochondrial COI genes and maternal/

paternal nuclear S28 rRNA genes. Among F1offspring there were self-fertilized Ea (aAA),

Ef (fFF), and cross-fertilized fertile Ea-derived hybrids (aAF); the latter mated with Ea and

gave new generation of Ea and hybrids, while mated with Ef gave Ea, Ef, Ea-derived hybrids

and sterile Ef-derived hybrids (fFA). Coelomic fluid of Ea exhibits unique fluorescence spec-

tra called here the M-fluorescence considered as a molecular biomarker of this species.

Since similar fluorescence was detected also in some Ef (hypothetical hybrids?), the aim of

present investigations was to identify the M-positive earthworms among families genotyped

previously. It was assumed that factor/s responsible for metabolic pathways leading to pro-

duction of undefined yet M-fluorophore might be encoded/controlled by alleles of hypotheti-

cal nuclear gene of Eisenia sp. segregating independently from species-specific S28 rRNA

nuclear genes, where ‘MM’ or ‘Mm’ alleles determine M-positivity while ‘mm’ alleles deter-

mine M-negative phenotypes. Spectra of M-fluorescence were detected in all 10 Ea

(aAAMM) and 19 Ea-derived hybrids (aAFMm), three of four Ef-derived hybrids (fFAMm)

and one ‘atypical’ Ef (fFFMm) among 13 Ef earthworms. Among progeny of ‘atypical’ M-pos-

itive Ef (fFFMm) reappeared ‘typical’ M-negative Ef (fFFmm), confirming such hypothesis.

Alternatively, the M-fluorescence might be dependent on unknown gene products of verti-

cally-transmitted Ea-specific symbiotic bacteria sexually transferred to the Ef partner.

Hypotheses of intrinsic and external origin of M-fluorescence might complement each other.

The presence/absence of M-fluorophore does not correspond with body pigmentation pat-

terns; Ef-characteristic banding appeared in posterior parts of hybrids body. In conclusion,

Ea/Ef hybridization may serve for further studies on bi-directional gene flow.
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Introduction

Lumbricid earthworms from Eisenia sp. are valuable models in various scientific disciplines

like biochemistry, ecotoxicology, and biomedicine [1–5] where proper species delimitation is

crucial. This concern mainly uniformly pigmented Eisenia andrei (Ea) and striped E. fetida
(Ef), originally described as pigmentation morphs of the one species spelled as Eisenia foetida,

then as its two subspecies, and later on as two independent species with reproductive barrier

[6] forming two distinct clades on phylogenetic tree based on species-specific DNA sequences

[7–9].

Body pigmentation is often not conclusive, thus during our earlier studies of Ea/Ef deliv-

ered from France we have used various methods for proper distinction of specimens of these

two species [10]; among others, coelomic fluid was analyzed in respect of presence of fluores-

cence spectra considered to be a fingerprint of E. andrei, hypothetically derived from 4-methy-

lumbelliferyl β-D-glucoronide [11], called the MUG fluorophore [10; 12; 13], and here shortly

the M-fluorophore. Contrary to our expectation, we have detected such fluorescent biomarker

not exclusively in Ea but also in some Ef specimens–thus we considered them as hypothetical

hybrids [10; 12]. Just this observation, together with a wide spectrum of pigmentation patterns

of earthworms from our Ea/Ef cultures prompted us to test a hypothesis about the existence of

inter-specific hybrids between Ea and Ef, both of them being simultaneous hermaphrodites

[14] capable to self-fertilization [15].

Hybridization was detected by genotyping of F1 and F2 progeny of the controlled Ea+Ef

pairs by species-specific sequences of both haploid mitochondrial COI genes of maternal

origin [16; 17] (‘a’ or ‘f’ for Ea or Ef, respectively) and diploid nuclear 28S rRNA genes of

maternal/paternal origin (either ‘A’ for Ea or ‘F’ for Ef). Among F1offspring there were self-

fertilized Ea (aAA), Ef (fFF), and cross-fertilized fertile hybrids (aAF) derived from Ea ova;

the aAF hybrids mated with Ea gave new generation of Ea and hybrids, and while mating

with Ef gave Ea, Ef, aAF and sterile fFA hybrids derived from Ef ova. Using the methods of

the combined mitochondrial and nuclear markers we detected on the Ea branch of the COI-

based phylogram both the ‘pure’ Ea specimens (aAA) and relatively common inter-specific

hybrids (aAF), while on the Ef branch there were both ‘pure’ fFF specimens and a few sterile

fFA hybrids [18].

Since earthworm genotyping was performed on DNA extracted from amputated (and then

regenerating [19]) tail tips, the same parental, F1, and F2 earthworms served as donors of coe-

lomic fluid (that was gradually restored [12; 13]) for analysis in respect of presence/absence of

M-fluorophore. The aim of such analyses was answering the question how molecular marker

specific for E. andrei could be transferred to some E. fetida earthworms?

Hypothetically, the M-fluorescence might be dependent either on the metabolic pathway/

s of Eisenia sp. itself, or might be derived from vertically transmitted E. andrei-specific sym-

biotic bacteria that can ‘infect’ partners of copulation. The results of tracking the M-positive

earthworms within their families from previous investigations were consistent with hypothe-

sis of the intrinsic origin of fluorophore; the dominant M-allele might be transmitted from

M-positive Ea (aAAMM) to fertile Ea-derived M-positive hybrids (aAFMm) and then to

‘atypical’ M-positive Ef (fFFmM) earthworm and sterile Ef-derived hybrids (fFAmM). Such

intrinsic pathway was also consistent with reappearance of M-negative Ef (fFFmm) earth-

worms in long-lasting cultures of atypical M-positive Ef (fFFMm). However, hypothetical

participation of microbiome-derived factors in production of M-fluorophore cannot be

neglected. The presence/absence of M-fluorophore does not correspond with body pigmen-

tation pattern.

Gene flow between Eisenia andrei and E. fetida earthworms
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Materials and methods

Experimental animals

Adult composting earthworms Eisenia andrei (Ea) and Eisenia fetida (Ef) from laboratory colo-

nies at the Lille University (France) were reared for generations in the Institute of Zoology and

Biomedical Research of the Jagiellonian University, Krakow, Poland.

The main analyses of coelomic fluid were performed on 46 out of 158 descendants of labo-

ratory-paired M-positive Ea and M-negative Ef specimens genotyped previously [18]. In short,

during previous investigations the pairs of freshly hatched earthworms were cultured until

cocoon production/reproduction. Supravitally amputated tail tips of these parental specimens

and their offspring served as a source of individually numbered DNA samples genetically ana-

lyzed in two ways: 1) by species-specific (maternally derived) haploid mitochondrial DNA

sequences of the COI gene being either ‘a’ for worms from Ea ova or ‘f’ for worms from Ef

ova; 2) by the diploid maternal/paternal species-specific (A for Ea and F for Ef) nuclear DNA

sequences of 28S ribosomal gene. The description of genotypes were as follow: ‘aAA’ for Ea,

‘fFF’ for Ef, and aAF or fFA for their hybrids derived either from the ‘aA’ or ‘fF’ ova, respec-

tively. Among offspring of Ea+Ef pairs there were mainly aAA and fFF earthworms resulted

from the facilitated self-fertilization and some aAF hybrids from aA ova but none fFA hybrids

from fF ova. The aAF hybrids mated with Ea gave a new generation of Ea and aAF hybrids,

while mated with fFF gave fFF, aAF, and sterile fFA hybrids. Pairs of hybrids, both aAF and

fFA, produced plenty cocoons but no hatchlings [18].

Proof-of-concept investigations were performed on coelomic fluid of specimens from long-

lasting cultures of M-positive Ea (EaMp), ‘typical’ M-negative Ef (EfMn), and ‘atypical’ M-pos-

itive Ef (EfMp). The EfMp individuals were identified in 2013 during our previous studies

[10].

Pigmentation patterns were photographically documented with the DSL camera (Sony

SLT-A58).

Analysis of M-fluorescence in coelomocyte-containing coelomic fluid

For main experiments, 46 genetically identified aAA, fFF, aAF, or fFA specimens from previ-

ous study [18] of similar body weights (X = 0.77+0.18 g), were used for analyses of coelomic

fluid.

Spectrofluorimetric analysis of the M-fluorophore in non-invasively retrieved coelomic

fluid was performed by slightly modified method described previously [10; 12; 13]. After over-

night depuration on moist filter papers, earthworm were immersed in 3 mL 0.9% Natrium

chloratum (Kutno, Poland) and electrostimulated for 30 sec with a mild electric current (4.5V)

for coelomic fluid extrusion through dorsal pores during animal body movements. After fluid

extrusion the earthworms were returned to their original boxes. One mL of the extruded coelo-

mocyte-containing coelomic fluid was supplemented with 20uL of Triton (Sigma-Aldrich)

and shaked for 20 min on Elpon Laboratory Shaker type 358S to dissolve cellular components.

Then samples were adjusted with PBS to 2 mL and final 1% Triton lysates were analyzed using

Perkin-Elmer Spectrofluorimeter LS50B. As previously [10; 12; 13], emission spectra of M-

fluorophore were recorded between 340 and 480 nm (lambda at 320 nm, peak at 380 nm)

while excitation spectra between 260 and 360 nm (lambda at 380 nm, peak at 320 nm). Fluoro-

phores are gradually restored in coelomic fluid of electrostimulated arthworms [12; 13] thus–

when necessary–the procedure of coelomic fluid extrusion/analysis was repeated for the same

specimens after earthworms’ 4-week recovery in soil.

Gene flow between Eisenia andrei and E. fetida earthworms
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Results

M-positive and M-negative specimens among genotyped Eisenia sp.

earthworms

The M-positive (Mp) earthworms exhibited distinct spectra of fluorescence with a peak of

absorbance at 314–320 nm (λ = 380) and a peak of emission at 370–380 nm (λ = 320), while

the M-negative (Mn) earthworms were devoid of such fluorescence in Triton-lysates of coelo-

mic fluid (Inset in Fig 1). As visible on phylogenetic tree of 46 descendants of Ea+Ef earth-

worms arranged on the basis of mitochondrial COI gene of maternal origin, all 29 specimens

derived from E. andrei ova, i.e. 10 aAA and19 aAF hybrids, were M-positive. Thirteen speci-

mens from E. fetida ova were M-negative, among them 12 fFF earthworm and one fFA hybrid;

only one fFF specimen and three fFA hybrids were M-positive (Fig 1).

Genealogy of M-positive and M-negative earthworms

Genealogy of M-positive and M-negative descendants of Ea+Ef pairs has been shown on Fig 2.

Among F1 offspring of pairs of parental specimens Ea+Ef there are M-positive Ea, M-negative

Ef, and M-positive aAF hybrids from Ea ova, but none fFA hybrid from the Ef ova. The

aAFMp hybrids paired with aAAMp specimens gave F2 generation of aAAMp pure Ea speci-

mens and aAFMp hybrids. The aAFMp hybrids paired with M-negative fFF earthworms gave

four kinds of F2 specimens, i.e. ‘typical’ fFFMn earthworms, one M-positive Ef earthworm

(fFFMp) and also four hybrids from Ef ova, of which three were M-positive (fFAMp) and one

was M-negative (fFAMn) (Fig 2).

Speculations on genotypes of M-positive and M-negative Eisenia sp.

earthworms

Hypothetically the factor/s responsible for M-fluorescence might be encoded/controlled by the

nuclear dominant ‘M’ allele of some unknown gene/s of Eisenia sp. while two recessive ‘mm’

alleles determine M-negative phenotype. Thus genotypes of phenotypically M-positive earth-

worms are either of MM or Mm, while genotypes of M-negative specimens are always ‘mm’.

Hypothetically, M/m alleles segregate independently from the nuclear A/F sequences of 28S

rRNA gene. Therefore the genotype of M-positive Ea specimens may be either aAAMM or

aAAMm, while the genotype of M-negative Ef specimens may be only fFFmm. Inter-specific

hybrids might be either aAFMm/aAFmM or fFAMm/fFAmM, with the first written allele of

each gene being of maternal origin, while Mm/mM have the same phenotypic effects.

As illustrated on Fig 3, during hybridization experiments starting with Ea+Ef pairs, the

EaMp specimen of aAAMM genotype shall produce only one type of ova, i.e. aAM, and one

kind of spermatozoa, AM. The Ef specimens, fFFmm, shall produce only fFm ova and Fm

spermatozoa. The aAM ova may be either self-fertilized by AM spermatozoa giving aAAMM

specimens or cross-fertilized by Fm spermatozoa of Ef partner giving the M-positive aAFMm

hybrid. The fFm ova of fFFmm partner may be self-fertilized by Fm spermatozoa giving

fFFmm M-negative Ef earthworms or by the AM spermatozoa of the Ea partner giving M-pos-

itive fFAmM hybrids (Fig 3a and 3b). However, fFAmM hybrids from Ef ova were absent

among investigated specimens (framed in Fig 3b), that pointed out on asymmetrical hybridiza-

tion of Ea and Ef, with hybrids derived preferentially (or exclusively) from the Ea ova.

Theoretically, the M-positive aAFMm hybrids might produce four types of oocytes, aAM,

aAm, aFM, and aFm, the two latter genotypes less probable due to mitochondrial-nuclear (aF)

incompatibility [20–22], and four types of spermatozoa, AM, Am, FM, and Fm. One could

expect any possible combination resulting from self-fertilization of hybrids (see S1 Fig).

Gene flow between Eisenia andrei and E. fetida earthworms
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Fig 1. Fluorescence spectra of M-fluorophore and its presence/absence on phylogram of Ea, Ef, and their hybrids. The

maximum-likelihood phylogram constructed according to sequences of the maternal mitochondrial COI gene (‘a’ or ‘f’) of Ea/Ef
individually coded earthworms characterized also by sequences of their nucler 28S rRNA genes (‘AA’, ‘fFF’, ‘aAF’ or ‘fFA’) and

phenotypes of their M-fluorophore as M-positive (Mp) or M-negative (Mn). &: atypical Mug-negative hybrid fFA149/194Mn; #:

atypical MUG-positive specimen fFF158/190. Genebank accession numbers are given in [18]. Inset: Examples of fluorescence spectra

of excitation (left) and emission (right) in coelomic fluid of Mp (orange solid lines) and Mn (blue dotted lines) specimens.

https://doi.org/10.1371/journal.pone.0204469.g001

Gene flow between Eisenia andrei and E. fetida earthworms
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However, the M-negative aAAmm and aAFmm, which theoretical might result from self-fertil-

ized hybrid ova by any of hybrid sperm, were absent among 46 investigated earthworms.

Moreover, according to our previous work, pairs of hybrids gave no viable offspring [18]. Nev-

ertheless we cannot exclude of participation of hybrid self-fertilization during mating of aAF

hybrids with parental species.

Fig 2. Relationships within families of Ea, Ef and their hybrids with and without the M-fluorophore. Progeny of Ea and Ef

parental species (aAA+fFF), and crosses between aAF hybrids and Ea (aAF+aAA) or Ef (aAF+fFF) earthworms. Coded specimens

are either M-positive (Mp) or M-negative (Mn). Symbols are the same as on Fig 1.

https://doi.org/10.1371/journal.pone.0204469.g002

Gene flow between Eisenia andrei and E. fetida earthworms
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Fig 3. Hypothetical genotypes of Ea (aAAMM) and Ef (fFFmm) pairs and their offspring. a) Scheme of parental

cells, their gametes (ova, spermatozoa) and zygotes, and b) the Punnett square. Assumption is that M-fluorescence

might be encoded/controlled by the nuclear gene with the dominant ‘M’ allele and the recessive ‘m’ allele segregating

independently from the nuclear A/F sequences of 28s rRNA gene. The ‘MM’ and ‘Mm/mM’ determines the M-positive

(Mp) phenotype (in orange) while ‘mm’ genotype determines the M-negative (Mn) phenotype (in blue). Punnett

squares are adapted to pairs of hermaphroditic earthworms able to self-fertilization; ova in yellow, spermatozoa in

Gene flow between Eisenia andrei and E. fetida earthworms

PLOS ONE | https://doi.org/10.1371/journal.pone.0204469 September 21, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0204469


The aAFMm hybrids gave a progeny in pairs with Ea or Ef specimens illustrated on Fig 4,

where progeny from mito-nuclear incompatible ova are excluded, and aAF self-fertilization

(shown on S1 Fig) is omitted for a clarity.

Only M-positive offspring (aAAMM; aAAMm/aAAmM) appeared in the aAFMm+aAAMM

pairs, that was consistent with data on Fig 4a.

The offspring of aAFMm+fFFmm pairs from the hybrid’s ova (aAM and aAm), excluding

those with mito-nuclear-incompatibility (aFM and aFm), might give both M-positive

(aAFMm) and M-negative (aAFmm) hybrids (Fig 4b), but the latter were absent among inves-

tigated earthworms. The offspring from the Ef ova (fFm) consisted of both M-positive and M-

negative hybrids (fFAmM and fFAmm), the ‘atypical’ M-positive Ef specimen fFFmM, and

most common M-negative Ef (fFFmm) earthworm (Fig 4b).

Fig 5 shows that even one unique M-positive fFFMm specimen might initiate propagation

of M-positive phenotype in ‘traditional’ Ef (fFFmm) culture; fFFMn/fFFMM genotypes might

appear by self-fertilization and cross-fertilization with a ‘typical’ M-negative fFFmm partner

(Fig 5a), and then by mating with newly-created other fFFMn earthworms (Fig 5b). On the

other hand, Fig 5b illustrates how in the progeny of phenotypically ‘atypical’ M-positive Ef

earthworms might reappear the ‘typical’ M-negative Ef specimens, that has happened in earth-

worms used for our proof-of concept investigations (see below).

Proof-of concept investigations: Reappearance of M-negative Ef specimens

among descendants of ‘atypical’ M-positive Ef earthworms

Earthworms from France were tested for presence/absence of MUF-fluorophore in 2013 [10]

and then groups of them were cultured further separately as EaMp, EfMn, and ‘atypical’ EfMn

specimens. Four years later, among progeny of EaMp and EfMn there were exclusively the M-

positive Ea and M-negative Ef specimens, respectively. Among randomly sampled 7 specimens

from the descendants of ‘atypical’ EfMp earthworms there were five M-positive (fFFMm) and

two M-negative specimens (fFFmm). The results of our proof-of-concept investigations were

consistent with hypothesis about inheritance of undefined gene with the dominant M-allele

responsible for M-fluorophore in Eisenia sp. (Fig 5b).

Pigmentation patterns of genotyped M-positive and M-negative

earthworms

As shown on photos in Fig 6, the presence/absence of M-fluorophore did not correspond with

pigmentation pattern of investigated earthworms. In general, inter-segmental grooves were

hardly visible in relatively uniformly colored, lighter or darker, M-positive Ea specimens

(aAA41Mp and aAA45Mp, respectively). Inter-specific hybrids, both M-positive aAF101Mp

and fFA143/159Mp, and M-negative fFA67/149Mn, had slightly banded posterior parts of the

body. Banding was distinct in Ef specimens, both M-positive (fFF158Mp) and M-negative

(fFF42Mn, fFF61Mn, and fFF112Mn), with lighter or darker coloration and sharply demar-

cated much lighter inter-segmental grooves (Fig 6).

Discussion

Asymmetrical hybridization between Ea and Ef resulted in a wide spectrum of new pheno-

types, including Ea-like earthworms with Ef-like banded posterior body parts, and the

green. In each pair the first allele is that of maternal origin. Framed genotypes were apparently absent among

investigated earthworms. Ova and resulted offspring with mito-nuclear incompatibility are crossed out.

https://doi.org/10.1371/journal.pone.0204469.g003

Gene flow between Eisenia andrei and E. fetida earthworms
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Fig 4. Hypothetical genotypes of the offspring of test-crosses of the hybrids (aAFMm) with parental specimens. Punnett squares

of a) (aAFMm + aAAMM); b) (aAFMm + fFFmm) pairs. Self-fertilization within aAFMm hybrid is shown on S1 Fig thus is omitted

here. Symbols are the same as on Fig 3.

https://doi.org/10.1371/journal.pone.0204469.g004

Gene flow between Eisenia andrei and E. fetida earthworms
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existence of Ea-specific M-fluorophore in coelomic fluid of most hybrids and some Ef earth-

worms; in other words, hybridization enriched the genetic pool of both species (Fig 7).

Adaptive value of uniform or banded body pigmentation patterns might be experimentally

tested, e.g. through measurements of attractiveness for potential predators. So far, we may con-

clude that pigmentation patterns might be relevant for preliminary species/hybrid delimita-

tion, and do not correspond with presence/absence of M-fluorophore in coelomic fluid. The

M-fluorophore was considered as molecular marker of E. andrei while it turned out that is also

Fig 5. Hypothetical genotypes of the offspring of M-positive Ef specimens within EfMp culture. Punnett squares of a) (fFFMn

+fFFMn) pair; self-fertilization shown in one partner only; b) (fFFMn+fFFmm) pair. Symbols are the same as on Fig 3.

https://doi.org/10.1371/journal.pone.0204469.g005

Gene flow between Eisenia andrei and E. fetida earthworms
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present in majority of hybrids and some specimens of E. fetida. Thus, hybridization of Ea with

Ef resulted in bi-directional gene flow; Ef-specific genes/alleles responsible for striped pigmen-

tation are transferred from Ef to Ea. In contrast, hypothetical dominant M alleles of gene/s

responsible for metabolic pathway leading to production of M-fluorophore flow from M-posi-

tive Ea, through M-positive Ea-derived hybrids to Ef, resulting in some M-positive Ef speci-

mens. Even one M-positive Ef earthworm mated with M-negative partner propagates the M

alleles within Ef culture; among offspring of ‘atypical’ M-positive Ef, the typical M-negative Ef

specimens may reappear (Fig 7).

The M-negative Ea and M-negative Ea-derived hybrids were absent among 46 investigated

earthworms although such phenotypes/genotypes are theoretically possible; they might be

detected if the number of investigated earthworms would be increased. On the other hand,

their viability might be impaired if the M-factor plays an important biological role in Eisenia
species.

Better viability and higher fecundity of E. andrei than those of E. fetida were described by

several scientific teams [23–25] including ours [18]. The same concerns Ea-ova derived

hybrids that are fertile, in contrast to rare and sterile hybrids of Ef-ova origin. Thus, the ques-

tion appears whether it is this dependent on the presence of M-fluorophore or some undiscov-

ered metabolic pathways leading to its production?

Characteristic fluorescence spectra of coelomic fluid of E. andrei and E. fetida were for the

first time used as specific fingerprints for taxonomy of these species in 2003, and authors stated

Fig 6. Pigmentation patterns of Ea, Ef and their hybrids with and without the M-fluorophore. Photos of M-positive (Mp) and

M-negative (Mn) coded specimens of Eisenia andrei (aAA), E. fetida (fFF) and their hybrids (aAF and fFA). Symbols are the same as

on Figs 1 and 2.

https://doi.org/10.1371/journal.pone.0204469.g006

Gene flow between Eisenia andrei and E. fetida earthworms
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that the unique fluorescence properties of E. andrei molecular marker are characteristic for the

4-methylumbelliferyl β-D-glucoronide (MUGlcU) [11], called here the M-fluorophore. In fact,

fluorescence spectra similar to M-fluorophore have been shown in 2008 as those derived from

methanol solution of 4-methyl umbelliferone, a member of coumarin family Coumarins are

Fig 7. Scheme of mating and main results concerning Mp/Mn phenotypes of Ea, Ef and their hybrids. Combined

summary of previous [18] and present experiments. Symbols are the same as on Fig 3.

https://doi.org/10.1371/journal.pone.0204469.g007
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natural products present in ethereal oils of many plants, e.g. cinnamon (Cinnamonum zeylani-
cum) [26]. Biological effects of natural and synthetic coumarin derivatives include anti-plas-

modial and antimalarian [27], anti-fungal [28], anti-tuberculosis [29], anti-coagulant [30], and

anti-cancer [31] activities. In 2017, another aromatic metabolite unique for coelomic fluid of

E. andrei was identified as the compound SP-8203, consisting two quinazoline-2,4-diones

joined by an N-acetylspermine linker but its fluorescence spectra have not been analyzed in

this paper [32]. Compound SP-8203 is pharmacologically potent in mammalian cells showing

neuroprotective activity [33; 34]. The precise chemical characteristic of the M-fluorophore

requires further analysis but that is not our current concern. Nevertheless, due to its hypotheti-

cal connections with pharmacologically potent factors, we may assume that the M-fluorophore

might be somehow responsible for higher viability of M-positive E. andrei and M-positive Ea-

derived hybrids than M-negative E. fetida and rare infertile Ef-ova derived hybrids. Further

studies on the selected M-positive E. fetida might be fruitful in testing such supposition.

Speculations on hypothetical gene with the dominant M-allele are consistent with assump-

tion of the intrinsic origin of M-fluorophore, being entirely dependent on the earthworm own

metabolic pathways. Keeping in mind the peculiar copulatory behavior of lumbricid earth-

worms (Fig 7), hypothesis of microbial origin of M-fluorescence cannot be neglected. Almost

all lumbricid earthworms harbor extracellular species-specific bacterial symbionts of the genus

Verminephrobacter localized in their excetory nephridia [35; 36]. These symbionts are verti-

cally transmitted via the cocoons containing developing embryos and persist in specific loca-

tion throughout the whole lifespan of colonized earthworms [37; 38]. Recently it has been

shown that bacterial symbionts have beneficial effects on maturation and reproduction of E.

andrei [39]. Some products of bacterial metabolisms, including hypothetical M-fluorophore,

might accumulate in earthworm coelomic fluid. Hypothetically, some of these extracellular

symbionts may be released during copulation to the seminal fluid, and may reach spermathe-

cas of the partners of copulation. Then they are released to cocoons together with sperm, and

within cocoons infect ova or developing embryos resulted from self- or cross-fertilization. In

such cases not only Ea and Ea-derived hybrids but also some Ef and Ef-derived embryos can

be infected and became M-positive adults. In conclusion, the M-positivity of some earthworms

might be considered as a result of ‘sexually-derived infection’ by some bacterial symbionts

specific for E. andrei, responsible for metabolic pathways leading to production of M-fluoro-

phore. It is also possible that both earthworm-derived and bacteria-derived factors must coop-

erate to give the final fluorescent product, that is either accumulated breakdown product being

significant only as molecular biomarker, or may have unrecognized yet crucial biological

significance.

On the basis of our previous results we may assume that coelomocytes are not the main cel-

lular source of M-fluorophore in E. andrei, as its amount came back rapidly to the initial level

after experimental expulsion of coelomic fluid [13, 19]. This makes M-fluorescence a reliable

molecular marker for tracking the M-positivity among specimens of E.andrei/E.fetida com-

plex, but other techniques shall be used to show conclusively its presence in various earthworm

cell types lining coelomic cavity and/or other (bacterial?) sources.

Conclusion

Asymmetrical hybridization between Ea and Ef resulted in bi-directional gene flow resulting

in two phenomena recognized in our laboratory. First, Ef-like body pigmentation pattern

appeared in posterior body segments of hybrids, both Ef- and Ea-derived; second, Ea-specific

M-fluorophore was transferred to majority of hybrids and some Ef earthworms. The chemi-

cal nature and biological significance of this fluorophore is still an open question, but its
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fluorescence spectra are reliable markers for tracking the gene flow between E. andrei and E.

fetida. If M-fluorophore is genetically controlled by hypothetical gene of Eisenia sp. with the

dominant M allele, then such allele may be inherited by Ea-derived hybrid from M-positive

Ea parent, and then transferred during mating with M-negative Ef earthworm into some

E. fetida and some Ef-derived hybrids. Even one ‘atypical’ M-positive Ef might propagate

this allele by crossing with ‘typical’ M-negative Ef. Vice versa, in cultures of M-positive Ef

earthworms might reappear ‘typical’ M-negative specimens. However, hypothesis of the

microbial origin of F-fluorescence derived from E. andrei specific bacterial symbionts cannot

be neglected. Moreover, both the intrinsic and external factors might cooperate to produce

the M-fluorophore. The existence of Ea and Ef hybridization make these common species

easily maintained in laboratory the attractive models for studies on interspecies gene flow,

inter-specific transmission of bacterial symbionts, and hypothetical effects of external factors

on these phenomena.

Supporting information

S1 Fig. Hypothetical genotypes of the offspring of self-fertilizing hybrid (aAFMm) earth-

worm. a) Scheme of aAFMm parental cell, gametes (ova, spermatozoa) and zygotes; b)

Punnett square. Shadowed parts of part ‘a’ and crossed out parts of part ‘b’ indicate mitochon-

drial-nuclear conflicts. Framed genotypes were absent among investigated earthworms.

Assumption is that M-fluorescence might be encoded/controlled by the nuclear gene with the

dominant ‘M’ allele and the recessive ‘m’ allele segregating independently from the nuclear A/

F sequences of 28s rRNA gene. The ‘MM’ and ‘Mm/mM’ determines the M-positive (Mp) phe-

notype (in orange) while ‘mm’ genotype determines the M-negative (Mn) phenotype (in blue).

Punnett square is adapted to pairs of hermaphroditic earthworms able to self-fertilization; ova

in yellow, spermatozoa in green. In each pair the first allele is that of maternal origin. Framed

genotypes were apparently absent among investigated earthworms. Ova and resulted offspring

with mito-nuclear incompatibility are crossed out.

(TIF)
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mitochondrial and nuclear DNA sequences. Pedobiologia. 2005; 39: 317–323. https://doi.org/10.1016/

j.pedobi.2005.02.004

8. Otomo PV, van Vuuren BJ, Reinecke SA. Usefulness of DNA barcoding in ecotoxicological investiga-

tions: resolving taxonomic uncertainties using Eisenia Malm 1877 as an example. Bull Environ Contam

Toxicol. 2009; 82:261–263. https://doi.org/10.1007/s00128-008-9585-4 PMID: 18949437
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