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Abstract
Using the strategy of taxonogenomics, we described Clostridium pacaense sp. nov. strain Marseille-P3100T, a Gram-variable, nonmotile, spore-

forming anaerobic bacillus. This strain was isolated from a 3.3-month-old Senegalese girl with clinical aspects of marasmus. The closest species

based on 16S ribosomal RNA was Clostridium aldenense, with a similarity of 98.4%. The genome length was 2 672 129 bp, with a 50% GC

content; 2360 proteins were predicted. Finally, predominant fatty acids were hexadecanoic acid, tetradecanoic acid and 9-hexadecenoic acid.
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Introduction
Human intestinal flora is incorporated mainly in the terminal

part of small intestine and colon. It consists of about 100 000
billion bacteria grouped into 500 species, including 90%

anaerobic bacteria [1,2]. Oxygen-tolerant species such as lac-
tobacilli, and thus aerobic organisms such as Escherichia coli and

enterococci, represent a minority of intestinal microbiota [2]. It
appears that each adult has a unique signature of microbial

community, which is increasingly understood to influence hu-
man health [3–5]. Clostridiaceae is a family of Clostridia and has

traditionally been described by anaerobic growth and spore
formation [3,6]. Clostridia comprises the major composition of
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mammalian gastrointestinal tract microbiomes [7]. Culturomics

combined with taxonogenomics is an important tool for the
isolation and characterization of new bacterial species. These

techniques permit the study of their phenotypes, and thus of
their antibiotic resistance and biochemical features; analyses of

characteristics of the genome may thus potentially have an
impact on human health [8,9].

Here we propose Clostridium pacaense sp. nov. strain Mar-

seille-P3100T (CSUR P3100) as a new species within the
Clostridium genus. This strain was isolated from a 3.3-month-

old Senegalese girl with clinical aspects of marasmus [10].
Materials and methods
Phenotypic, biochemical and antibiotics susceptibility
Gram staining, motility, and catalase and oxidase were deter-

mined as described by Lagier et al. [11]. Sporulation was tested
using a thermal shock on bacterial colonies (diluted in

phosphate-buffered saline) for 20 minutes at 80°C. For elec-
tronic microscopy, a colony was collected from agar and

immersed into a 2.5% glutaraldehyde fixative solution. The slide
was gently washed in water and air dried; then the colony,

approximately 60 cm in height and 33 cm in width, was
nses/by-nc-nd/4.0/)
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examined to evaluate the bacteria’s structure on a

TM4000 microscope (Hitachi, Yokohama, Japan). Mass spectra
were obtained from C. pacaense colonies using MALDI-TOF MS

(Fig. 1). Biochemical characteristics were tested using API
50CH, API ZYM and API 20A strips (bioMérieux, Marcy l’Etoile,

France). Antibiotic susceptibility referred to European Com-
mittee on Antimicrobial Susceptibility Testing 2018
recommendations.

Fatty acid methyl ester analysis
Cellular fatty acid methyl ester analysis was performed by GC/

MS. Two samples were prepared with approximately 35 mg of
bacterial biomass per tube collected from several culture plates.

Fatty acid methyl esters were prepared as described previously
[12]. GC/MS analyses were carried out as described previously
FIG. 1. Reference mass spectrum (via MALDI-TOF MS) from Clos-

tridium pacaense strain Marseille-P3100.

FIG. 2. Phylogenetic tree analysis based on 16S ribosomal RNA (rRNA) gene

phylogenetic tree was generated using MEGA 7 software [19].

This is an open access artic
[13]. Briefly, fatty acid methyl esters were separated using an

Elite 5-MS column and monitored by mass spectrometry
(Clarus 500-SQ 8 S; PerkinElmer, Courtaboeuf, France). A

spectral database search was performed using MS Search 2.0
operated with the Standard Reference Database 1A (National

Institute of Standards and Technology, Gaithersburg, MD, USA)
and the fatty acid methyl ester mass spectral database (Wiley,
Chichester, UK).

Genome sequencing, assembly and annotation
Genomic DNA was sequenced on MiSeq sequencer (Illumina,

San Diego, CA, USA) using the paired-end strategy, as
described previously [6]. SPAdes software was used for genome

assembly [14]. Contaminations were eliminated after per-
forming BLASTn. Open reading frames were predicted and
annotated using Prokka software [15]. The C. pacaense genome

was used for protein functions against the Clusters of Orthol-
ogous Groups (COGs) database using BLASTP (E value of

1e−03, coverage 0.7, identity percentage 30%). The genome is
available on the European Molecular Biology

Laboratory–European Bioinformatics Institute (EMBL-EBI)
scaffolds under accession numbers LS999944 to LS999965.

Comparative genomics
Species to be compared were those with higher similarity based
on 16S RNA (Fig. 2), provided the genome is available. The
sequences. The 16S rRNA genes were aligned using CLUSTALW, and
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TABLE 1. General feature and biochemical tests of

Lachnoclostridium pacaense

Characteristic Value

Current classification
Domain Bacteria
Phylum Firmicutes
Class Clostridia
Order Clostridiales
Family Clostridiaceae
Genus Clostridium
Species Clostridium pacaense
Type strain Marseille-P3100T
Gram staining Variable
Cell shape Bacillus
Diameter 0.5 μm
Cell length 3.5 μm
Motility No
Sporulation Yes
Indole No

Production of:
Alkaline phosphatase No
Catalase No
Oxidase No
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following bacterial species were used in this analysis (their geno-

mics features are summarized in Supplementary Table S1):
Clostridium bolteae (GCA_002234575.2), Clostridium lavalense

(GCA_003024655.1), Clostridium saccharolyticum
(GCA_000144625.1), Clostridium aldenense (GCA_003434055.1),

Lachnoclostridium citroniae (GCA_000233455.1), Clostridium
amygdalinum (GCA_900205965.1) and Clostridium cele-
recrescens (GCA_000732605.1). Amino acids and open reading

frame sequences were predicted using Prodigal software [16] to
obtain optimized prediction within all genomes. Then, for each

couple of genomes, a similarity percentage was computed using
the OrthoANI software [17].

Results

Nitrate reductase No
Urease No
β-Galactosidase No
α-Glucosidase Yes
N-Acetyl-glucosamine No
Esterase No

Acid from:
L-Arabinose No
Ribose No
Mannose No
Mannitol No
Sucrose No
D-Glucose No
D-Fructose No
D-Maltose No
D-Lactose No
Phenotypic and biochemical characterization
C. pacaense is a Gram-variable, spore-forming, nonmotile,
anaerobic bacillus, with no catalase and oxidase activities.
Electron microscopy revealed that its was 3.5 μm long and 0.5

μm in diameter (Fig. 3). C. pacanese produced α-glucosidase
and naphthol-AS-Bl-phosphohydrolase. General features and

biochemical characteristics are summarized in Table 1. Anti-
biotic susceptibility testing revealed that C. pacaense was
FIG. 3. Electron microscopy of

Clostridium pacaense.
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TABLE 2. Cellular fatty acids of Clostridium pacaense

Fatty acid Name Mean relative %a

16:0 Hexadecanoic acid 58.5 ± 0.5
14:0 Tetradecanoic acid 19.7 ± 0.3
16:1n7 9-Hexadecenoic acid 8.9 ± 0.2
18:1n9 9-Octadecenoic acid 5.5 ± 0.2
18:1n7 11-Octadecenoic acid 4.4 ± 0.3
18:0 Octadecanoic acid 1.0 ± 0.1
15:0 Pentadecanoic acid TR
16:1n9 7-Hexadecenoic acid TR
12:0 Dodecanoic acid TR

TR, trace amounts <1%.
aMean peak area percentage.

TABLE 3. Clostridium pacaense number of genes associated

with COGs categories

COGs
category COGs description Total

C Chromatin structure and dynamics 119
D Cell cycle control, mitosis and meiosis 17
E Amino acid transport and metabolism 110
F Nucleotide transport and metabolism 48
G Carbohydrate transport and metabolism 280
H Coenzyme transport and metabolism 44
I Lipid transport and metabolism 31
J Translation 41
K Transcription 169
L Replication, recombination and repair 73
M Cell wall/membrane biogenesis 73
N Cell motility 18
O Posttranslational modification, protein turnover,

chaperones
28

P Inorganic ion transport and metabolism 76
Q Secondary metabolites biosynthesis, transport and

catabolism
7

R General function prediction only 222
S Function unknown 98
T Signal transduction mechanisms 93
U Intracellular trafficking and secretion 4
V Defense mechanisms 55

COGs, Clusters of Orthologous Groups database.

FIG. 4. OrthoANI heat map of implicated genomes.
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susceptible to amoxicillin, amoxicillin–clavulanic acid, ceftriax-
one, ceftazidime, cefepime, ertapenem, metronidazole and

vancomycin.

Predominant fatty acids
The major fatty acids were hexadecanoic acid (59%), tetrade-

canoic acid (20%) and 9-hexadecenoic acid (9%). No branched
structures were detected (Table 2).
TABLE 4. Clostridium pacaense matrix of similarity based on 16S

C. pacaense C. lavalense C. citroniae C. celerecresce

C. pacaense —
C. lavalense 96.3 —
C. citroniae 96.7 96.1 —
C. celerecrescens 93.7 92.9 93.5 —
C. bolteae 95.7 97 96.8 94.1
C. amygdalinum 94.2 93.2 93.7 97.9
C. aldenense 98.4 95.9 96.7 93.9
C. saccharolyticum 94.2 93.2 93.6 98.5

rRNA, ribosomal RNA. The 16S rRNA sequences were aligned, and similarity matrix was c

This is an open access artic
Genome properties and comparison
The C. pacaense draft genome consisted of 22 scaffolds.

Genome length was 2 672 129 bp, with a 50% of GC content. A
total of 2360 proteins were predicted. The draft genome

sequence of C. pacaense owned the smallest genome. Its GC
content was same as C. aldenense, but smaller than C. lavalense

and greater than others. Additionally, C. pacaense owned the
smallest number of predicted genes. Carbohydrate transport
and metabolism (and thus secondary metabolite biosynthesis,

transport and catabolism) were the predominant COGs cate-
gories identified within C. pacaense (Table 3). On the basis of

16S RNA similarity, the closest species was C. aldenense
(Table 4). This was in agreement with genome data, as

C. aldenense was also the closest species, with an OrthoANI
value of 89.9744% (C. aldenense) but below the 95% cutoff for

defining a species (Fig. 4).

Description of Clostridium pacaense sp. nov
Clostridium pacaense (pa.ca.en’se, L. masc. adj. pacaense, ‘of

PACA,’ the abbreviation of Provence Alpes Cote d’Azur, the
French area where the strain was isolated). In addition to the

characteristics in the genus description, cells are Gram variable
rRNA gene

ns C. bolteae C. amygdalinum C. aldenense C. saccharolyticum

—
94.3 —
95.8 94.1 —
94.1 98.8 94 —

alculated by Bioedit software [18].
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with a length of 3.5 μm and a width of 0.5 μm. It produces

α-glucosidase and napthol-AS-BI-phosphohydrolase. The major
fatty acids are C16H32O2, C14H28O2 and C16H30O2. The type

strain Marseille-P3100T has been deposited in the CSUR and
CCUG culture collections under accession numbers CSUR

P3100 and CCUG 71489, respectively. The type strain was
isolated from a stool sample from a Senegalese girl with
marasmus. The draft genome of the type strain is 2 672 129 bp

long with a DNA G+C content of 50%, and is available on the
EMBL-EBI scaffolds under accession numbers LS999944 to

LS999965.
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