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Adjuvant combinations may enhance or broaden the expression of immune responses to
vaccine antigens. Information on whether established Alum type adjuvants can be
combined with experimental CD1d ligand adjuvants is currently lacking. In this study,
we used a murine Clostridioides difficile immunization and challenge model to evaluate
Alum (Alhydrogel™), a-galactosylceramide (a-GC), and one of its analogs 7DW8-5 singly
and in combination as vaccine adjuvants. We observed that the Alum/a-GC combination
caused modest enhancement of vaccine antigen-specific IgG1 and IgG2b responses,
and a broadening to include IgG2c that did not significantly impact overall protection.
Similar observations were made using the Alum/7DW8-5 combination. Examination of the
impact of adjuvants on NKT cells revealed expansion of invariant NKT (iNKT) cells with
modest expansion of their iNKTfh subset and little effect on diverse NKT (dNKT) cells. Side
effects of the adjuvants was determined and revealed transient hepatotoxicity when Alum/
a-GC was used in combination but not singly. In summary these results showed that the
Alum/a-GC or the Alum/7DW8-5 combination could exert distinct effects on the NKT cell
compartment and on isotype switch to produce Th1-driven IgG subclasses in addition to
Alum/Th2-driven subclasses. While Alum alone was efficacious in stimulating IgG-
mediated protection, and a-GC offered no apparent additional benefit in the C. difficile
challenge model, the work herein reveals immune response features that could be
optimized and harnessed in other vaccine contexts.
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INTRODUCTION

The range of vaccine adjuvants currently deployed in the clinical
setting is limited. Aluminum-based ‘Alum’ formulations are and have
been for decades, those most commonly used. Commensurate with
development of prototype adjuvants that operate through diverse
mechanisms, there is interest in development of combination
adjuvant platforms (1–3). Such adjuvant combinations may
enhance or broaden the expression of immune responses to
vaccine efficacy or bring other benefits such as dose sparing.

Alum has a positive track record for efficacy when a Th2-
driven humoral immune response is desired, but it does not
stimulate good Th1-driven humoral (IgG2c) or cellular (CD8+

CTL) immunity [reviewed in (4, 5)]. Alum-enhanced humoral
responses require damage-associated molecular patterns
(DAMPs) such as uric acid to be released from Alum-damaged
cells (6). Uric acid in turn acts in an inflammasome-dependent
manner to boost antigen presentation by APCs such as dendritic
cells (DCs) and Th cell priming (7, 8). Alum also leads to
recruitment of numerous cell types including monocytes,
eosinophils, neutrophils, Natural Killer (NK) cells, and Natural
Killer T (NKT) cells to immunization sites (9).

Murine invariant NKT (iNKT) cells express a semi-invariant T
cell receptor (TCR) combining a Va14-Ja18 rearrangement with
Vb chains 8.2, 7, or 2 in mice (10–12). Human iNKT cells express a
semi-invariant Va24,Ja18,Vb11 TCR (13). The TCR on murine
and human iNKT cells recognizes the cell surface CD1d loaded with
glycolipid ligands such as a-galactosylceramide (a-GC) on APCs
(14). CD1d/glycolipid and TCR interactions facilitate activation of
NKT cells leading to regulation of anti-microbial and tumor
immunity, autoimmunity and self-tolerance (15). In studies by
our group and others, it has been observed that immunization with
iNKT-activating ligands enhance humoral and cellular immune
responses to co-administered antigens (Ags), pathogens, or tumors
(16–28). The a-GC glycolipid enhances adaptive immune
responses to malaria, cancer, influenza, and bacteria (and their
toxins) (15, 19, 20, 26–36). Although a-GC and its derivatives can
induce a strong Th1 response in vivo (32, 34), in the context of
humoral immunity, a more balanced Th1/Th2 response is also
observed (16, 18, 19, 36). The a-GC adjuvant has a shorter track
record than Alum, but is well tolerated in human subjects, and has
shown some promise in boosting tumor-specific Cytotoxic T
Lymphocyte (CTL) responses (37–39). Following intraperitoneal
(i.p.) or intravenous (i.v.) delivery using a polysorbate vehicle,a-GC
can over-stimulate iNKT cells and cause functional anergy (40, 41).
However, subcutaneous delivery in the absence of polysorbate can
avoid iNKT anergy (17). The 7DW8-5molecule, an analog ofa-GC
also has potent adjuvant effects on adaptive immune responses (42,
43). 7DW8-5 has a higher affinity for CD1d than a-GC and
consequently when delivered by the intramuscular route (i.m.) is
retained locally unlike a-GC which disperses and exerts systemic
effects (44).

Follicular helper iNKT (iNKTfh) cells represent a subset of
iNKT cells that arise through proliferation and activation of a
Bcl6 transcription factor-driven differentiation program (45–47).
The iNKTfh subset is characterized as TCRb+, CD1dtetramer+,

CD44hi, CXCR5hi, PD-1hi and secrete IL-4 and IL-21 (47, 48).
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Although a role in B cell help is evident for B cell responses, their
precise contribution to T-dependent versus T-independent and
primary versus recall/memory remains unclear (31, 46, 49).

Also related to iNKT cells, a group of CD1d-restricted diverse
NKT (dNKT) cells has been described which are non-reactive
with a-GC and express a variable TCR (50). The dNKT subset is
protective in autoimmune diabetes, experimental autoimmune
encephalomyelitis and Concanavalin A-induced hepatitis (51–
53) and can suppress tumor immuno-surveillance (52). In
contrast to iNKT cells that are known to mediate enhanced
antibody (Ab) responses against foreign Ag, little is known about
dNKT contributions to humoral immunity other than one report
by our group documenting reduced responsiveness to Imject™

Alum adjuvant in mice lacking dNKT cells (54).
C. difficile is a Gram positive bacterium that is the leading cause of

hospital derived infections, antibiotic-associated diarrhea and
pseudomembranous colitis. C. difficile can also cause systemic
disease that includes cardiotoxicity and multiple organ dysfunction
(55, 56). One of the defense mechanisms and correlates of protection
against C. difficile infection (CDI) includes a serum IgG response
against C. difficile toxins A and B (TcdA and TcdB) (57–59). We
have previously shown that both Alum (Imject™ and Alhydrogel™

(AL)) and the a-GC adjuvant can boost TcdB-specific Ab responses
(36). IgG-dependent protection against a toxin challenge and a live
pathogen challenge in a mouse infection model has been
demonstrated following immunization against TcdB when
Alhydrogel™ was used as an adjuvant (36, 60). Evidence is also
accumulating that targeting of oligo- or polysaccharide antigens on
C. difficile is a viable vaccine strategy (61, 62) and recent studies from
our group showed that a-GC could enhance protection following
vaccination with C. difficile polysaccharides (63). Although a
combination toxin- and carbohydrate-based vaccine may be
necessary for success in the clinic, toxin-based approaches allow a
clear examination of the contribution of the humoral immune
response to protection in challenge models.

In this study we evaluated Alum and a-GC adjuvants singly and
in combination for their ability to enhance immunity and protection
against C. difficile as compared to either adjuvant alone. We
measured TcdB-specific humoral immunity, systemic toxicity,
iNKT and dNKT expansion and differentiation into iNKTfh cells,
as well as protection against a live C. difficile challenge. We show that
a combination ofa-GC andAlum can broaden the humoral immune
responses and that 7DW8-5 can differentially stimulate iNKT and the
Alum / {alpha}-GC combination iNKTfh expansion. However, there
was little additional benefit with regard to protection against C.
difficile disease and the Alum / {alpha}-GC combination was
associated with transient hepatotoxicity. In summary the Alum/a-
GC combinationmay be useful for broadening humoral immunity to
some pathogens but may have limited utility for application to C.
difficile toxin-based vaccines.
MATERIALS AND METHODS

Ethics
This study was carried out in accordance with the recommendations
in the Guide for the Care and Use of Laboratory Animals of the
January 2022 | Volume 12 | Article 818734
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National Institutes of Health. All animal procedures were approved
by the OUHSC Institutional Animal Care and Use Committee.

Reagents
Key reagents were purchased as follows: HRP-conjugated anti-
mouse IgM, IgG1, IgG2b, IgG2c, and IgG3 (Southern Biotech,
Birmingham, AL); Biotin-conjugated anti-CXCR5 (2G8), and
FITC-conjugated anti-CD4 (GK1.5) mAbs and APC-conjugated
streptavidin were from BD Biosciences (San Jose, CA). The PE-
Cy7-conjugated anti-PD-1 (RPMI-30), PE-conjugated anti-IgD
(11-26c.2a), and BV421-conjugated anti-CD44 (IM7) mAbs were
purchased from Biolegend (San Diego, CA). FcR-blocking mAb
2.4G2 was from BioXCell (Lebanon, NH). Alhydrogel™ (In
vivogen, San Diego, CA); a-GC (Axorra, Farmingdale, NY);
7DW8-5 (Diagnocine, Hackensack, NJ); 2,2’-azino-bis(3-
ethylbenzothiazoline-6-sulphonic acid), ABTS (KPL,
Gaithersburg, MD); Cefoperazone (Sigma, St. Louis, MO). C.
difficile was cultured and TcdB and CTD purified as previously
described [28]. The CTD-encoding region of tcdb gene
(YP_001087135.1: nucleotides 4961–7111) from C. difficile strain
VPI-10463 was codon optimized and cloned into pET15b
(Genscript). The CTD gene was amplified using primers 5′-
GATCATATGCTGTATGTGGGTAACCG-3 ′ and 5 ′-
AACGGATCCTTATTCGCTAATAACCA-3′ containing
BamHI and Nde1 sites for cloning into pET15b. CTD
(representing VPI-10463 TcdB1651–2366) was expressed in
Escherichia coli BL21 star DE3 (Invitrogen) and purified by Ni2+

affinity chromatography (HisTrap, GE Life Sciences).

Mice
Female C57Bl/6 mice were purchased from Charles River
(Bethesda, MD, USA). Before experiments, all mice were
housed under the same specific-pathogen free conditions. Mice
were 6-8 week-old mice at the time of immunization and 10-12
weeks old at the time of antibiotic treatment and C.
difficile infection.

Adjuvant Dose and Immunizations
Previous work by our group documented that 1 to 4 µg a-GC
when administered s.c. led to iNKT expansion and activation
without over-stimulation (17), and with the higher dose boosting
T-dependent humoral immune responses (16, 17). Similarly 100
µl of a 2% suspension of Alum (Alhydrogel™, In vivogen, San
Diego, CA) exerted a strong adjuvant effect on CTD-specific IgG
responses in mice (36). Work by the Tsuji laboratory compared
effects of 1 µg and 10 µg 7DW8-5 adjuvant on anti-
hemagglutinin IgG responses and protection against influenza
challenge in mice, showing good protection at the higher dose
and more modest effects at the lower dose (42). For this study,
Alum, a-GC, and 7DW8-5 doses were reduced to determine if
suboptimal protection when adjuvants were administered singly
could be enhanced by their combination. Mice were anesthetized
with a vaporized 4% isoflurane/96% medical air mix and
immunized subcutaneously (s.c). Unless indicated otherwise,
mice received the following formulations: 10 µg of CTD in
sterile phosphate-buffered saline (PBS), adsorbed to Alum (25
µl of the 2% suspension) (36); CTD mixed with 1 µg a-GC or 2
Frontiers in Immunology | www.frontiersin.org 3
µg 7DW8-5 (49); CTD adsorbed to Alum and mixed with a-GC
or 7DW8-5. For prime boost experiments, mice received NP-
KLH adsorbed to Alum then NP-KLH mixed with 7DW8-5 14
days later (or vice versa). Where indicated, mice received
adjuvants but not ant igens , inc luding in toxic i ty
determinations. The timelines and vaccination schemes for this
study are outlined in Figure S1).

Flow Cytometry
Inguinal, and axillary lymph node cells and spleens were isolated
by mechanical disruption and red blood cells were removed by
hypotonic lysis with Tris-buffered Ammonium Chloride. The
cells were suspended in RPMI media with 1% FBS. The cells were
incubated with anti-FcR–blocking antibody (2.4G2, 20 µg/ml)
for 5 min and stained with fluorochrome conjugated mAbs for
30 min at room temperature. Cells were then washed with ice-
cold PBS three times (290 RCF, 5 min, 22°C) and fixed with 2%
w/v paraformaldehyde in PBS. The cells were analyzed on a
Stratedigm S1200Ex flow cytometer (Stratedigm, San Jose, CA).
Data were analyzed with FlowJo software (Tree Star,
Ashland, OR).

Toxicity Assay
Mice were immunized s.c. with Alum, a-GC, 7DW8-5, Alum/a-
GC, or Alum/7D5-8W in the amounts used for immunization
and protection experiments. Heparinized blood samples were
collected on days 1, 2 and 7. Blood samples were pooled (3 per
group to obtain 150 µl for analysis) and tested within 1 hr using
an Abaxa VetScan VS2 veterinary blood analyzer (Union City,
CA) in conjunction with a Comprehensive Diagnostic test
cartridge which measures the following: Albumin (ALB);
Alkaline Phosphate (ALP); Alanine Transaminase (ALT);
Amylase (AMY); Bilirubin (TBIL); Blood Urea Nitrogen
(BUN); Calcium (CA); Phosphate (PHOS); Creatinine (CRE);
Glucose (GLU); Sodium (NA+); Potassium (K+); Total Protein
(TP); Globulin (GLOB).

Bleeds
Blood samples were obtained by the retro-orbital route using
heparinized capillary tubes. Erythrocytes were removed by
centrifugation producing plasma samples that were stored at
4°C or -20°C as required.

ELISA
To measure antigen-specific antibodies, ELISA Max™ enzyme-
linked immunosorbent assay (ELISA) 96-well plates (Thermo
Fisher Scientific, Rochester, NY). were coated with 10 µg/ml of
antigen in Phosphate coating buffer (0.1 M Na2HPO4 in
deionized water, pH=9.0) overnight at 4°C. Wells were blocked
with 1% Bovine Serum Albumin in PBS-T (PBS 1X, 0.05%
tween) for 2 hours at room temperature, and incubated
overnight at 4°C with serially –diluted mouse sera. Wells were
washed with PBS-T and then incubated for 1h with Horse-
Radish Peroxidase (HRP)-conjugated IgM (1:5000), IgG1
(1:8,000), IgG2b (1:5000), IgG2c (1:5000), or IgG3 (1:5000).
Wells were washed and developed for 5 min at room
temperature with ABTS substrate (KPL, Gaithersburg, MD).
January 2022 | Volume 12 | Article 818734
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A 10% w/v SDS solution was used to stop the reaction. Endpoint
Ab titers were determined by measuring the O.D at 405 nm.

Preparation of C. difficile Spores
In this study, the VPI 10463 strain of C. difficile was used for
infection of mice (64). C. difficile VPI 10463 spores were prepared
and isolated as previously described and all steps were performed
anaerobically at 37°C. Briefly, pre-reduced Columbia Broth (BD)
was inoculated with a single colony of bacteria. The culture was
then transferred and grown in Clospore media, a liquid media that
allow production of high titers of C. difficile spores (65). Spores
were harvested and stored in sterile water.

C. difficile Infection
C. difficile infection was induced in mice as previously described
(60). Briefly, mice were treated with Cefoperazone sodium salt
(Sigma-Aldrich, St. Louis, MO) at a final concentration of 0.5
mg/ml in distilled drinking water for five days followed by a two-
day sterile water period. Mice were then orally gavaged with 105

CFU of C. difficile VPI 10463 spores. The weights of the mice
were monitored once per day for up to 14 days. Fecal samples
were collected, and C. difficile bacteria were quantified on day 3
post gavage to assess bacterial burden.

Fecal Bacteria Enumeration
Numbers of shed bacteria were quantified on day 3 post-gavage,
unless otherwise indicated. Fecal pellets were homogenized with
1X PBS, serially diluted, plated on TCCFA and cultured under
anaerobic conditions at 37°C. CFUs were counted within 24 and
48 hours (66).

Statistics
Data were analyzed using GraphPad Prism 8.1 (La Jolla, CA,
USA). A two tailed T-test or a Mann-Whitney test, and One-way
ANOVA with Dunnett’s multiple comparison test were used for
statistical analysis between two and multiple experimental
groups respectively. A Two-way repeated measures ANOVA
with Dunnett’s multiple comparisons test was used to
determine statistical significance in weight loss over time.
RESULTS

A Single Dose of Alum-Adsorbed CTD
Affords Sufficient Protection Against
C. difficile but Inclusion of CD1d Ligand
Broadens the Humoral Immune
Response to TcdB
As expected, naïve mice exhibited severe weight loss over 3 days
following C. difficile spore challenge before recovery over a
further 7 day period (Figure 1A). Mice immunized with the
Alum and a-GC adjuvants in the absence of antigen (CTD) had a
similar disease course to naïve mice showing that the adjuvants
afforded no protection in the absence of antigen. Immunization
with the CTD antigen in the absence of adjuvant resulted in
partial protection, blunting overall weight loss, but did not alter
Frontiers in Immunology | www.frontiersin.org 4
the course of disease. Immunization with CTD plus a-GC had a
modest effect on weight loss and delayed maximum weight loss
by 1-2 days. Immunization with the Alum-adsorbed CTD
vaccine was strongly protective with minimal weight loss.
Immunization with Alum-adsorbed CTD plus a-GC (referred
to hereafter as the combination vaccine), had no further
discernable effect on weight loss. The CTD-specific Ab
response was dominated by IgG1 (Figure 1B). Alum-adsorbed
CTD induced a strong IgG1 response whereas adjuvant alone,
CTD alone, and CTD plus a-GC did not. The combination
vaccine modestly increased IgG1 titers and the effects were
statistically significant. Although the CTD-specific IgG2b
responses were lower than that observed for IgG1, effects of
the adjuvants singly and in combination were similar. In
contrast, all vaccine modalities failed to induce an IgG2c
response with the exception of the combination vaccine, which
therefore broadened the humoral response. As expected, none of
the immunization modalities affected bacterial burden
(Figure 1C). This is because the vaccine targets secreted toxins
which largely account for pathology associated with C. difficile
infection. In a follow up experiment, CTD was tested in
combination with a higher 4 µg a-GC dose and followed with
a booster vaccine consisting of CTD only. In that experiment,
our prior observations that a-GC could enhance the IgG
response were observed (36, 49), confirming that a-GC was
functional in our study (data not shown). These data
demonstrate that inclusion of a-GC in a vaccine platform
containing Alum has little effect on protection against C.
difficile but does broaden the humoral immune response to
include IgG2c.

We also tested a combination vaccine consisting of Alum-
adsorbed CTD plus the functional a-GC analog 7DW8-5 to
determine if there were discernable features from the response to
the a-GC-containing vaccine (Figure 2). As expected, naïve mice
lost a significant amount of body weight then mounted a partial
recovery showing a more prolonged course of infection than in
the previous experiment (Figure 2A). In contrast, immunized
mice were protected from weight loss. The Ab titers were similar
to that observed when using a-GC as the adjuvant with a high
IgG1 titer, moderate IgG2b titer and low IgG2c titer (Figure 2B).
C. difficile spore counts in the fecal pellets were unaffected by
vaccination as expected (Figure 2C). These data show that
7DW8-5 did not result in changes to Ab profiles or protection
beyond that induced by a-GC.

NKT Cell Expansion With Single and
Combination Adjuvants
Since a-GC and 7DW8-5 are well established to activate iNKT
cells and humoral immune responses to Alum Imject adjuvant
have a partial dependence on dNKT cells, we examined these
populations by flow cytometry 8 days after adjuvant
administration (Figure 3 and Figure S2). Splenocytes were
examined for TCRb+, NK1.1+ lymphocytes which are
consistent with iNKT and dNKT cells collectively. Using CD1d
tetramers loaded with the PBS57 artificial a-GC ligand allows
differentiation between the majority iNKT (TCRb+, NK1.1+,
January 2022 | Volume 12 | Article 818734
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A

B

C

FIGURE 1 | A single dose of Alum-adsorbed CTD affords sufficient protection against C. difficile but inclusion of a-GC broadens the humoral immune
response to TcdB. (A) B6 mice were immunized s.c. as indicated with a single dose of each vaccine. After 28 days, mice were bled and treated with
Cefoperazone for 5 days. After antibiotic withdrawal and provision of regular drinking water for 2 days, mice were orally gavaged with 5 x 104 live C. difficile spores.
Weights were then monitored daily. Graphs show mean ± SEM percentages of pre-infection weights for 5 mice per group. A Two-way repeated measures ANOVA
with Dunnett’s multiple comparisons test was used to detect statistically significant differences in weight. Data are representative of two similar experiments. (B) Anti-
CTD IgG1 (left), IgG2b (middle), and IgG2c (right) were detected by ELISA. Endpoint titers are shown, and each data point represents an individual mouse. Data from
two pooled experiments is shown. Statistical significance was detected by ANOVA with Dunnett’s multiple comparison test. (*P < 0.05; **P < 0.01; ****P < 0.0001).
(C) C. difficile spore counts in day 3 fecal pellets were determined as described in materials and methods. Pellets could not be collected from every mouse which
was attributed to dehydration.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 8187345
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tetramer+) and minority dNKT (TCRb+, NK1.1+, tetramer-)
populations. When Alum and a-GC were administered singly
significant increases in the frequency of iNKT cells and dNKT
cells were not observed. The Alum/a-GC combination led to an
increase in iNKT cell frequency (Figure 3A and Figure S3A).
Neither Alum and a-GC administered singly or combined led to
significant increases in absolute numbers of iNKT cells and
dNKT cells. However, a-GC and the Alum/a-GC combination
led to a significant increase in the iNKT/dNKT cell ratio. 7DW8-
5 alone or in combination with Alum had no significant effect on
iNKT or dNKT numbers (Figure 3B).

Lymph node cells were also analyzed for the presence of
iNKTfh cells (Figure 4). The iNKTfh population can be defined
as those expressing high levels of PD-1 and CXCR5 within the
PD-1+/CXCR5+ population (47). Indeed we previously
demonstrated that ablation of the Bcl6 transcription factor in
the CD4+ lineage resulted in a selective loss of the PD-1hi/
CXCR5hi population (49). Alum did not cause detectable
expansion of PD-1+/CXCR+ or PD-1hi/CXCR5hi iNKT cells.
The a-GC adjuvant and the Alum/a-GC combination did not
cause statistically significant increases in iNKT frequencies or
Frontiers in Immunology | www.frontiersin.org 6
that of the PD-1+/CXCR5+ or PD-1hi/CXCR5hi populations
(Figure 4A and Figure S3B). However, a-GC and the Alum/
a-GC combination caused statistically significant increases in the
absolute numbers of iNKT cells, while Alum/a-GC significantly
increased the PD-1+/CXCR5+ population (Figure 4B). The
Alum/a-GC combination caused a variable increase in the PD-
1hi/CXCR5hi population which was not statistically significant
(Figure 4B). The 7DW8-5 adjuvant and the Alum/7DW8-5
combination did not significantly increase frequencies or total
numbers of iNKT cells, PD-1lo/CXCRlo or PD-1hi/CXCR5hi

iNKT cells. These data show that a-GC and the Alum/a-GC
combination in the amounts given expand PD-1+/CXCR5+

iNKT cells but poorly stimulate expansion and differentiation
of functional follicular helper PD-1hi/CXCR5hi iNKT cells.

Transient Toxicity on Combining Alum and
CD1d-Binding Adjuvants
Following immunization with Alum, or a-GC, significant hepatic
toxicity could not be detected in response to either agent and was
evidenced by maintenance of baseline levels of Alanine
Transferase (ALT) on days 1, 2 and 7 following immunization
A

B C

FIGURE 2 | Inclusion of the a-GC analog 7DW8-5 in the CTD/Alum vaccine does not confer changes to IgG subclass or protection beyond that provided by a-GC.
(A) B6 mice were immunized s.c. with PBS vehicle (naïve) a single dose of the CTD/Alum plus 7DW8-5 vaccine before antibiotic treatment and C. difficile spore
challenge. Weights were then monitored daily. Graphs show mean ± SEM percentages of pre-infection weights (Naïve, n=7, Immunized, n=8). A Two-way repeated
measures ANOVA with Dunnett’s multiple comparisons test was used to detect statistically significant differences in weight. (*P < 0.05; **P < 0.01; ***P < 0.001). (B)
Anti-CTD IgG1 (left), IgG2b (middle), and IgG2c (right) were detected by ELISA. Endpoint titers are shown, and each data point represents an individual mouse.
Statistical significance was detected by 2-tailed Mann-Whitney U test. (C) C. difficile spore counts in day 3 fecal pellets were determined as described in Materials
and Methods.
January 2022 | Volume 12 | Article 818734
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(Figure 5A). In contrast, 7DW8-5 alone, the combination of
Alum/a-GC and of Alum/7DW8-5 led to a transient increase in
serum ALT concentration. The ALT concentrations were elevated
on days 1 and returned to baseline by day 2 or between day 2 and 7
(Figure 5A). A comparison of ALT concentrations at their peak
on day 1, revealed that the Alum/a-GC combination caused more
ALT release than 7DW8-5 alone or the Alum/7DW8-5
combination (Figure 5B).
Frontiers in Immunology | www.frontiersin.org 7
Several other factors were not significantly affected by the Alum/
a-GC or the Alum/7DW8-5 combinations (Table 1). 7DW8-5
alone and both adjuvant combinations caused a temporary drop in
Alkaline Phosphatase concentrations for reasons that are unclear.
All adjuvants singly and in combination caused a temporary drop in
blood glucose concentration which only reached significance with
the Alum/a-GC combination. 7DW8-5 alone and the Alum/
7DW8-5 combination caused elevations in globulin concentration,
A

B

FIGURE 3 | The Alum/a-GC combination adjuvant increases iNKT cell numbers and the iNKT/dNKT ratio. Mice were immunized as indicated and after 8 days,
splenocytes prepared and examined by flow cytometry. (A) Shows representative flow cytometry plots of total NKT cells (iNKT and dNKT, left column) and of iNKT
cells (right column). (B) Shows mean ± SEM absolute numbers of iNKT cells (upper panel) and dNKT cells (middle panel). dNKT numbers are calculated by
subtracting the TcRb+/tetramer+ population from the TCRb+/NK1.1+ population. Also shown is the iNKT/dNKT ratio for absolute numbers (lower panel). Data show 3
pooled experiments with similar results (PBS, Alum n=12, a-GC, Alum/a-GC n=11, 7DW8-5, Alum/7DW8-5 n=3). One way ANOVA with Dunnett’s post-test was
used to detect significant differences (*P < 0.05; ***P < 0.001; ****P < 0.0001).
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but responses were variable and non-significant. This may indicate
inflammation following adjuvant administration. These data show
that the combination of Alum and CD1d-binding adjuvants
resulted in transient hepatotoxicity, and which resolved quickly
after immunization. Other factors were not altered to a significant
degree, indicating that the adjuvant combination appeared to be
generally well-tolerated.

Humoral Immunity Using Alum and
7DW8-5 in a Prime Boost Strategy
Since additive or synergistic effects of administering Alum and
a-GC or 7DW8-5 together were not observed, mice were subject
Frontiers in Immunology | www.frontiersin.org 8
to a prime-boost strategy in which they received NP-KLH/Alum
in an initial vaccine then NP-KLH/7DW8-5 in a booster vaccine
(Figure S4). Controls included omission of the adjuvant from
the prime and from the booster vaccine. IgM and IgG2c titers
were observed to be uniform across all experimental groups.
Clear adjuvant effects of Alum in the priming dose were observed
for IgG1, IgG2b, and IgG3. However, 7DW8-5 exerted no
additional effect on titers when administered in the booster
vaccine. Absence of adjuvant in the priming dose followed by
inclusion of 7DW8-5 in the booster failed to exert a significant
adjuvant effect on titers. Therefore, as expected, Alum exerted a
strong adjuvant effect on Th2 responses (IgG1) and 7DW8-5
A

B

FIGURE 4 | Expansion of iNKTfh cells following administration of single and combination adjuvants. Lymph nodes from mice described in this figure were analyzed by flow
cytometry for iNKTfh cells. (A) Shows representative flow cytometry plots of CXCR5+/PD-1+ and CXCR5hi/PD-1hi events after gating on TCRb+/tetramer+ events. (B) Graphs
show mean ± SEM absolute numbers of TCRb+/tetramer+, CXCR5+/PD-1+ and CXCR5hi/PD-1hi events. Data shown 2 pooled experiments with similar results (PBS, Alum
n=6, a-GC, Alum/a-GC n=6, 7DW8-5, Alum/7DW8-5 n=3). One way ANOVA with Dunnett’s post-test was used to detect significant differences (*p < 0.05).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lang et al. Alum and CD1d-Ligand Adjuvant Combinations
when included in a booster vaccine did not alter the IgG
subclass profile.

Another group of mice was immunized with NP-KLH/
7DW8-5 in the priming dose with NP-KLH/Alum being
administered as the booster dose, reversing the order from the
previous experiment. Comparison of these two groups revealed
no difference in IgM or IgG3 titers in primary or secondary
bleeds (Figure S5). In contrast, 7DW8-5 was less effective at
Frontiers in Immunology | www.frontiersin.org 9
stimulating production of IgG1, IgG2b, and IgG2c than Alum as
evidenced by primary bleed titers. Upon completion of the
immunization schedule, secondary bleed titers revealed that
the order in which the adjuvants was administered had no
effect on IgM, IgG1, or IgG3 production. However,
administration of 7DW8-5 first led to lower IgG2b and IgG2c
titers than administration of Alum first. This data therefore
suggests that the order in which adjuvants are administered
affected Ig class switch and thus the overall production of Th1-
driven subclasses (IgG2c).
DISCUSSION

We have shown that the combination of Alum (Alhydrogel™)
with a-GC or 7DW8-5 did not confer substantial advantage with
regards to protection against C. difficile. This was the case using
relatively low amounts of the CTD antigen and Alum which
proved to be quite effective. Examination of Ab subclasses
revealed that inclusion of a-GC led to increased production of
IgG1, IgG2b, and IgG2c, perhaps altering the Th2/Th1 balance
induced by Alum. Although this did not translate to advantages
in protection against C. difficile, this broadening of the Ab
subclasses could be useful in other infectious disease contexts
where a Th1-driven Ab response can be beneficial.

Inclusion of a-GC or 7DW8-5 in an Alum/CTD vaccine
conferred the same protection against C. difficile and was
associated with similar IgG1, IgG2b, and IgG2c profiles.
However, a-GC was more efficient at stimulating iNKT cell
expansion than 7DW8-5. Interestingly, 7DW8-5 and Alum/
7DW8-5 did not stimulate increases in PD-1+/CXCR5+ or PD-
1hi/CXCR5hi (iNKTfh) cells. In a previous report, we
demonstrated that iNKT cell expansion following a-GC
treatment was a product of proliferation and differentiation
(46), which contrasts with 7DW8-5. The localized versus
systemic distribution of 7DW8-5 and a-GC respectively (44)
may be responsible for differential iNKTfh expansion. This is
because different CD1d-expressing APCs could present the
ligand to distinct iNKT populations in different environments
and exert distinct effects on their expansion and differentiation
into iNKT cells. This suggests that different CD1d ligands could
be engineered to expand iNKTfh cells or to avoid this effect
dependent on the response required.

There are several reports that the iNKT cell population can
influence memory to protein antigens (17, 21, 27). Thus far it
remains unclear whether iNKTfh cells are associated with
enhanced memory B cell responses against protein antigens.
Some information is available regarding iNKTfh cells and
polysaccharide antigens. The Bendelac group demonstrated
iNKT/iNKTfh cell-driven anti-polysaccharide responses (31).
They reported that immunization with capsular pneumococcal
polysaccharides and a-GC resulted in class-switch
recombination, affinity maturation and B cell memory but with
a limited expansion of iNKTfh cells (31). We were unable to
observe convincing Ab recall responses to T-independent
A

B

FIGURE 5 | Transient hepatotoxicity on combining Alum and CD1d-binding
adjuvants. B6 mice were immunized s.c. with adjuvants indicated singly
or in combination and in doses used for other experiments in the study.
Heparinized blood samples were collected and pooled and analyzed as
described in materials and methods. (A) Graph shows ALT concentration
over time and is representative of four independent experiments. Each data
point represents pooled blood samples from 3 individual mice. (B) Shows the
mean ± SD ALT concentration for 4 experiments at the 24 hr time point. Data
were analyzed by ANOVA followed by Dunnett’s post-test.
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carbohydrate Ags co-administered with a-GC although
increased iNKTfh expansion, primary Ab responses and class
switch were observed (67). Taken together, these studies suggests
that iNKTfh cells provide additional B cell help for anti-
polysaccharide responses but do not induce B cell memory.

Administration of Alum, a-GC, and 7DW8-5 singly did not
result in overt signs of toxicity as evidenced by stable
concentrations of serum ALT and several other metabolites
and serum proteins. In contrast, the Alum/a-GC combination
resulted in a transient elevation of ALT. Approximately 30% of
murine hepatic lymphocytes are iNKT cells (68). In humans, the
frequency of iNKT cells in liver is much lower at around 0.5%
(68) and a-GC has been well-tolerated in the clinic in
experimental cancer immunotherapies (39). The Alum/a-GC
combination may not be of concern in terms of future
administration to humans, but our results do suggest that the
systemic distribution of a-GC in combination with Alum can
result in subsequent NKT-dependent damage to hepatocytes.
Crucially, toxicity can be minimized using 7DW8-5 which
remains more localized than a-GC (44).
Frontiers in Immunology | www.frontiersin.org 10
The data herein, suggest that inclusion of a-GC or its analogs
in Alum-based vaccines could be optimized and applied to
vaccination against C. difficile or other pathogens. We recently
reported that a-GC is a good adjuvant for stimulating protection
against C. difficile when surface polysaccharide II (PSII), a T-
independent antigen is used for immunization (63). In that
study, anti-PSII IgG1 was observed using a PSII/a-GC vaccine
and crucially lowered the bacterial burden. Arguably, an Alum/
CTD prime followed by a PSII/a-GC booster could be a useful
strategy, although as our initial data show, the order of events in
a prime boost strategy may be important.

Our findings therefore suggest that a-GC could be optimized
for inclusion in existing adjuvant platforms but toxicity, desired
Ab subclass, and the order of events in a prime boost strategy will
need to be examined. The physicochemical properties of Alum
formulations including Alhydrogel such as size, shape, charge,
hydration, antigen adsorption, and aggregation can all be
manipulated [reviewed in (69)]. Arguably, the interaction of
Alum with glycolipid adjuvants warrants investigation
and optimization.
TABLE 1 | Blood analysis following administration of adjuvants singly and in combination.

PBS Alhydrogel a-GC Units

Mean SD n Mean SD n Mean SD n

Albumin 4.27 0.06 3 4.27 0.25 3 4.23 0.06 3 g/dL
Alkaline Phosphatase 105.33 6.51 3 94.67 15.82 3 101.33 7.57 3 U/L
Alanine Transferase 33.67 4.93 3 40.00 2.65 3 59.33 15.53 3 U/L
Amyloid P 623.33 38.70 3 686.67 57.62 3 634.00 56.93 3 U/L
Total Bilirubin 0.30 0.10 3 0.33 0.06 3 0.43 0.23 3 mg/dl
Blood Urea Nitrogen 21.33 3.21 3 22.67 3.51 3 22.67 5.03 3 mg/dl
Calcium 9.87 0.23 3 10.10 0.20 3 10.10 0.00 3 mg/dl
Phosphate 5.50 0.40 3 5.70 0.66 3 6.10 0.61 3 mg/dl
Creatinine 0.27 0.06 3 0.30 0.18 3 <0.2 na 3 mg/dl
Glucose 211.33 19.14 3 173.67 19.86 3 169.00 11.79 3 mg/dl
Na+ 147.33 3.21 3 152.67 2.08 3 150.67 2.08 3 mmol/L
K+ 6.10 0.00 3 6.17 0.38 3 5.93 0.15 3 mmol/L
Total Protein 5.23 0.12 3 5.37 0.15 3 5.33 0.15 3 g/dL
Globulin 0.93 0.06 3 1.13 0.12 3 1.07 0.25 3 g/dL

AL/a-GC 7DW5-8 AL/7DW5-8 Units

Mean SD n Mean SD n Mean SD n

Albumin 3.83 0.058 3 3.70 0.42 2 3.60 0.85 2 g/dL
Alkaline Phosphatase 78.67 * 12.01 3 63.50 * 6.36 2 70.00 * 14.14 2 U/L
Alanine Transferase 582.67 *** 196.84 3 158.50 44.55 2 121.00 33.94 2 U/L
Amyloid P 597.33 58.60 3 597.00 1.41 2 828.00 417.19 2 U/L
Total Bilirubin 0.33 0.06 3 0.30 0.00 2 0.30 0.00 2 mg/dl
Blood Urea Nitrogen 18.33 5.86 3 23.50 0.71 2 20.00 1.41 2 mg/dl
Calcium 10.07 0.12 3 10.15 0.07 2 10.20 0.14 2 mg/dl
Phosphate 4.93 0.49 3 5.15 0.21 2 5.20 0.00 2 mg/dl
Creatinine <0.2 na 3 0.30 0.14 2 0.25 0.07 2 mg/dl
Glucose 140.33 * 27.02 3 159.50 53.03 2 176.50 30.41 2 mg/dl
Na+ 150.00 0.00 3 152.00 0.00 2 150.50 0.71 2 mmol/L
K+ 5.67 0.15 3 6.15 0.07 2 6.15 0.49 2 mmol/L
Total Protein 5.17 0.058 3 5.50 0.14 2 5.40 0.14 2 g/dL
Globulin 1.33 0.058 3 1.75 0.49 2 1.85 0.78 2 g/dL
January 2022 | Volume 12 | Article
Data shows mean + SD values for the metabolites and proteins indicated. Replicates indicated (n) refer to the number of independent experiments but in each experiment blood samples
from 3 mice were pooled to generate sufficient volume for analysis. Values for creatinine (italics) were below the limits of detection (<0.2 mg/dL) in the a-GC and Alum/ a-GC samples.
Statistically significant decreases are shown in italic orange and increases are shown in bold purple as determined by one-was ANOVA with Dunnett’s post-test. (*p,0.05, ***P < 0.001).
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