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Sepsis is a debilitating condition associated with a high mortality rate that greatly strains

hospital resources. Though advances have beenmade in improving sepsis diagnosis and

treatment, our understanding of the disease is far from complete. Mathematical modeling

of sepsis has the potential to explore underlying biological mechanisms and patient

phenotypes that contribute to variability in septic patient outcomes. We developed a

comprehensive, whole-body mathematical model of sepsis pathophysiology using the

BioGears Engine, a robust open-source virtual human modeling project. We describe

the development of a sepsis model and the physiologic response within the BioGears

framework. We then define and simulate scenarios that compare sepsis treatment

regimens. As such, we demonstrate the utility of this model as a tool to augment sepsis

research and as a training platform to educate medical staff.

Keywords: sepsis, sepsis models, sepsis markers, sepsis management, inflammatory models, whole-body

modeling, open-source programming tools

INTRODUCTION

Sepsis represents an array of dysregulated physiologic responses from the body in response to
suspected or confirmed infection. The physiologic changes are often overwhelming, can result
in severe tissue damage, and are potentially life-threatening. Large cohort studies indicate sepsis
is a leading contributor to hospital mortality (Liu et al., 2014). Patients who acquire sepsis in
the hospital have a mortality rate of 25% (Rhee et al., 2017). Sepsis also accounts for 6.2% of
the aggregate costs for all hospitalizations, or nearly $23.7 billion annually, making it the most
expensive condition treated in the hospital (Torio and Moore, 2016). There is also increasing
recognition of sepsis survivors experiencing long-term disability (Iwashyna et al., 2010).

Early identification of septic patients and rapid intervention with appropriate management
is imperative. Suspected infection criteria and the Sequential Organ Failure Assessment (SOFA)
score were introduced as part of Sepsis-3 (Singer et al., 2016), replacing the previous definitions
of sepsis and septic shock last revised in 2001 (Levy et al., 2003). While the Sepsis-3 definitions
reflect improved understanding of sepsis pathobiology and improved specificity, no single sepsis
definition fully captures the complexity of the syndrome. Numerous potential mediators, host
responses, and organ system interactions affect the evolution of sepsis within an individual patient.
For similar reasons, there is no universally accepted management protocol for sepsis. Three large
randomized controlled trials have not shown protocol-based resuscitation methods improved
outcome compared to standard of care (ARISE Investigators and the ANZICS Clinical Trials
Group, 2014; ProCESS Investigators, 2014; Mouncey et al., 2015).
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Outcomes for septic patients will not improve until we attain
a better understanding of the disease and how to treat it.
To this end, mathematical modeling can provide significant
insight and momentum. While models cannot replace clinical
trials, they can drive hypothesis development, narrow the focus
of research, and complement medical education. The simplest
mathematical models of sepsis typically describe a three- to four-
dimensional system comprised of a combination of early and late
immune responses, a native anti-inflammatory response, and a
measurement of tissue damage (Kumar et al., 2004; Reynolds
et al., 2006; Zuev et al., 2006; Jarrett et al., 2015; Caudill and
Lynch, 2018). Other, higher-dimensional, models discretize the
stages of inflammation into mass-action relationships involving
specific pro- and anti-inflammatory mediators that have been
implicated in sepsis. These models focus on varying aspects
of systemic inflammation such as macrophage recruitment
(Smith et al., 2011; Schirm et al., 2016), coagulation (Kumar,
2004), hypotension secondary to nitric oxide (NO) accumulation
(Kumar, 2004; Chow et al., 2005; Brady, 2017), endothelial
and epithelial tissue barrier characteristics (Reynolds, 2008;
Domínguez-Hüttinger et al., 2017), and adaptive immunity (Shi
et al., 2015). Most models published in this field consist of ever-
growing systems of ordinary or partial differential equations,
though some employ stochastic (Song et al., 2012) or machine
learning (Mai et al., 2015) techniques.

Though informative, these models by and large do not
comprehensively relate the systemic inflammation cascade to
observable clinical physiology. For instance, models that describe
the relationship between inflammation and blood pressure are
generally empirical (Kumar, 2004; Chow et al., 2005; Brady,
2017). We have demonstrated that a physics-based, lumped
parameter cardiopulmonary engine can be hybridized with a
mathematical model of systemic inflammation to realistically
simulate the observable progression of sepsis. The physiology
engine in question—BioGears—contains numerous validated
systems and feedback models capable of capturing complex and
dynamic physical interactions. BioGears also models numerous
intervention aspects, such as fluid resuscitation and drug
administration, meaning that detailed sepsis treatment scenarios
can be investigated for educational, research, and training
purposes. Furthermore, BioGears is provided as open-source
software, so the methods described herein can be replicated and
extended by interested users.

MATERIALS AND METHODS

Overview of BioGears Architecture and
Design
BioGears—an open-source project developed in C++ byApplied
Research Associates—is a virtual physiological human model
created with the intention of advancing medical training and
research. It consists of three core components: the Common
Data Model (CDM), the Synthetic Environment (SE), and the
BioGears Engine (Figure 1). The source code, build instructions,
bug reporter, and community forum can be found at https://
github.com/BioGearsEngine.

Common Data Model
The CDM promotes input/output (I/O) transparency by
establishing a communication standard for the transfer of
physiology data. The current implementation uses an Extensible
Schema Definition (XSD) to create a well-defined interface in
a common data interchange format. Using XSD allows CDM
applications to be stored in the human-readable and self-
describing Extensible Markup Language (XML). Additionally,
multiple open-source libraries exist for converting XSD to native
data bindings that generate the code required to interact with and
read the CDM, reducing the amount of interaction required with
the schema.

Synthetic Environment
The Synthetic Environment is an object-oriented, C++ based
Application Programming Interface (API) that implements
an abstract Physiology Engine class. This layer of abstraction
makes the Physiology Engine extendable to any number
of engine instances of varying fidelity. In addition, the SE
includes abstract interfaces for patient definition, physiological
concepts (such as substances, organs, and systems), numerical
solvers, and a unit safe scalar implementation that supports
basic dimensional analysis. The SE solvers supported at
present pertain specifically to lumped-parameter models
(see section BioGears Engine), but the API does not
strictly enforce them. Developers can therefore implement
physiology engines with different numerical underpinnings
and retain compatibility with BioGears-based integrations. As
a further convenience, the CDM represents all SE objects, so
developers automatically receive full support for physiology
state serialization to disk by using the SE as the basis for
their engine.

BioGears Engine
We refer to our specific Physiology Engine instance as the
BioGears Engine. The heart—so to speak—of the BioGears
Engine is an electric circuit analog characterizing the fluid
dynamics of the cardiopulmonary system. Such circuit
representations have a storied history in physiology, beginning
with the windkessel model developed by Otto Frank to
describe cardiac pumping (Frank, 1899). Frank’s original
windkessel contained two elements: a resistor representing
vessel resistance to flow and a capacitor representing vessel
compliance. Subsequent work led to the addition of a second
resistor (the three-element windkessel) and an inductor
(four-element windkessel) to capture aortic impedance
(Westerhof et al., 2008).

While windkessel models originally represented system-
wide flow characteristics, BioGears uses a series of connected
windkessels to model blood flow in each organ and in major
vessels. These organ-level windkessels for the most part contain
three elements (two resistors and a capacitor), though some
organs like the kidneys have expanded circuit levels to increase
fidelity. Pumping of the heart occurs by adjusting the compliance
of the cardiac windkessel according to validated pressure-volume
data. A similarly constructed, though smaller, circuit comprises
the BioGears respiratory system, which also contains diffusion

Frontiers in Physiology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 1321

https://github.com/BioGearsEngine
https://github.com/BioGearsEngine
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


McDaniel et al. BioGears Sepsis and Treatment Model

FIGURE 1 | An overview of the BioGears project. The CDM stores BioGears data using an extensible schema definition (XSD) and transfers it in XML format. XSD

elements are convereted to data bindings from which the Synthetic Environment (SE) is derived. The SE defines an abstract physiology application programming

interface (API). This API contains interfaces of physiological relevance and of convenience utilities. The BioGears Engine is the implementation of the synthetic API

being developed by Applied Research Associates. The BioGears Engine contains mechanistic models describing major physiological systems and action models

describing the effects of physiological insults (e.g., sepsis and hemorrhage) and interventions (e.g., drugs and fluid infusion).

models defining gas exchange. Collectively, these circuits
constitute a lumped parameter, or “zero-dimensional,” system.
That is, because no spatial component exists, the pressure,
volumes, and flows calculated on each circuit represent values
averaged (lumped) by organ. Such an approach is appropriate
for a model of this size considering the computational cost
incurred by increasing fidelity. Higher dimensional models
require numerical solution of some form of the Navier-
Stokes equations (either the full system or a simplification
assuming, for instance, radial symmetry or low Reynolds
number) (Batchelor, 1970; Olufsen and Nadim, 2004). Given
that BioGears aims to support simulation at speeds faster
than real time, incorporating these models is not within the
scope of this effort. Future research considering a multi-scale
cardiovascular system would be one possible bridge between
modeling paradigms.

The BioGears Engine organizes lumped data hierarchically
into compartments. Top-level compartments generally represent
organs or systems, with sub-compartments representing entities
such as the vascular, tissue, extracellular, and intracellular
spaces. All compartments collectively associated with a circuit
constitute a graph. The engine maintains compartment overlays
and circuit-to-graph mapping by implementing a Compartment

Manager class defined by the SE. Each simulation cycle, the
BioGears Engine solves all circuit states using an SE numerical
solver. The Compartment Manager then pulls information
from the circuit to determine substance fluxes across its
associated graph. For instance, the engine calculates oxygen
transfer between the heart and aorta compartments on the
cardiovascular graph by querying the flow across the heart
to aorta path on the cardiovascular circuit. If provided,
user-defined patient parameters, such as heart rate (HR),
systolic blood pressure (SBP), diastolic blood pressure (DBP),
and respiration rate (RR), determine the baseline state of
all circuits and graphs; otherwise the engine defaults to
standard values.

Numerous chemical and physics-based models have
been built upon this backbone to produce a fast and
accurate whole-body physiology model. Examples of
such models include: a rudimentary nervous system with
baroreceptor and chemoreceptor feedback that modifies
cardiovascular and respiratory activity; an active transport
model that maintains ionic gradients across intracellular
and extracellular compartments; a physiologically-based
pharmacokinetic/pharmacodynamic (PBPK/PD) model that
tracks the concentration-effect profile of numerous drugs; a

Frontiers in Physiology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 1321

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


McDaniel et al. BioGears Sepsis and Treatment Model

gastrointestinal model that determines rates of nutrient digestion
and oral drug absorption; a renal feedback model that regulates
urine production and substance filtration and reabsorption;
and a metabolic consumption and production method that
determines the energy demands of each organ. Furthermore,
numerous actions, insults, and conditions can be applied to the
system, ranging from acute hemorrhage to diabetes. Detailed
documentation of these models and actions can be found at
https://biogearsengine.com/. Model development is ongoing—
as this paper demonstrates—and the documentation will be
updated appropriately.

BioGears Sepsis Model
Acute Inflammatory Response (AIR) Model
We based our initial model of inflammation in BioGears
on the diverse shock model of Chow et al. (2005). Though
optimized using murine data, this model considers a wide
range of pro- and anti-inflammatory mediators implicated
in human models of inflammation, such as tumor necrosis
factor alpha (TNF) and interleukins 6 and 10 (IL-6, IL-
10) (Zhang and An, 2007). Consideration of these factors in
conjunction with activation of macrophages and neutrophils
increases the variability in virtual patient outcomes supported
by the model. Furthermore, the diverse shock model explores
the role of nitric oxide in blood pressure homeostasis, a
pathway of great interest in septic shock research (Vincent
et al., 2000). This model also lends itself well to the BioGears
methodology due to its ability to simulate inflammation of
varying origins. Indeed, we have already used this framework
to implement a model of burn-induced systemic inflammation
in BioGears.

Chow et al. developed their model assuming an exogenously
administered endotoxin to be the driving force of inflammation.
As such, the diverse shock model does not consider an actively
growing bacteria population. We therefore introduced the model
of bacterial colonization and invasion derived by Domínguez-
Hüttinger et al. (2017) to the BioGears inflammation model. This
invasion model assumes a Streptococcus pneumoniae inoculum
colonizes in the lungs and diffuses across the apical epithelium
into the bloodstream. The model tracks the integrity of the
epithelial barrier, which transiently decreases to allow neutrophil
recruitment to the lungs at the risk of enhanced bacterial
migration to the blood. Deterioration of the epithelium and
neutrophil transmigration is managed by a switch that represents
the activity of toll-like receptors (TLR). We use the bacteria
count in the blood tracked by this model as the input to
the diverse shock model. Furthermore, we assume that the
immune mediators associated with the invasion and diverse
shock models represent local tissue counts and systemic blood
counts, respectively. We also subject the blood-born bacteria
to phagocytosis by blood neutrophils, similarly to the approach
taken in Reynolds (2008). Finally, we drop the assumption of
strep colonization of the lungs and assume rather a generic
bacteria infiltrating a tissue space.

We produce the full model here and note additional minor
modifications made to specific equations below. See Table 1 for

descriptions of state variables and Table 2 for parameter values.

dPT

dt
=

(

SP

kPT

)

· PT · (1− PT) −
θP · PT

1+ kPTB · PT

− kPTMT ·MT · PT − kPTNT · NT · PT (1)
dMT

dt
=

SMT · NT ·Mv

1+ kMTB · B
− kMT ·MT (2)

dNT

dt
=

SNT · R · Nv
(

1+ kNTB · B
)

·
(

1+ kNTMT ·MT

) − kNT · NT (3)

dBT

dt
=

SB

1+ kBPT
· BT · (1− BT) − kBR · R · BT − kBNT · NT · BT (4)

dPB

dt
= SP · PB +

θP · PT

1+ kPTB · PT
−

kPS · PB

xPS + PB

− kPBNA · NA ·HU2 (PB, xPN , 2) (5)
dMR

dt
= −

[(

kMP ·HU2 (PB, xMP , 2) + kMD ·HU2 (1− TI, xMD , 4)
)

·
(

HU2 (TNF, xMTNF , 2) + kM6 ·HU2 (IL6, xM6, 2)
)]

·HD(IL10, xM10, 2) ·MR − kMR · (MR − SM) (6)
dMA

dt
=
[(

kMP ·HU2 (PB, xMP , 2) + kMD ·HU2 (1− TI, xMD , 4)
)

·
(

HU2 (TNF, xTNF , 2) + kM6 ·HU2 (IL6, xM6, 2)
)]

· HD (IL10, xM10, 2) ·MR − kMA ·MA (7)
dNR

dt
= −

(

kNP · HU2 (PB , xNP , 1) + kND ·HU1 (1− TI, xND, 2)

+kNTNF ·HU1 (TNF, xNTNF , 1) + kN6 ·HU1 (IL6, xN6, 2)
)

· HD (IL10, xN10, 2) · NR − kNR · (NR − SN ) (8)
dNA

dt
=
(

kNP ·HU2 (PB , xNP , 1) + kND ·HU1 (1− TI, xND, 2)

+kNTNF ·HU1 (TNF, xNTNF , 1) + kN6 ·HU1 (IL6, xN6, 2)
)

·HD (IL10, xN10, 2) · NR − kNA · NA (9)
diNOSd

dt
=
(

kINOSN · NA + kINOSM ·MA + kINOSEC ·

(

HU1(TNF, xINOSTNF , 2)+ kINOS6 ·HU1(IL6, xINOS6, 2)
))

· HD (IL10, xINOS10, 2) · HD (NO, xINOSNO, 4)

−kINOSd · iNOSd (10)
diNOS

dt
= kINOS · (iNOSd − iNOS) (11)

deNOS

dt
= kENOSEC ·HD (TNF, xENOSTNF , 1) ·HD (PB, xENOSP , 1)

−kENOS · eNOS (12)
dNO3

dt
= kNO3 · (NO− NO3) (13)

dTNF

dt
=
(

kTNFN · NA + kTNFM ·MA

)

· HD (IL10, xTNF10, 2)

· HD (IL6, xTNF6, 3) − kTNF · TNF (14)
dIl6

dt
=
(

k6N · NA +MA

)

·
(

k6M + k6TNF ·HU2 (TNF, x6TNF , 2)

+ k6NO ·HU2 (NO, x6NO, 2)
)

·HD (IL10, x610, 2)

· HD (IL6, x66, 1) − k6 · (IL6 − S6) (15)
dIl10

dt
=
(

k10N · NA +MA

)

·
(

k10MA + k10TNF · HU2 (TNF, x10TNF , 4)

+ k106 ·HU2 (IL6, x106, 4)
)

·
((

1− k10R
)

·HD (IL12, x1012, 4) + k10R
)

− k10 · (IL10 − S10) (16)

dIL12

dt
= k12M ·MA ·HD (IL10, x1210, 2) − k12 · IL12 (17)

dTI

dt
= kD · (1− TI) · (TI − TImin)

− (TI − TImin) · kD6 ·HU2(IL6, xD6, 6)

·
1

x2DNO + NO2
(18)
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TABLE 1 | State variables in the Acute Inflammatory Response model based on the work of Chow et al. (2005) and Domínguez-Hüttinger et al. (2017).

Symbol Description Symbol Description

PT Bacteria at the site of infection. This value is initialized to begin an

infection scenario

iNOS Inducible nitric oxide synthase, produces nitric oxide

MT Local macrophages at the site of infection eNOS Constitutive eNOS, contributes to normal background levels of

nitric oxide

NT Local neutrophils at the site of infection NO3 Nitrate, product of nitric oxide

B The integrity of the local tissue at the site of infection. This barrier

must be weakened for neutrophils to migrate to the infection site,

but doing so facilitates bacteria translocation to blood

TNF Tumor necrosis factor, early pro-inflammatory mediator

upregulated by MA and NA

PB Bacteria that has diffused to the blood from infection site IL6 Interleukin-6, later pro-inflammatory mediator which also

downregulates TNF

MR Resting blood macrophage population, converted to active form

by P and other pro-inflammatory mediators

IL10 Interleukin-10, primary anti-inflammatory mediator

MA Activated blood macrophage population IL12 Interleukin-12, moderates IL10 production

NR Resting blood neutrophil population, converted to active form by P

and other pro-inflammatory mediators

TI Tissue integrity ranging from 1.0 (healthy) to 0.0 (irreversible

damage). Depleted by interleukin-6 and pathogen, moderated by

NO

NA Active blood neutrophil population NO Nitric oxide, exerts hypotensive activity

iNOSd Precursor to inducible nitric oxide synthase, activated by TNF S Non-specific background immune response (implicit in model)

NO = iNOS ·
(

1+ kNOMN · (MA + NA)
)

+ eNOS (19)

HU1

(

x, n, h
)

=
xh

1+ (x/n)h
(20)

HU2

(

x, n, h
)

=
xh

xh + nh
(21)

HD

(

x, n, h
)

=
1

1+ (x/n)h
(22)

R(t) =

{

1 PT > P+ or
(

P− < PT < P+ and R (t − 1) = 1
)

0 PT < P− or
(

P− < PT < P+ and R (t − 1) = 0
)

(23)

The equation describing blood-born bacterial dynamics
(Equation 5) essentially bridges the bacterial invasion model
(Equations 1–4, 23) and the diverse shock model (Equations
6–22). We made no further modifications to the invasion
model, but Equation (23) merits some discussion. This equation
describes the state of the TLR switch that regulates the
epithelial barrier integrity of the tissue that the bacteria has
infiltrated. In the “on” state, barrier integrity is more easily
reduced, which promotes neutrophil migration to the site
of infection (Equation 3). Barrier reduction, however, also
allows for greater bacterial flux to the bloodstream (Equation
1). The “off” state of the TLR switch supports epithelial
healing and limits neutrophil and bacteria movement. Equation
(23) states that at high bacteria concentrations (above a
predetermined limit P+), the switch is always in the “on”
mode. Likewise, the switch remains off when the tissue bacteria
levels fall below a minimum threshold (P−). At moderate
bacteria levels (P− < PT < P+), the switch remains in its
previous state.

We modified Equations (6–23) by dropping terms relating
to blood pressure, trauma, hemorrhage, and autonomic effects.
BioGears already accounts for blood pressure and catecholamine
activity (in the form of epinephrine) mechanistically and we
did not deem the other effects critical in a model of sepsis.

The expression for tissue damage (Equation 18) has been
rearranged and scaled after the rfashion of Reynolds (2008)
so that tissue damage is bounded between 1 (health) and 0
(irreversible damage). Due to the inversion of boundaries, we
have replaced the term Damage (D) used by Chow with Tissue
Integrity (TI). This mapping provides a simpler implementation
for downstream BioGears functions that accept tissue integrity
as an input. Finally, we have included an additional term in
Equation 11 to account for IL-6 self-inhibition. We found
that modeling this behavior guaranteed the existence of a
stable fixed point in the range of pathogen growth rates
that we investigated. We henceforward refer to the system
in Equations (1–23) as the Acute Inflammatory Response
(AIR) model.

We did not perform a formal bifurcation analysis of the AIR
model. However, we varied the pathogen growth rate (SP) and
initial tissue pathogen load (PT0) to identify regions in which the
model demonstrates bi-stability between “healthy” (bacteria in
blood eliminated) and “septic” (bacteria in blood not eliminated)
outcomes. We determined that for bacteria growth rates in the
range 0.55 < SP < 0.70 there exists a critical initial tissue bacteria
load P∗T0 such that:

limt→∞ PB (t) =

{

0 PT0 ≤ P∗T0
PBf PT0 > P∗T0

(24)

In Equation 24, PBf is some final non-zero blood bacteria count
indicative of sepsis. The value of P∗0 depends on the choice of SP.
When, for instance SP = 0.6, (its nominal value in our model),
P∗T0 is∼ 6.95 · 106 CFU/mL.

Endothelial Dysfunction and Hypovolemia
Under normal physiological conditions, the body maintains
a slight fluid flux directed from the vasculature to the
interstitium. The filtered fluid returns to the cardiovascular
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TABLE 2 | Parameters for the AIR model based on the work of Chow et al. and Dominguez-Huttinger et al.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

SP 0.60∧ P−−

T 1e3∧ kNTNF 0.2 xENOSP 1.015 k10MA 0.1

kPT 3.7e4∧ kPBNA 5.8* xNTNF 2.0 kENOS 4.0 k10TNF 1.485

θP 1.35e-4∧ xPN 0.5* kN6 1.5 kNO3 0.46 x10TNF 0.05

kPTB 3.1∧ kPS 6.9e3∧ xN6 1.0 kNOMA 2.0 k106 5.1e-2

kPTMT
6.3e-3∧ xPS 1.3e4∧ xN10 0.2 kTNFN 2.97 x106 8.0e-2

kPTNT 6.1e-4∧ kMP 1.01 kNR 0.05 kTNFM 0.1 k10R 0.1

SMT
2.6e-2∧ xMP 37.5* SN 1.0 xTNF10 7.9e-2 x1012 1.0e-2*

Mv 0.3∧ kMD 5.0e-2* kNA 0.5 xTNF6 5.9e-2 k10 0.35

kMT
6.43e-5∧ xMD 0.75* kINOSN 1.5 kTNF 1.4 S10 1.0e-2

kMTB 36.0∧ xMTNF 0.4 kINOSM 0.1 k6N 0.2 k12M 0.303

SNT 7.0e-7∧ kM6 0.1 kINOSEC 0.1 k6M 3.03 x1210 0.2525

Nv 1e8∧ xM6 1.0 xINOSTNF 0.05 k6TNF 1.0 k12 5.0e-2

kNTB 36.0∧ xM10 0.297 kINOSd 0.05 x6TNF 0.1 kD 0.15*

kNTMT
0.16∧ kMR

0.05 kINOS6 2.0 k6NO 2.97 kD6 0.125*

kNT 6.1e-2∧ SM 1.0 xINOS6 0.1 x6NO 0.4 xD6 0.85*

SB 4.6e-2∧ kMA
0.2 xINOS10 0.1 x610 0.1782 xDNO 0.5*

kBPT 26.0∧ kNP 33.75 xINOSNO 0.3 x66 0.5*

kBR 0.14∧ xNP 56.25 kINOS 0.101 k6 0.7

kBNT 4.0e-8∧ kND 0.05 kENOSEC 0.05 S6 1.0e-3

P+

T 2.0e6* xND 0.4 xENOSTNF 0.4 k10N 0.1

Parameters marked with ∧ are obtained from Dominguez-Huttinger. Parameters marked with * are tuned for BioGears response. All others are as reported in Chow. Conventions SA,

source of A; kA, decay of A; kAB, effect of B on A; xAB, amount of B that induces half-max effect on A; Av , resting pool of A; θA, diffusion rate of A; A
+/−, A upper/lower threshold. Time

scale, 1/hr.

system via the lymphatic system, thereby maintaining fluid
balance. Inflammation disrupts this balance by stimulating
production of compounds that modify the glycocalyx—a protein
network on the luminal side of the endothelium—by widening
its gaps (Boron and Boulpaep, 2017). This action promotes
adhesion of white blood cells to the endothelial wall and hastens
their transport into the afflicted tissue (Mulivor and Lipowsky,
2004). However, unchecked pro-inflammatory activity—such
as that observed in sepsis—degrades the glycocalyx to the
point that it becomes freely permeable (Chelazzi et al., 2015).
As a result, large plasma proteins such as albumin leak
into the interstitium, disrupting the colloid osmotic pressure
(COP) gradient that normally favors fluid retention in the
vasculature. Hydrostatic pressure forces become dominant
and fluid leaks into the extravascular space, leading to
relative hypovolemia.

BioGears models fluid exchange between the vascular and
extravascular spaces using the cardiovascular circuit introduced
previously. As Figure 2 indicates, each vascular compartment
maintains a link to an associated tissue compartment via a series
of elements. This mapping is one-to-one except in the case
of the small intestine, large intestine, and splanchnic vascular
compartments, which are collectively linked to a “Gut Tissue”
compartment. Each vascular-tissue link consists of two pressure
sources and a resistor. The resistor signifies the permeability of
the endothelium to fluid. Likewise, the pressure sources represent
the vascular and interstitial colloid osmotic pressures (COP) that
arise from the relative impermeability of the endothelium to large

plasma proteins. We can define the volumetric flux (JV ) across
resistor R1 in Figure 2: as

Jv =
P1 − P2

R1
=

Pv,h − COPv − (Pi,h − COPi)

R1

=
1

R1
(1Ph − 1COP) . (25)

The ohmic relationship described by Equation (25) approximates
Starling’s Equation for capillary exchange:

J = LPS (1Ph − σ1COP) . (26)

This approximation is particularly good given that healthy
endothelial cells exhibit a reflection coefficient (σ) near unity
(Pietribiasi et al., 2016).

All BioGears tissues return fluid to a common lymph
compartment via pathways comprised of a pressure source, a
resistor, and a valve in series (Drake et al., 1986). This structure
maintains basal lymph return to the vena cava while preventing
backflow. Collectively, the tissue circuit is tuned so that each
organ experiences a net zero change in extravascular fluid and the
total amount of fluid filtered and returned by the lymph amounts
to 4.0 L/day, within the ranges reported in literature (Boron and
Boulpaep, 2017).

BioGears solves the circuit defined by Figure 2 at every time
step using the SE Circuit interface to determine the amount
of fluid to move across each node. The hydrostatic pressures
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are obtained from the previous state of the circuit, while the
hydraulic resistance is a property of each tissue. We assume
albumin, a BioGears substance, to be linearly correlated with
total plasma protein concentration (Cpp, g/dL) and calculate
COPi and COPv using the Landis-Pappenhaimer relationship
(Mazzoni et al., 1988):

COP = 2.1Cpp + 0.18C2
pp + 0.009C3

pp. (27)

Given that Equation (27) requires an updated albumin
concentration each iteration, we employ the Patlak equation
to determine albumin flux between each vascular-tissue
compartment pair (Rippe and Haraldsson, 1994).

JAlb = JV · (1− σ) ·

(

CAlb,p − CAlb,i · e
−Pe

1− e−Pe

)

(28)

Pe = Jv ·
1− σ

PS
(29)

Equation (28) describes the relative contributions of convective
and diffusive albumin flux to total albumin flux (JAlb) as a
function of the Peclet number (Pe, Equation 29). At low fluid
filtration rates (JV ), Pe is small and the difference between the
plasma albumin concentration (CAlb,p) and interstitial albumin
concentration (CAlb,i) drives flux. JAlb becomes proportional
to the product of JV and CAlb,p in the limit as JV grows,
indicating that convective flux dominates as the rate of filtration
increases. We assume a constant diffusion capacity (PS) across
the entire diffusion distance for simplicity. Albumin returns
to the bloodstream through the lymph system via convective
transport (Pietribiasi et al., 2016), maintaining constant vascular
and interstitial protein concentrations under normal conditions.

We model the deterioration of the glycocalyx under
severe inflammatory conditions by decreasing the endothelial
wall resistance (R1, Equation 25) of every vascular-tissue
pair proportionately to the reduction of tissue integrity (TI,
Equation 18). Doing so increases the amount of fluid transported
from the bloodstream to the interstitium, as Equation (25)
indicates.We also assume that the accumulation of tissue damage
decreases the reflection coefficient (σ) of every BioGears tissue
compartment. These alterations give rise to greatly enhanced
albumin flux according to Equation (28). As the albumin
concentration gradient dissipates, the vascular and interstitial
colloid osmotic pressures (Equation 27) begin to converge. This
development further exacerbates fluid loss (Equation 25). If this
loop remains uninterrupted and tissue integrity (TI) reaches
low enough levels, both hypovolemia and hypoalbuminemia will
occur (Figure 3, Box 2).

The BioGears transport and feedback models produce a
physiologically sound cascade of events in response to the above
modifications to the cardiovascular circuit. The diminishing
blood volume lowers the mean arterial pressure (MAP), a
development detected by the BioGears baroreceptor model. This
model increases systemic vascular resistance (SVR) and heart rate
(HR) in an effort to reverse hypotension. Simultaneously, the

BioGears renal system responds to hypotension by decreasing
glomerular filtration rate to retain fluid (Figure 3, Box 4).

We should note that, while the literature supports the
notion that all organs are susceptible to endothelial dysfunction
(De Backer et al., 2014), we recognize that only a subset of organs
will be affected in a given septic incident, likely over disparate
time intervals. But, as stated previously, we make the assumption
that the tissue integrity state variable represents global organ
health. Future model iterations should investigate accumulation
of tissue damage in varying organs on different time scales.

Microcirculatory Distress
Microcirculatory dysfunction plays a prominent role in the
progression of sepsis. Research indicates that measures of
microcirculatory distress correlate more strongly with patient
mortality than do hemodynamic indices (Sakr et al., 2004; De
Backer et al., 2013). Irregularities in endothelial integrity, red
blood cell shape, cell signaling, and coagulation all contribute
to microcirculatory deterioration (Ince and Mik, 2015). These
alterations inhibit adequate tissue perfusion and oxygenation,
contributing to organ failure (Ince and Mik, 2015).

Given that compartments represent the highest-fidelity
organization of data in BioGears, we cannot mechanistically
model aspects of microcirculatory dysfunction such as capillary
perfusion heterogeneity and mitochondrial dysfunction. Instead,
we qualitatively model the physiological endpoint of these
processes: tissue hypoxia. The combination of unbalanced
capillary perfusion and red blood cell deformation produces an
oxygen deficit in regions of tissue, causing localized hypoxia
and potentially leading to mitochondrial distress (Ince and
Mik, 2015). We capture this effect by incrementing an energy
deficit variable as a function of tissue integrity. We subtract
this deficit from the output of the BioGears energy production
and nutrient consumption model; as a result, the model detects
insufficient energy levels on its next iteration and uses up
more nutrients to combat it. As the deficit worsens, the
production/consumption model increasingly leans on anaerobic
energy production, which causes lactate accumulation in the
tissue and hyperlaktemia, a critical clinical marker in sepsis
diagnosis (Singer et al., 2016).

Systemic Vasodilation
A hallmark of sepsis is persistent hypotension (Singer et al.,
2016). While circulating volume depletion undoubtedly
contributes to this effect, it does not alone account for its severity.
One would expect volume reduction to induce corrective action
from the baroreflex in the form of vasoconstriction; yet
septic patients typically exhibit drastically reduced SVR—as
low as 25% of baseline (Young, 2004)—indicating instead
the presence of vasodilation. The inflammatory response
must therefore contribute significantly in this respect. While
many mediators likely play an important role, significant
research has focused on the free radical nitric oxide (NO), a
potent vasodilator generated as pro-inflammatory chemicals
up-regulate the activity of inducible nitric-oxide synthase
(iNOS) (Vincent et al., 2000). Other investigations have
noted concurrent disruption of the sympathetic arm of
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FIGURE 2 | A representative subset of the BioGears Cardiovascular Circuit demonstrating the interaction between each vascular-tissue compartment pair. Most

blood flow is restricted to the vascular compartment (red), circulating from the aorta to each organ and returning to the heart via the vena cava. Each organ has a

vascular compliance representing its ability to expand to accommodate pressure increases. Some fluid filters from the vascular space to the tissue compartment

(blue), the amount of which is determined by the endothelial resistance and relative contributions of the vascular and interstitial colloid osmotic pressure (COP)

sources. The COP values are updated each time step according to the concentration of albumin in each compartment. Each tissue compartment contains an

intracellular space that predominantly regulates ion flux. Blood volume is maintained by returning filtered fluid to the vena cava via a rudimentary lymphatic system. The

lymph pump is necessary because the interstitial space has lower hydrostatic pressures than the vena cava. The pre- and post-lymphatic resistances are tuned so

that the amount of lymph returned equals the amount of fluid filtered at steady state. Check valves are included to ensure that no lymph flows backward.

the baroreflex during acute infection. Animal models of
endotoxemia have demonstrated that infection can cause the
baroreceptor operator curve to reset (Tohyama et al., 2018)
and can decrease baroreceptor sensitivity (Radaelli et al.,
2013). Likewise, endotoxemic studies in humans have noted
depressed responsiveness to sympathetic nervous activity,
particularly in the vascular smooth muscle (Sayk et al., 2008 and
Brassard et al., 2016).

We incorporate both nitric oxide-mediated hypotension and
sympathetic dysfunction in our model. The BioGears PBPK/PD
model accepts the systemic nitric oxide count determined
by Equation 19 as an input and calculates changes in SBP
and DBP (Figure 3, Box 3). This calculation employs a
sigmoidal Emax model and thus requires us to estimate both
the maximum effect of NO on blood pressure and the NO
count that defines the midpoint of the sigmoid. The BioGears
baroreceptor model derives from the work of Ottesen et al.
(2004). This model determines the deviation of the MAP
from its set-point and adjusts heart elastance, heart rate,
vessel compliance, and vessel resistance accordingly. We do
not attempt to model SVR depression mechanistically, but
instead reduce the vessel resistance gain determined by the
baroreceptor model as a function of the duration of the SIRS
event (Figure 3, Box 5).

Finally, we must note that the BioGears diastolic blood
pressure (DBP) tends to be less responsive than the SBP to
homeostatic disruption. Given that calculations of MAP weigh
diastole more heavily than systole, this issue results in the
BioGears MAP being slow to respond, particularly in the early
stages of hypovolemia. Consideration of the hypotensive activity
of nitric oxide and of baroreceptor irregularity mitigate this
issue, but it is possible that we had to overstate their severity in
order to do so.

Other Pathophysiology
We empirically relate the AIR model to other BioGears
outputs to produce heretofore unaddressed clinical markers of
inflammation, namely tachypnea, fever, and altered white blood
cell count (Figure 3, Box 1). We assume the latter to be directly
related to the active neutrophil population (NA, Equation 9)
by a proportionality factor that accounts for conversion to the
clinically relevant units of ct/µL. The relationships describing
tachypnea and fever progression are sigmoidal in nature, taking
the form:

E =
Emax(1− TI)γ

E
γ
50 + (1− TI)γ

. (30)
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FIGURE 3 | Overview of the BioGears Sepsis Model. Green circles represent elements of the acute inflammatory response model, light blue circles elements of

BioGears feedback models, dark blue circles relevant treatment actions, and yellow circles other aspects of systemic inflammatory response syndrome (SIRS). Solid

lines with arrows indicate up-regulation or positive effect while dashed lines indicate inhibition or negative effect. The model is triggered by an initial pathogen load (P0)

that sets off a cascade of pro-inflammation (Pro) and anti-inflammation (Anti). As pro-inflammation becomes too severe, tissue damage (D) increases. Free radical

production in the form of nitric oxide (NO) follows. The following chain of events occurs in response: (1) The presence of inflammation and tissue damage leads to

symptoms of systemic inflammatory response, modeled by general Emax relationships. (2) As damage worsens, the resistances on all vascular-tissue endothelial

pathways on the BioGears cardiovascular circuit decrease, leading to hypovolemia and hypoalbumeria and a tendency toward hypotension. (3) Nitric oxide

accumulation exerts an additional hypotensive effect. (4) Hypotension induces a response from baroreceptor and glomerular feedback models. Baroreceptor

feedback increases systemic vascular resistance (SVR) and heart rate (HR). Glomerular feedback increases fluid retention, causing a drop in urine output (UO) that

opposes volume loss. (5) As symptoms of systemic inflammation continue unabated, the ability of baroreceptors to increase SVR becomes inhibited.

Each effect, E, approaches a maximum value (Emax) as
tissue integrity decreases. Estimates for Emax were determined
according to diagnostic criteria for sepsis (Dellinger et al., 2013).
Since tachypnea and fever constitute early signs of inflammation,
their respective E50’s (the value of 1-TI at which half of the
maximum effect is observed) are set fairly low. Finally, the
parameter γ, which determines the steepness of response, is set
to 1 for both effects.

Interventions
BioGears supports numerous interventions that can be
applied during a simulation, the most relevant for sepsis
treatment being fluid administration, vasopressors, and
antibiotics. The BioGears Substance Compound Infusion
class handles fluid challenges. Users define an infusion
object by specifying a dose volume, a rate of infusion, and
the identity of a compound. Currently defined compounds
include blood, normal saline, Ringer’s lactate, and albumin
colloid. The compound definitions specify concentrations
of their constitutive components, which the infusion
model uses in conjunction with the administration rate

to increment the appropriate component masses in the
virtual patient.

Vasopressors, and liquid-based drugs, in general, can be
introduced to a simulation using either bolus dosing or
continuous infusion. Both actions require a drug name and
concentration to instantiate them, in addition to either a bolus
size or rate of administration. BioGears contains a detailed
whole-body PBPK/PD model that governs drug absorption,
distribution, metabolism, and elimination. This model uses
substance-specific physiochemical data to predict tissue-plasma
partition coefficients and to generate a whole-body concentration
profile for a drug (Clipp et al., 2016; McDaniel et al., 2019).
The BioGears renal and hepatic systems handle drug metabolism
and elimination. A number of pharmacodynamic effects are
modeled using equations similar to Equation 30 that depend
on drug concentration and calibrated effect modifiers. For
drugs known to exhibit slow receptor-binding kinetics, a
delay compartment is included. The BioGears substance library
currently contains three vasopressors that may be of interest for
sepsis treatment scenarios: vasopressin, norepinephrine, and—to
a lesser extent—epinephrine. A complete list of supported drugs,
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FIGURE 4 | The progression of the acute inflammatory response model when the BioGears Infection action is simulated for 48 h at the three different severities: mild

(purple), moderate (orange), and severe (green). These Infection action levels correspond to initial tissue bacteria counts of 1e6, 5e6, and 1e7, respectively. Selected

outputs are (A) blood bacteria population, (B) TNF count, (C) IL-6 count, (D) IL-10 count, (E) NO count, (F) and Tissue Integrity. All units are in arbitrary concentration

except for Tissue Integrity, which is dimensionless. Mild and Moderate infections demonstrate some infiltration of bacteria to the blood stream, but the levels are

brought under control by the action of neutrophils recruited by inflammatory mediators IL-6 and TNF. Overall, the system exhibits an appropriate balance between pro-

and anti-inflammatory (IL-10) activities with minor implications for tissue health. In the severe case, the bacteria population in the blood grows unchecked and pro-

and anti-inflammation become imbalanced, leading to excessive and prolonged inflammation. When pro-inflammatory activity is not curtailed, the tissue accrues

additional damage.

as well as a more in-depth description of the PBPK/PD model,
can be found in our online documentation.

The BioGears pharmacodynamics functionality extends to
antibiotics.We assume that antibiotics act solely against infection
(exerting no other effects on patient physiology) according to
the relationship

Snet = Smax −
(Smax − Smin) (Cu/MIC)γ

(Cu/MIC)γ − Smin/Smax
(31)

(Regoes et al., 2004; Ankomah and Levin, 2014). Equation
(31) defines the reduction in net bacteria growth rate (Snet) as
function of free (unbound) antibiotic concentration (Cu), the
minimum inhibitory concentration of the bacteria (MIC), the
minimum growth rate imposed by the antibiotic (Smin) and
the growth rate of the bacteria in the absence of antibiotic
(Smax). An interesting result of Equation 31 is Cu = MIC →

Snet = 0 for any and all parameter values. That is, though
bacterial growth will stagnate at sub-inhibitory antibiotic levels,
the bacteria population will not decrease until antibiotic
concentration exceeds the minimum value. An advantage of this
outcome is that we do not need to define an EC50 value for

antibiotics; that value will be determined by the antibacterial
effect Smin that we choose. Given that the majority of antibiotic
pharmacodynamics studies are carried out in vitro, which
can make model parameters difficult to establish in vivo, we
consider estimating fewer parameters to be desirable. Presently
the BioGears substance library maintains three antibiotics with
validated pharmacokinetic profiles: intravenous ertapenem, oral
moxifloxacin, and intravenous piperacillin.

Infection and Sepsis Action Initiation
We define a bacterial infection in BioGears using a location, a
severity, and a minimum inhibitory concentration (MIC). The
location is a simple string corresponding to one of the tissue
spaces in the BioGears compartment hierarchy. Presently, the
location has no bearing on the progression of the simulation
because we assume that bacteria colonization and invasion
proceeds identically for all tissues. Future iterations of this model
will seek to account for the effects of organ physiology on
bacteria elimination and diffusion. The infection severity takes
an enumeration from the set Mild, Moderate, and Severe and
maps the value to an initial pathogen load. Though subjective,
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FIGURE 5 | The progression of physiological markers of inflammation when

the BioGears Infection action is simulated for 48 h at three different severities:

mild (purple), moderate (orange), and severe (green). (A) HR, (B), RR, (C)

(Continued)

FIGURE 5 | temperature, and (D) white blood cell count (WBC) are compared

against a no-infection baseline simulation in which the same water and meal

consumption schedule is followed (Black). The combination of tachycardia,

tachypnea, fever, and leukocytosis in the Severe case all indicate Systemic

Inflammatory Response Syndrome (SIRS). Symptoms in Mild and Moderate

cases show minor deviations from baseline physiology that, for the most part,

resolve over 48 h. The exception is core temperature, which increases across

all scenarios and decreases more rapidly in the presence of severe infection.

This outcome outcome likely indicates a minor setpoint issue in the BioGears

temperature regulation model. The late decline in the severe case might be

attributable to decreased blood flow to the skin, which is a factor in

temperature conductance between the core and the environment in BioGears.

we chose this implementation because the pathogen count is
in arbitrary units, which could make it challenging for users
to select an appropriate initial value. We include the MIC as
a proxy for bacteria type and strain, which greatly expands
the permutations of bacteria-antibiotic interactions that can be
explored with this model.

The pathogenesis of sepsis evolves over hours and days, which
leads to long simulation times even in a model such as BioGears
that runs faster than real-time.We canmitigate this limitation via
the data serialization protocols defined on the BioGears CDM.
By simulating infections of varying severities and serializing the
engine periodically, we create a library of infected patient states in
XML format that can be loaded into future simulations to reduce
redundancy. Thus, one could define a BioGears sepsis action that
loads the state of a severely infected patient at a time shortly
before sepsis onset. The existence of this library has the additional
benefit of providing multiple entry points at which treatment
actions can be initiated. Therefore, the effects of treatment timing
can also be investigated with minimal redundancy.

Model Simulations
Infection Action Comparisons
We first demonstrated the BioGears infection action at the
three supported levels of severity (mild, moderate, severe),
assuming the nominal parameter values in Table 2 for the
AIR model. We calibrated the initial pathogen loads of these
scenarios so that the mild and moderate cases resolved with
pathogen elimination and returned to baseline physiology and
the severe scenario resolved in progression to septic shock. We
assumed the bacteria MIC to be 16.0 mg/L. Due to the length
of these simulations, we periodically introduced actions for
drinking water and eating meals. Discounting these nutritional
actions would have confounded our results, as BioGears models
the physiological consequences of dehydration and nutrient
depletion. We compared the infection actions to a control
scenario in which a healthy (non-infected) patient follows an
identical water and meal consumption schedule.

Virtual Patient Variability
BioGears allows users to set patient characteristics (e.g., gender,
weight, and height) and physiological baselines, such as SBP,
HR, and RR These user-defined parameters, however, do not
greatly affect the trajectory of infection simulations due to
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FIGURE 6 | The progression of a severe infection to sepsis and septic shock

in the BioGears Engine (Part 1). The accumulation of tissue damage leads to

increased fluid conductance between the vascular and tissue spaces, causing

a reduction in blood volume (A). Feedback from the baroreceptors prevents

significant loss of SBP (B) and MAP (C), for a time by increasing SVR (D) and

(Continued)

FIGURE 6 | HR (Figure 5). However, sympathetic inhibition becomes

noticeable after 24 h and causes SVR to decrease substantially, resulting in

sharp declines in blood pressure. HR continues to increase in an effort to

maintain cardiac output (CO). Using SBP < 100 mmHg and tachypnea

(Figure 5) as indicators of sepsis, the virtual patient becomes septic at ∼30 h.

the deterministic nature of the AIR model. We therefore
performed additional simulations of moderate infection while
varying certain parameters of the AIR model to demonstrate
that the BioGears sepsis model supports variability in virtual
patient outcome. We chose our variable parameters from
the set

{

kPTMT , k6M , x66
}

. The first parameter in this set
was selected according to the results of the global sensitivity
analysis performed by Domínguez-Hüttinger et al. (2017). The
latter two parameters strongly dictate the response of IL-6,
the levels of which have been found in other modeling and
simulation studies to be correlated with individual patient
outcome (Brown et al., 2015).

Sepsis Treatment Scenarios
All treatment scenarios were conducted using virtual patient
states generated from the nominal BioGears severe infection
action. We modeled our treatment protocols after a study
described in Macdonald et al. (2017, 2018). This pilot program,
called the “REstricted Fluid REsuscitation in Sepsis-associated
Hypotension (REFRESH) study, sought to determine whether
limiting fluid administration and initiating early vasopressor
therapy improves septic patient mortality compared to standard
of care. Patients who qualified for enrollment in REFRESH
(suspected infection accompanied by persistent SBP < 100
mmHg after fluid challenge) were randomly assigned to either a
“standard” treatment group or a reduced fluids and early pressor
treatment group.

We constructed the BioGears versions of these treatment
regimens as follows. Just prior to septic shock onset, we
administered two separate 500mL boluses over the course
of an hour. After confirming that fluid challenge did not
restore SBP, we defined a control scenario and an experimental
scenario, initializing both from this septic patient state. Each
scenario began with 4.5 g piperacillin/tazobactam administered
intravenously over 30min. We selected this dose based on
recommendations from subject matter experts at the University
of Washington with whom we collaborated. We assumed all
the antibacterial activity of this combination was attributable
to piperacillin and so only tracked its pharmacokinetic (PK)
qualities. Furthermore, we compared the piperacillin PK profile
predicted by BioGears with that established in the literature
(Sörgel and Kinzig, 1993). Concurrent with antibiotic initiation,
the control patient received a second 1,000mL fluid bolus,
while the experimental patient began maintenance fluids and
norepinephrine at respective rates of 1 mL/kg/h and 0.18
µg/kg/min. We established that this norepinephrine dose, which
falls within the range of doses investigated in the sepsis literature
(De Backer et al., 2003; Beale et al., 2004), achieved the targeted
MAP in the BioGears septic patient. We elected to maintain
norepinephrine at a constant rate throughout this trial, but future
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FIGURE 7 | The progression of severe infection to sepsis and septic shock in

the BioGears Engine (Part 2). Tubulerglomerular feedback from the renal

system responds to low circulating volume by decreasing UO (A). The effect of

tissue damage on cellular respiration becomes apparent as lactate

accumulates in the blood (B). The sharp changes in concentration likely occur

(Continued)

FIGURE 7 | as the BioGears renal model attempts to consolidate substance

clearance with low glomerular filtration rates. Symptoms of cardiac distress

arise as (C) CO and stroke volume (SV) fall (D). Though CO increases in the

latter stages due to enhanced tachycardia, the underlying SV dysfunction

remains. The virtual patient can be diagnosed with septic shock at ∼45 h due

to the severe hypotension (Figure 6) and the hyperlaktemia.

investigations could simulate the effects of titrating it up or down
over the course of treatment.

We advanced the control scenario in 30-min increments for
six h, checking SBP, MAP, and UO after each run. As per the
REFRESH study, we introduced a 500mL bolus every half-hour
that SBP or MAP fell below the goals defined above. The control
strategy allowed for administration of an additional 500mL saline
bolus upon hourly reassessment of resuscitation status. We used
UO as our reassessment marker and chose 0.5 mL/kg/h (0.625
mL/min for the standard BioGears patient) as our threshold for
further bolus dosing (Rhodes et al., 2017). Thus, if we observed
UO < 0.625 mL/min at the end of an hour of treatment, we
provided the supplemental bolus. If after any 30-min period SPB
and MAP exceeded 90 mmHg and 65 mmHg, respectively, we
discontinued the protocol and initiated maintenance fluids at
75 mL/h.

We advanced the BioGears experimental treatment scenario
in 1-hour increments for 6 h following background saline and
norepinephrine initiation. We again used UO < 0.625 mL/min
as our reassessment marker. However, in the experimental group,
the supplemental bolus was 250mL. As above, if SBP and MAP
met resuscitation goals after an hour, we stopped all aspects of the
experimental protocol except for maintenance fluids.

It is well-established that delays in treatment initiation
have drastic implementations for patient mortality in sepsis
cases. The probability of survival decreases between 7 and
8% each hour that antibiotic administration is delayed after
hypotension (MAP < 65 mmHg) onset (Kumar et al., 2006). A
more recent study confirmed this association between delayed
antibiotic administration and mortality and further found no
such association with respect to time of initial fluid bolus
administration (Seymour et al., 2017). We investigate treatment
delays in our model by repeating the control scenario described
above but deferring its initiation by 12 h.

RESULTS

Infection Action Comparisons
The three levels of infection action produced drastically different
outcomes, as expected. In all three cases, some bacteria invaded
the bloodstream from the infection site (Figure 4), but the
effectiveness of the immune response in curbing bacterial growth
in the blood varied. The mild and moderate infections were
brought under control within 24 h post-infection, if we define
“control” as sustained negative net bacterial growth. However,
the moderate infection invoked a stronger response from the
immune system, as indicated by the higher levels of pro-
inflammatory mediators (TNF and IL-6) compared to the mild
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FIGURE 8 | The virtual patients subsets generated by varying acute inflammatory response model parameters in the set
{

kPTMT
, k6M, x66

}

and applying a Moderate

level BioGears infection action. In the nominal case (Black), pathogen is eliminated (A) and pro-inflammatory mediated tissue damage is minor (D), as evidenced by

slight fluid shift (E) and minimal MAP change (F). Decreasing ϕPM creates a “Susceptible” population (green), which allows bacteria buildup at the site of infection and

prolongs activation of the TLR switch. Enhanced TLR activity favors local barrier degradation (B) to promote neutrophil migration to the infection site, but this action

also promotes excessive bacteria diffusion to the bloodstream, leading to sepsis. Increasing k6M and x66 generates a “Hyperinflammatory” response (orange), in which

the bacteria is eliminated, but interleukin-6 levels remain elevated (C). This imbalanced pro-inflammation leads to tissue damage (i.e., endothelial barrier damage) that

causes vascular volume shift. Finally, decreasing k6M and x66 creates an “Immunosuppressed” patient (purple). Interleukin-6 levels remain low, characterizing a

pro-inflammatory phase insufficient to eliminate bacteria in the blood. Though tissue damage does not accumulate, the patient will no doubt experience

consequences of systemic infection.

case. These inflammatory mediators were pushed to even higher
levels by the severe infection, but this response was not strong
enough to eliminate the blood-born bacteria. In fact, as the severe
infection grew unabated, the body entered a state of excessive
inflammation that the anti-inflammatory response (IL-10) could
not balance. Unchecked and sustained pro-inflammation caused
tissue damage to accumulate at levels not observed in the mild
and moderate cases.

The virtual patient exhibited clinical symptoms of infection,
such as elevated tachycardia, tachypnea, fever, and leukocytosis,
shortly after bacterial translocation to the bloodstream in all
scenarios (Figure 5). With the exception of fever, symptoms were
less pronounced in the mild and moderate cases and resolved
themselves as the infection was eliminated. Conversely, the severe
case progressed to a state of systemic inflammatory response
syndrome (SIRS) as a result of persistent bacterial growth.
Compounding matters, inflammation-mediated endothelial
dysfunction had developed sufficiently by this point to induce
noticeable vascular volume loss (Figure 6). The baroreflex
initially combatted this volume loss by inducing tachycardia and

increasing systemic vascular resistance (SVR), thereby delaying
the onset of hypotension. As circulating volume continued to
decline, however, these corrective efforts could not prevent
SBP from dropping below 100 mmHg at 26 h post-infection. A
clinical diagnosis of sepsis could be made at this time according
to the Sepsis-3 definitions (Singer et al., 2016).

We declined to initiate any treatments during this initial
severe infection simulation. As such, the state of the virtual
patient worsened dramatically. The sympathetic arm of the
baroreflex (as indicated by SVR) began to lose its effectiveness
after sepsis onset as a result of nitric oxide accumulation and
baroreceptor fatigue (Figure 6). UO dropped below 0.625
mL/min in the same time frame, indicating the presence
of hypovolemia (Figure 7). The presence of metabolic
abnormalities could be inferred after 20 h as evidenced by
serum lactate levels above 2mM (Figure 7). We considered this
degree of hyperlaktemia, combined with MAP < 65 mmHg at
45 h (Figure 6), to constitute a state of septic shock. With shock
unresolved, the patient entered the doorstep of cardiovascular
collapse. Systemic vascular resistance approached 60% of its
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FIGURE 9 | The response of the virtual patient to 1,000mL of saline infused in

two separate 500mL boluses at 44 and 44.5 h post-infection. SBP (A) and

MAP (B) transiently increase after fluid administration, but decline over the

subsequent hour of observation. SBP quickly falls below 90 mmHg, the target

(Continued)

FIGURE 9 | resuscitation value in the REFRESH protocol. MAP trends

downward and approaches 65 mmHg, which would characterize severe

hypotension. UO shows a similarly shortlived improvement after fluid dosing

(C) and remains below 0.625 mL/min, our threshold for hypovolemia. The

improvement in blood pressure reduces some of the burden on the baroreflex,

causing a small decrease in HR (D). As the virtual patient is exhibiting fluid

resistant hypotension, the patient can be said to be in a state of septic shock.

baseline, mean arterial pressure continued to decline, and heart
stroke volume fell (Figure 7).

Virtual Patient Variability
Our parameter variability investigation revealed three
subpopulations of potential interest, which we compared to
the nominal model response (Figure 8). The first, which we will
call the “Susceptible” population, was characterized by rapid
bacteremia and sepsis onset when challenged with a moderate
level of infection. We effected this response by decreasing the
rate of phagocytosis by tissue macrophages (kPTMT ). Inhibiting
phagocytosis, as one would expect, burdened the immune
system by promoting bacterial accumulation in the tissue region,
resulting in a steeper diffusion gradient directed toward the
blood. A second, and noteworthy, effect of the slower rate of
bacterial elimination was that the TLR switch remained active for
longer. That is, to facilitate further neutrophil recruitment, the
local tissue barrier integrity was exposed to a greater degree of
degradation, creating a larger window of time in which bacterial
diffusion to the blood was favored.

The other two subpopulations that we identified derived
from aberrant IL-6 activity as dictated by the parameters
k6M (IL-6 recruitment by macrophages) and x66 (IL-6 self-
inhibition). Decreasing either (or both) of these parameters
produced an “Immuno-suppressed” state in which relatively low
levels of blood bacteria were not eliminated. In our model,
IL-6 plays a critical role in upregulating blood macrophage
and neutrophil activity. Limiting IL-6 activation or exaggerating
its anti-inflammatory effect thus prevented adequate immune
activation. The unchecked growth in blood bacteria would be
expected to produce significant pathophysiology in reality, but
our model in its current iteration did not capture it because of
the strong assumed correlation between IL-6 and tissue integrity
(Equation 18). Conversely, increasing k6M and x66 created a
“Hyperinflammatory” state in which the bacteria was eradicated
but the body incurred significant tissue damage due to prolonged
and inadequately balanced pro-inflammation.

Sepsis Treatment Scenarios
We administered 1,000mL of saline over an hour beginning at
44 h post-infection, or just before our virtual patient entered
septic shock (MAP < 65 mmHg). We then monitored the
virtual patient for an additional hour to confirm that the
fluids did not reverse hypotension. As Figure 9 shows, SBP
and MAP only transiently increased. SBP remained below the
threshold for establishing sepsis (100 mmHg), and MAP trended
toward 65 mmHg, indicating imminent progression to septic
shock. UO likewise improved temporarily only to regress, and
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FIGURE 10 | The effect of infusing 4.5 g piperacillin/tazobactam (PIP) over 30min to the septic patient. The infusion began at 46 h post-infection (i.e., after initial fluid

challenge), which we define as 0 h post-antibiotics. The plasma concentration (CP) estimated by the BioGears Pharmacokinetic model (green line) agrees closely with

the values reported in Sörgel and Kinzig (1993) (black points) (A). Error bars were estimated from individual subject data points plotted by Sörgel and Kinzig (1993).

Further validation of the timing of piperacillin absorption and elimination predicted by BioGears can be seen in the calculated (green) and observed (black) area under

the curve (AUC) (B). Sörgel and Kinzig (1993) reported a value of 278 mg-h/L, which is ∼1,000 s-g/L. The antibiotic activity parameter (C), which reduces the bacteria

growth rate, is a function of the unbound piperacillin plasma concentration and the MIC of the bacteria (16.0 mg/L in this simulation). Piperacillin exerts its maximal

antibiotic effect (estimated at 0.70/h in our model) for ∼3 h as the plasma concentration remains well above the MIC. As a result, the blood bacteria population (D)

declines over the 6 h of observation. Reduction in bacteria count helps resolve excessive pro-inflammation and suppress IL-6 activation (E). The decrease in

pro-inflammation leads to improvements in tissue integrity (F).

the value of 0.25 mL/min demonstrated that the patient was
experiencing severe hypovolemia. A slight improvement in heart
rate was observed, but the patient remained in a state of elevated
sympathetic outflow. We thus concluded that our virtual patient
would hypothetically qualify for the REFRESH study.

Piperacillin/tazobactam administration was the first action
applied in both arms of the simulated REFRESH protocol. The
BioGears pharmacokinetic model accurately characterized the
plasma profile of piperacillin in terms of concentration and area
under the curve (Figure 10). The antibiotic pharmacodynamics
model predicted that, assuming anMIC of 16.0 mg/L, piperacillin
would exert its maximum antibacterial effect (a tuned value)
for ∼3 h. As a result, the bacteria count in the blood decreased
substantially over the 6 h of treatment. The sustained bacterial
elimination that occurred even as the antibacterial effect of
piperacillin diminished likely wasmediated by blood neutrophils.
The population of IL-6 began to decrease as bacterial levels
declined, directly leading to improvements in tissue integrity.

Cumulative fluid (including the preliminary bolus)
administered in the control scenario outpaced that in the

experimental scenario 4.25–2.75 L (Figure 11). Each fluid
challenge can be clearly seen in the spikes in the plots of MAP,
SBP, and UO. The more gentle increase in MAP and SBP in
the experimental scenario shortly after 0 h stems from the
norepinephrine infusion. Both simulated patients exceeded the
MAP goal of 65–70 mmHg early in treatment but did not exhibit
sustained SBP > 90 until ∼ 4.5 (control) and 5.5 (experimental)
hours post-treatment initiation. The experimental patient
remained hypovolemic longer than the control patient, as
indicated by UO.

Though receiving 1.5 L more fluid, the control patient
exhibited a blood volume only 600mL greater than the
experimental patient after 8 cumulative treatment hours
(Figure 12). Some of this difference can be accounted for
by differences in UO, but fluid loss to the extravascular
space contributed significantly as well. In fact, the
control patient lost about 400mL more fluid from the
vasculature than did the experimental patient. The
patients saw nearly identical improvements in heart rate,
which is sensible given the similarity in MAP at 6 h, but
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FIGURE 11 | The progression of treatment and reassessment metrics in simulations following the REFRESH control (green, left) and experimental (orange, right)

treatment protocols. We denote time = 0 h as the start of REFRESH protocol and time < 0 corresponds to the period of initial fluid challenge and observation (see

Figure 9). Hours −2 to 0 are identical for each patient, since we applied the same bolus dose schedule prior to REFRESH initiation. We see that the cumulative

amount of fluid administered over the eight total treatment hours is 4.25 L for the control patient (A) and 2.75 L for the experimental patient (B). The control patient

also experienced greater swings in pressure (C,E) and volume status (G) due to the larger fluid boluses administered (500 vs. 250mL). The effect of early

norepinephrine therapy to the treatment patient is evident in the increase in MAP (D) and SBP (F) at 46 h. The treatment patient received multiple 250mL boluses to

address persistent hypovolemia, as indicated by UO (H) below the target of 0.625 mL/min (0.5 mL/kg/h). Both patients reach the target SBP of 90 mmHg.

remained tachycardic. Reductions in lactate molarity were
also marginal.

Predictably, delaying antibiotic administration for 12 h
allowed the bacterial population in the blood to ∼ double
(Figure 13). Though piperacillin was still able to reduce the
bacteria count, the extended period of inflammation resulted in
a large reduction in tissue integrity prior to treatment onset. The
resulting increase in endothelial permeability allowed additional
vascular volume loss and exacerbated blood pressure depression.
As such, a fluid infusion protocol identical to the control scenario
above did not restore blood volume or arterial pressure to
the same degree. Furthermore, the delayed-treatment patient
remained in a state of hypotension for far longer than the control,
which could have deleterious consequences.

DISCUSSION

The BioGears infection model captured important clinicals
markers in the evolution of systemic inflammatory response
and, in extreme cases, the progression to sepsis. The underlying

dynamic model of inflammation demonstrated graduated
responses to bacterial innocula of varying sizes, leading to early

signs of infection, such as tachypnea, leukocytosis, and fever,
on a realistic time-scale. While the model opposed a degree of

bacteremia via recruitment of phagocytotic agents, promoting
recovery from infection, sufficiently large infections lead to
unchecked bacterial colonization in the bloodstream. In this
event, the aforementioned symptoms worsened and tachycardia
developed as sustained inflammation disrupted blood pressure
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FIGURE 12 | The progression of other physiological indices in simulations following the REFRESH control (green) and experimental (orange) treatment protocols,

following the same time conventions. The more aggressive fluid infusion schedule followed in the control case sees faster restoration of blood volume (A) compared to

the experimental case (B). However, the control patient loses more fluid to the extravascular space (C) than does the experimental patient (D). Tachycardia remains

present in both instances (E,F) but shows a declining trend as blood volume is restored. Lactate levels remain elevated as well (G,H), though some improvement can

be observed.

homeostasis. Systemic and prolonged inflammation induced
deterioration of the vascular endothelium that caused fluid
shift and relative hypovolemia. Concurrently, nitric oxide, a
byproduct of the inflammatory response, exerted a vasodilatory
effect that opposed the sympathetic activity of the baroreflex.
This reflex eventually fatigued to the point that elevated systemic
resistance could not be maintained, and the virtual patient
became extremely hypotensive and entered septic shock.

The infrastructure of the BioGears physiology engine and
the range of actions its supports make feasible the development
of complex sepsis intervention scenarios. We demonstrated
that applying fluid bolus actions produced transient increases
in blood volume, MAP, and UO, the magnitude of which
depended on the length of time over which the patient had
been septic. The BioGears drug administration actions allowed
us to investigate norepinephrine and piperacillin infusions. The
former increased MAP and helped to maintain normotension,

while the latter eliminated bacteria, thereby curbing excessive
pro-inflammation and promoting recovery of tissue integrity.
That these drug effects exhibited physiologically reasonable onset
and offset times is attributable to the accuracy with which the
BioGears whole-body PK/PD model predicted their respective
plasma concentration profiles.

Of critical importance to the usefulness of this model, virtual
patient outcomes differed according to model parameterization
and the timing and types of actions applied. We showed that
distinct inflammatory response trajectories can be generated
from the same level of infection by varying a small subset
of model parameters. A notable phenotype we identified
demonstrated severe hypotension in spite of infection resolution
due to inadequate anti-inflammatory activation. Our simulation
of the two REFRESH protocols produced patients who differed
in volume and blood pressure status after multiple hours of
treatment. We would not use our results to favor one protocol
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FIGURE 13 | The effect of delaying antibiotic treatment in simulations of

sepsis treatment. We compare the control REFRESH virtual patient described

previously (orange) to another virtual patient subjected to the same treatment

regimen after a delay in treatment initiation of 12 h (green). We denote

(Continued)

FIGURE 13 | time = 0 h as the time of antibiotic administration (and REFRESH

start) and t < 0 corresponds to initial fluid challenge and observation (see

Figure 9). Time 0 for the control patient corresponds to 46 h post-infection,

while time 0 for the delayed treatment patient corresponds to 58 h

post-infection. We see that the blood bacteria population ∼ doubled as a

result of the delay in antibiotic administration (A). This prolonged period of

heightened inflammation causes a further reduction in tissue integrity (B),

allowing more vascular volume loss (D) that contributes to more severe

hypotension (C). Though the antibiotics eliminate the bacteria, the tissue

integrity is slower to begin recovery in the case of delayed treatment.

Furthermore, fluid resuscitation is not as effective in restoring vascular volume

and arterial pressure.

over the other. However, we could make observations, such
as the smaller fluid boluses administered in the experimental
case helped the patient avoid the more drastic shifts in
blood pressure experienced by the control. We might also
observe that these smaller fluid boluses kept the experimental
patient in a hypovolemic state longer than the control patient,
potentially mitigating the positive effects of curtailing blood
pressure fluctuations. Or, we could note that, given the larger
volume of fluid administered and the expanded extravascular
volume, the control patient could be at increased risk for
reperfusion injury compared to the experimental patient.
Finally, our model was sensitive to treatment timing. Delaying
antibiotics by 12 h worsened virtual patient hypotension and,
though the patient still responded to treatment, recovery
was prolonged.

In light of the above, the BioGears sepsis model has
potential applicability to both identification and management of
sepsis. Accurate predictive modeling that accounts for multiple
physiologic inputs and host comorbidities could greatly improve
risk stratification systems early in the identification of sepsis and
could also reveal which factors contributemost to the progression
of the disease. From a management standpoint, much remains
to be learned. Despite multiple clinical studies, research into
the optimization of fluid balance and vasopressors continues.
Certain medications, such as steroids and statins, have not been
shown to be universally beneficial in sepsis outcomes. However,
specific patient populations may benefit on an individual basis,
and BioGears could contribute to this understanding without
the complexities of large human clinical trials. More novel
therapies, such as angiotensin II, vitamin C, and thiamine, have
shown potential benefit in small studies, but their clinical utility
remains uncertain. This sepsis model, supported by the BioGears
substance definition interface, could shed light on the effects of
these therapies and the manner in which physiologic parameters
influence them. A further application of this model could be
to improve the training of caregivers managing septic patients.
Simulated patient scenarios derived from BioGears modeling
could enhance training in the recognition of early sepsis markers
and in the management of sepsis.

There are some limitations of the current iteration of this
model that should be addressed to enhance its applicability. The
BioGears sepsis model primarily focuses on the cardiovascular
response to systemic infection. As such, we do not presently
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consider the potential development of acute lung injury (ALI) or
acute respiratory distress syndrome (ARDS) secondary to sepsis.
Inclusion of these complications in the next version of our model
is a reachable goal given the maturity of the BioGears respiratory
model. Like the cardiovascular model, the BioGears respiratory
model implements a fluid circuit that calculates fluid flow and
substance transport. The cardiovascular and respiratory models
communicate via a diffusion method that determines oxygen and
carbon dioxide transport as a function of alveolar surface area
and pressure gradient. By decreasing the lung compliances on
the respiratory circuit and reducing the surface area available for
diffusion, we could likely effect impaired oxygen uptake. These
actions would ideally produce outputs consistent with ALI and
ARDS, like reduced PaO2/FiO2 ratios. Furthermore, BioGears
maintains a ventilator model, so addressing lung injury would
open additional treatment modeling opportunities.

Another aspect of sepsis not completely addressed by our
model is coagulopathy. Disruptions in the coagulation pathway
occur in most instances of sepsis and therefore likely contribute
significantly to organ dysfunction (Simmons and Pittet, 2015).
Additionally, the coagulation and inflammation cascades are
tightly interwoven. Future iterations of our model should, at
minimum, take an approach similar to Kumar (2004) and
introduce coagulation agents such as tissue factor, thrombin,
and activated protein C, and their associated interactions, to
the acute inflammation system of ODEs. A better, albeit longer-
term, approach would be to enhance the fidelity of the BioGears
blood chemistry model. Some work has already begun to this
effect, as we are in the process of expanding our whole blood
substance definition to include AB antigens and antibodies
for the purpose of modeling blood transfusions. We could
introduce similar component definitions for key mediators in
both the coagulation and inflammation pathways. This effort
would involve transitioning the state variables in the acute
inflammatory model to BioGears substance data types, which in
turn would require obtaining validated synthesis, distribution,
and elimination data for each mediator. This more rigorous
strategy would effectively embed the inflammation model within
the BioGears compartment hierarchy, an advantageous outcome
for a number of reasons. We would have the ability to specify
exact locations of infections and more accurately model bacteria
transport to and circulation through the bloodstream. The fidelity
of our antibiotic model would then improve, as we would be able
to account for drug-pathogen interactions on a compartment
level. Finally, simulations of experimental therapies like activated
protein C would proceed more mechanistically rather than
relying on phenomenological relationships.

While we demonstrated that our model could perform
simulations personalized to specific patient information, we
must note that doing so required interaction with the BioGears
source code. The BioGears API does include a patient definition
interface; however, though it currently supports personalization
of characteristics such as age, gender, height, and weight and
physiological baselines such as SBP, RR, and metabolic rate, it
does not allow manipulation of the inflammation model. We will
thus work to validate our model over a wide range of parameters
so that we can expose key inflammation parameters to the API,
giving users the ability to define virtual patients with unique

responses to infection. This effort will be part of our larger push
to improve the BioGears user experience. We will shortly begin
development of a graphical user interface (GUI) that will contain
a library of pre-defined simulation scenarios and modules for
scenario building and output visualization. We hope that this
GUI will lower the barrier of entry to working with BioGears.

Finally, we are making progress on various improvements
to the overall fidelity of the BioGears Engine which, though
not specific to the sepsis model, will enhance it nonetheless.
For instance, we just begun to restructure the BioGears nervous
system so that it consolidates feedback from various systems into
a unified signal rather than reacting to inputs individually. Part of
this work will involve revisiting the current baroreceptor model
and the manner in which that model interacts with substances
that affect SVR, which has clear implications for how our sepsis
model responds to nitric oxide accumulation and norepinephrine
administration. Longer-term, we hope to increase the resolution
of our models from the tissue level to the cellular level to more
accurately capture biochemical activity. We have already made
some progress in this regard with a model of intracellular volume
regulation via active ion exchange. Conceivably, we could craft
a similar representation of respiration at the cellular level, which
would allow us to bettermodel mitochondrial dysfunction during
sepsis. We could then approach localized hypoxia and lactate
production and accumulation far more mechanistically. These
projects underscore both the breadth and depth of the physiology
that can be modeled with BioGears and speak to its potential
relevance across a wide range of in silico clinical studies.

CONCLUSION

By leveraging the BioGears framework, we have developed a
mathematicalmodel that forges a link between pathogen-induced
inflammatory dysfunction and sepsis. The model captures
the clinical mileposts used by physicians to describe sepsis
progression, including systemic inflammatory response, severe
sepsis, and fluid-resistant sepsis (septic shock). Furthermore, the
treatment protocols modeled show distinct patient outcomes,
indicating that the model is sensitive to intervention strategy
and timing. These features demonstrate the usefulness of this
model as a trainer for medical staff. With additional refinement,
this model could become a powerful tool for investigating the
efficacy of new therapies and uncovering heretofore unknown
sepsis features.

DATA AVAILABILITY STATEMENT

The code used to perform these simulations can be run without
modification (with the exception of the patient variability
simulations, which required editing the source code). This code
is available at: https://github.com/BioGearsEngine/core as of
commit #1979440a57b.

The scenario definitions used to generate data, the saved
engine states, and the results of these simulations can be found
in the in the BioGears Github Repository (https://github.com/
BioGearsEngine/paperData/tree/master/SepsisPublicationData).

Frontiers in Physiology | www.frontiersin.org 20 October 2019 | Volume 10 | Article 1321

https://github.com/BioGearsEngine/core
https://github.com/BioGearsEngine/paperData/tree/master/SepsisPublicationData
https://github.com/BioGearsEngine/paperData/tree/master/SepsisPublicationData
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


McDaniel et al. BioGears Sepsis and Treatment Model

AUTHOR CONTRIBUTIONS

MM designed the BioGears Sepsis Model, generated simulation
results, wrote the primary manuscript, and compiled the
completed version. JK assisted with drafting the Background and
Discussion. He provided invaluable clinical insight with respect
to model development, validation, and results interpretation.
SW is the lead BioGears software engineer. He is responsible
for maintaining and improving BioGears system architecture.
He contributed to the writing of the BioGears Architecture and
Design section. AB is the Principal Investigator of the BioGears
project and has made extensive model contributions to BioGears.
He critically reviewed each draft of this manuscript.

FUNDING

This work was funded through a subcontract provided by the
Advanced Modular Manikin (AMM) team (Advanced Modular
Manikin Phase 2 BioGears Support Contract for Professional

Services #0001539694). This work was supported by the US
Army Medical Research and Material Command under Contract
No. W81XWH-17-C-0172. The views, opinions, and/or findings
contained in this report are those of the author(s) and
should not be construed as an official Department of the
Army position, policy, or decision unless so designated by
other documentation.

ACKNOWLEDGMENTS

The BioGears team would like to acknowledge the entire
Advanced Modular Manikin project for their guidance: Dr.
Rob Sweet, David Hananel, Dr. Jake Barnes, Dr. Kenneth
Kiberenge, and Dr. Mojca Konia. We would also like to
acknowledge key members of the BioGears team at ARA:
Jenn Carter, Nathan Tatum, and Lucas Marin. Additional
thanks goes to our government support staff and subject
matter experts: Hugh Connacher, Harvey Magee, and
Dr. Brett Talbot.

REFERENCES

Ankomah, P., and Levin, B. R. (2014). Exploring the collaboration between

antibiotics and the immune response in the treatment of acute,

self-limiting infections. Proc. Natl. Acad. Sci. USA. 111, 8331–8338.

doi: 10.1073/pnas.1400352111

ARISE Investigators and the ANZICS Clinical Trials Group (2014). Goal-directed

resuscitation for patients with early septic shock. N. Engl. J. Med. 371,

1496–1506. doi: 10.1056/NEJMoa1404380

Batchelor, G. K. (1970). Slender-body theory for particles of arbitrary cross-

section in Stokes flow. J. Fluid Mech. 44, 419–440. doi: 10.1017/S00221120700

0191X

Beale, R. J., Hollenberg, S. M., Vincent, J. L., and Parrillo, J. E. (2004). Vasopressor

and inotropic support in septic shock: an evidence-based review. Crit. Care

Med. 32, S455–S465. doi: 10.1097/01.CCM.0000142909.86238.B1

Boron, W. F., and Boulpaep, E. L. (2017). Medical Physiology, 3rd Edn.

Philadelphia, PA: Elsevier.

Brady, R. (2017). Mathematical modeling of the acute inflammatory response &

cardiovascular dynamics in young men (Dissertation). North Carolina State

University, Raleigh, NC.

Brassard, P., Zaar, M., Thaning, P., Secher, N. H., and Rosenmeier, J. B. (2016).

Sympathetic vasoconstrictor responsiveness on the leg vasculature during

experimental endotoxemia and hypoxia in humans. Crit. Care Med. 44,

755–763. doi: 10.1097/CCM.0000000000001486

Brown, D., Namas, R. A., Almahmoud, K., Zaaqoq, A., Sarkar, J., Barclay,

D. A., et al. (2015). Trauma in silico: individual-specific mathematical

models and virtual clinical populations. Sci. Transl. Med. 7:285ra61.

doi: 10.1126/scitranslmed.aaa3636

Caudill, L., and Lynch, F. (2018). A mathematical model of the inflammatory

response to pathogen challenge. Bull. Math. Biol. 80, 2242–71.

doi: 10.1007/s11538-018-0459-6

Chelazzi, C., Villa, G., Mancinelli, P., De Gaudio, A. R., and Adembri, C. (2015).

Glycocalyx and sepsis-induced alterations in vascular permeability. Crit. Care

19, 26–33. doi: 10.1186/s13054-015-0741-z

Chow, C. C., Clermont, G., Kumar, R., Lagoa, C., Tawadrous, Z., Gallo, D., et al.

(2005). The acute inflammatory response in diverse shock states. Shock 24,

74–84. doi: 10.1097/01.shk.0000168526.97716.f3

Clipp, R. B., Bray, A., Metoyer, R., Thames, M. C., and Webb, J. B. (2016).

“Pharmacokinetic and pharmacodynamic modeling in BioGears,” in 2016 38th

Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBC) (Orlando, FL), 1467–1470.

De Backer, D., Creteur, J., Silva, E., and Vincent, J. L. (2003). Effects

of dopamine, norepinephrine, and epinephrine on the splanchnic

circulation in septic shock: which is best? Crit. Care Med. 31, 1659–1667.

doi: 10.1097/01.CCM.0000063045.77339.B6

De Backer, D., Donadello, K., Sakr, Y., Ospina-Tascon, G., Salgado, D., Scolleta,

S., et al. (2013). Microcirculatory alterations in severe sepsis: impact of time

of assessment and relationship with outcome. Crit. Care Med. 41, 791–799.

doi: 10.1097/CCM.0b013e3182742e8b

De Backer, D., Orbegozo Cortes, D., Donadello, K., and Vincent, J. L. (2014).

Pathophysiology ofmicrocirculatory dysfunction and the pathogenesis of septic

shock. Virulence 5, 73–79. doi: 10.4161/viru.26482

Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M. et al.

(2013). Surviving sepsis campaign: international guidelines for management

of severe sepsis and septic shock: 2012. Intensive Care Med. 39, 165–228.

doi: 10.1097/CCM.0b013e31827e83af

Domínguez-Hüttinger, E., Boon, N. J., Clarke, T. B., and Tanaka, R. J. (2017).

Mathematical modeling of Streptococcus pneumoniae colonization, invasive

infection, and treatment. Front. Physiol. 8:115. doi: 10.3389/fphys.2017.00115

Drake, R. E., Allen, S. J., Katz, J., Gabel, J. C., and Laine, G. A. (1986). Equivalent

circuit technique for lymph flow studies. Am. J. Physiol. Heart Circul. Physiol.

251, H1090–H1094. doi: 10.1152/ajpheart.1986.251.5.H1090

Frank, O. (1899). Die grundform des arteriellen pulses. Zeitschrift Biol.

37, 483–526.

Ince, C., and Mik, E. G. (2015). Microcirculatory and mitochondrial

hypoxia in sepsis, shock, and resuscitation. J. Appl. Physiol. 120, 226–235.

doi: 10.1152/japplphysiol.00298.2015

Iwashyna, T. J., Ely, E. W., Smith, D. M., and Langa, K. M. (2010). Long-term

cognitive impairment and functional disability among survivors of severe

sepsis. JAMA 304, 1787–1794. doi: 10.1001/jama.2010.1553

Jarrett, A. M., Cogan, N. G., and Shirtliff, M. E. (2015). Modelling the interaction

between the host immune response, bacterial dynamics and inflammatory

damage in comparison with immunomodulation and vaccination experiments.

Math. Med. Bio. 32, 285–306. doi: 10.1093/imammb/dqu008

Kumar, A., Robertts, D., Wood, K. E., Light, B., Parillo, J. E., Sharma, S., et al.

(2006). Duration of hypotension before initiation of effective antimicrobial

therapy is the critical determinant of survival in human septic shock. Crit. Care

Med. 34, 1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9

Kumar, R. (2004). The dynamics of acute inflammation (Dissertation). University

of Pittsburgh, Pittsburgh, PA.

Kumar, R., Clermont, J., Vodovotz, Y., and Chow, C. C. (2004). The dynamics of

acute inflammation. J. Theor. Biol. 230, 145–155. doi: 10.1016/j.jtbi.2004.04.044

Frontiers in Physiology | www.frontiersin.org 21 October 2019 | Volume 10 | Article 1321

https://doi.org/10.1073/pnas.1400352111
https://doi.org/10.1056/NEJMoa1404380
https://doi.org/10.1017/S002211207000191X
https://doi.org/10.1097/01.CCM.0000142909.86238.B1
https://doi.org/10.1097/CCM.0000000000001486
https://doi.org/10.1126/scitranslmed.aaa3636
https://doi.org/10.1007/s11538-018-0459-6
https://doi.org/10.1186/s13054-015-0741-z
https://doi.org/10.1097/01.shk.0000168526.97716.f3
https://doi.org/10.1097/01.CCM.0000063045.77339.B6
https://doi.org/10.1097/CCM.0b013e3182742e8b
https://doi.org/10.4161/viru.26482
https://doi.org/10.1097/CCM.0b013e31827e83af
https://doi.org/10.3389/fphys.2017.00115
https://doi.org/10.1152/ajpheart.1986.251.5.H1090
https://doi.org/10.1152/japplphysiol.00298.2015
https://doi.org/10.1001/jama.2010.1553
https://doi.org/10.1093/imammb/dqu008
https://doi.org/10.1097/01.CCM.0000217961.75225.E9
https://doi.org/10.1016/j.jtbi.2004.04.044
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


McDaniel et al. BioGears Sepsis and Treatment Model

Levy, M. M., Fink, M. P., Marshall, J. C., Abraham, E., Angus, D., Cook, D.,

et al. (2003). 2001 sccm/esicm/accp/ats/sis international sepsis definitions

conference. Intensive Care Med. 29, 530–538. doi: 10.1007/s00134-003-1662-x

Liu, V., Escobar, G. J., Greene, J. D., Soule, J., Whippy, A., Angus, D. C., et al.

(2014). Hospital deaths in patients with sepsis from 2 independent cohorts.

JAMA 312, 90–92. doi: 10.1001/jama.2014.5804

Macdonald, S. P., Taylor, D. M., Keijzers, G., Arendts, G., Fatovich, D. M.,

Kinnear, F. B., et al. (2017). REstricted fluid resuscitation in sepsis-associated

hypotension (REFRESH): study protocol for a pilot randomised controlled trial.

Trials 18:399. doi: 10.1186/s13063-017-2137-7

Macdonald, S. P. J., Keijzers, G., Taylor, D. M., Kinnear, F., Arendts, G., Fatovich,

D. M., et al. (2018). Restricted fluid resuscitation in suspected sepsis associated

hypotension (REFRESH): a pilot randomised controlled trial. Intensive Care

Med. 44, 2070–2078. doi: 10.1007/s00134-018-5433-0

Mai, M.,Wang, K., Huber, G., Kirby, M., Shattuck, M. D., and O’Hern, C. S. (2015).

Outcome prediction in mathematical models of immune response to infection.

PLoS ONE 10:e0135861. doi: 10.1371/journal.pone.0135861

Mazzoni, M. C., Borgström, P., Arfors, K. E., and Intaglietta, M. (1988).

Dynamic fluid redistribution in hyperosmotic resuscitation of hypovolemic

hemorrhage. Am. J. Physiol. Heart Circul. Physiol. 255, H629–H637.

doi: 10.1152/ajpheart.1988.255.3.H629

McDaniel, M., Carter, J., Keller, J. M., White, S. A., and Baird, A. (2019).

Open source pharmacokinetic/pharmacodynamic framework: tutorial on

the BioGears Engine. CPT Pharmacometrics Syst. Pharmacol. 8, 12–25.

doi: 10.1002/psp4.12371

Mouncey, P. R., Osborn, T. M., Power, G. S., Harrison, D. A., Sadique, M. Z.,

Grieve, R. D., et al. (2015). Protocolised Management In Sepsis (ProMISe): a

multicentre randomised controlled trial of the clinical effectiveness and cost-

effectiveness of early, goal-directed, protocolised resuscitation for emerging

septic shock. Health Technol. Assess. 19, 1–150. doi: 10.3310/hta19970

Mulivor, A. W., and Lipowsky, H. H. (2004). Inflammation-and ischemia-induced

shedding of venular glycocalyx. Am. J. Physiol. Heart Circul. Physiol. 286,

H1672–H1680. doi: 10.1152/ajpheart.00832.2003

Olufsen, M. S., and Nadim, A. (2004). On deriving lumped models for blood

flow and pressure in the systemic arteries. Math. Biosci. Eng. 1, 61–80.

doi: 10.3934/mbe.2004.1.61

Ottesen, J. T., Olufsen, M. S., and Larsen, J. K. (2004). Applied Mathematical

Models in Human Physiology. Philadelphia, PA: Society for Industrial and

Applied Mathematics.

Pietribiasi, M., Waniewski, J., Załuska, A., Załuska, W., and Lindholm, B. (2016).

Modelling transcapillary transport of fluid and proteins in hemodialysis

patients. PLoS ONE 11:e0159748. doi: 10.1371/journal.pone.0159748

ProCESS Investigators (2014). A randomized trial of protocol-based care for early

septic shock. N. Engl. J. Med. 370, 1683–1693. doi: 10.1056/NEJMoa1401602

Radaelli, A., Castiglioni, P., Cerrito, M. G., De Carlini, C., Soriano, F., Di

Rienzo, M., et al. (2013). Infusion of Escherichia coli lipopolysaccharide

toxin in rats produces an early and severe impairment of baroreflex

function in absence of blood pressure changes. Shock 39, 204–209.

doi: 10.1097/SHK.0b013e3182767daf

Regoes, R. R., Wiuff, C., Zappala, R. M., Garner, K. N., Baquero, F., and Levin,

B. R. (2004). Pharmacodynamic functions: a multiparameter approach to the

design of antibiotic treatment regimens. Antimicrobial Agents Chemother. 48,

3670–3676. doi: 10.1128/AAC.48.10.3670-3676.2004

Reynolds, A., Rubin, J., Clermont, G., Day, J., Vodovotz, Y., and Ermentrout, G.

B. (2006). A reduced mathematical model of the acute inflammatory response:

I. Derivation of model and analysis of anti-inflammation. J. Theor. Biol. 242,

220–236. doi: 10.1016/j.jtbi.2006.02.016

Reynolds, A. M. (2008).Mathematical models of acute inflammation and a full lung

model of gas exchange under inflammatory stress (Dissertation). University of

Pittsburgh, Pittsburgh, PA.

Rhee, C., Dantes, R., Epstein, L., Murphy, D. J., Seymour, C. W., Iwashyna, T. J.,

et al. (2017). Incidence and trends of sepsis in US hospitals using clinical vs

claims data, 2009-2014. JAMA 318, 1241–1249. doi: 10.1001/jama.2017.13836

Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antoelli, M., Ferrer,

R., et al. (2017). Surviving sepsis campaign: international guidelines for

management of sepsis and septic shock: 2016. Intensive Care Med. 43, 304–377.

doi: 10.1007/s00134-017-4683-6

Rippe, B., and Haraldsson, B. (1994). Transport of macromolecules across

microvascular walls: the two-pore theory. Physiol. Rev. 74, 163–219.

doi: 10.1152/physrev.1994.74.1.163

Sakr, Y., Dubois, M. J., and De Backer, D. (2004). Persistent

microcirculatory alterations are associated with organ failure and

death in patients with septic shock. Crit. Care Med. 32, 1825–1831.

doi: 10.1097/01.CCM.0000138558.16257.3F

Sayk, F., Vietheer, A., Schaaf, B., Wellhoener, P., Weitz, G., Lehnert, H., et al.

(2008). Endotoxemia causes central downregulation of sympathetic vasomotor

tone in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295,

R891–R898. doi: 10.1152/ajpregu.90444.2008

Schirm, S., Ahnert, P., Wienhold, S., Mueller-Redetzky, H., Nouailles-Kursar,

G., Loeffler, M., et al. (2016). A biomathematical model of pneumococcal

lung infection and antibiotic treatment in mice. PLOS ONE. 11:e0156047.

doi: 10.1371/journal.pone.0156047

Seymour, C. W., Gesten, F., Prescott, H. C., Friedrish, M. E., Iwashyna, T.

J., Phillips, G. S., et al. (2017). Time to treatment and mortality during

mandated emergency care for sepsis. N. Engl. J. Med. 376, 2235–2244

doi: 10.1056/NEJMoa1703058

Shi, Z., Wu, C. J., Ben-Arieh, D., and Simpson, S. Q. (2015). Mathematical model

of innate and adaptive immunity of sepsis: a modeling and simulation study of

infectious disease. Biomed Res. Int. 2015:31. doi: 10.1155/2015/504259

Simmons, J., and Pittet, J. (2015). The coagulophaty of sepsis. Curr.

Opin. Anaesthesiol. 28, 227–236. doi: 10.1097/ACO.00000000000

00163

Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D.,

Bauer, M., et al. (2016). The third international consensus definitions for

sepsis and septic shock (Sepsis-3). JAMA 315, 801–810. doi: 10.1001/jama.2016.

0287

Smith, A. M., McCullers, J. A., and Adler, F. R. (2011). Mathematical model of a

three-stage innate immune response to a pneumococcal lung infection. J. Theor.

Biol. 276, 106–116. doi: 10.1016/j.jtbi.2011.01.052

Song, S. O. K., Hogg, J., Peng, Z.-Y., Parker, R., Kellum, J., and Clermont, G. (2012).

Ensemble models of neutrophil tracking in severe sepsis. PLoS Comput. Biol.

8:e1002422. doi: 10.1371/journal.pcbi.1002422

Sörgel, F., and Kinzig, M. (1993). The chemistry, pharmacokinetics, and tissue

distribution of piperacillin/tazobactam. J. Antimicrob. Chemother. 31(Suppl.

A), 39–60. doi: 10.1093/jac/31.suppl_A.39

Tohyama, T., Saku, K., Kawada, T., Kishi, T., Yoshida, K., Nishikawa, T.,

et al. (2018). Impact of lipopolysaccharide-induced acute inflammation on

baroreflect-controlled sympathetic arterial pressure regulation. PLoS ONE

13:e0190830. doi: 10.1371/journal.pone.0190830

Torio, C. M., and Moore, B. J. (2016). National Inpatient Hospital Costs: The Most

Expensive Conditions by Payer, 2013. HCUP Statistical Brief #204. Agency for

Healthcare Research and Quality.

Vincent, J. L., Zhang, H., Szabo, C., and Preiser, J. C. (2000). Effects of nitric

oxide in septic shock. Am. J. Respir. Crit. Care Med. 161, 1781–1785.

doi: 10.1164/ajrccm.161.6.9812004

Westerhof, N., Lankhaar, J. W., and Westerhof, B. E. (2008).

The arterial windkessel. Med. Biol. Eng. Comput. 47, 131–141.

doi: 10.1007/s11517-008-0359-2

Young, J. D. (2004). The heart and circulation in severe sepsis. Br. J. Anaesth. 93,

114–120. doi: 10.1093/bja/aeh171

Zhang, J. M., and An, J. (2007). Cytokines, inflammation and pain. Int. Anesthesiol.

Clin. 45, 27–37. doi: 10.1097/AIA.0b013e318034194e

Zuev, S. M., Kingsmore, S. F., and Gessler, D. (2006). Sepsis progression

and outcome: a dynamical model. Theor. Biol. Med. Model. 3:8.

doi: 10.1186/1742-4682-3-8

Conflict of Interest: MM, SW, and AB are employed by Applied Research

Associates.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 McDaniel, Keller, White and Baird. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physiology | www.frontiersin.org 22 October 2019 | Volume 10 | Article 1321

https://doi.org/10.1007/s00134-003-1662-x
https://doi.org/10.1001/jama.2014.5804
https://doi.org/10.1186/s13063-017-2137-7
https://doi.org/10.1007/s00134-018-5433-0
https://doi.org/10.1371/journal.pone.0135861
https://doi.org/10.1152/ajpheart.1988.255.3.H629
https://doi.org/10.1002/psp4.12371
https://doi.org/10.3310/hta19970
https://doi.org/10.1152/ajpheart.00832.2003
https://doi.org/10.3934/mbe.2004.1.61
https://doi.org/10.1371/journal.pone.0159748
https://doi.org/10.1056/NEJMoa1401602
https://doi.org/10.1097/SHK.0b013e3182767daf
https://doi.org/10.1128/AAC.48.10.3670-3676.2004
https://doi.org/10.1016/j.jtbi.2006.02.016
https://doi.org/10.1001/jama.2017.13836
https://doi.org/10.1007/s00134-017-4683-6
https://doi.org/10.1152/physrev.1994.74.1.163
https://doi.org/10.1097/01.CCM.0000138558.16257.3F
https://doi.org/10.1152/ajpregu.90444.2008
https://doi.org/10.1371/journal.pone.0156047
https://doi.org/10.1056/NEJMoa1703058
https://doi.org/10.1155/2015/504259
https://doi.org/10.1097/ACO.0000000000000163
https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1016/j.jtbi.2011.01.052
https://doi.org/10.1371/journal.pcbi.1002422
https://doi.org/10.1093/jac/31.suppl_A.39
https://doi.org/10.1371/journal.pone.0190830
https://doi.org/10.1164/ajrccm.161.6.9812004
https://doi.org/10.1007/s11517-008-0359-2
https://doi.org/10.1093/bja/aeh171
https://doi.org/10.1097/AIA.0b013e318034194e
https://doi.org/10.1186/1742-4682-3-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	A Whole-Body Mathematical Model of Sepsis Progression and Treatment Designed in the BioGears Physiology Engine
	Introduction
	Materials and Methods
	Overview of BioGears Architecture and Design
	Common Data Model
	Synthetic Environment
	BioGears Engine

	BioGears Sepsis Model
	Acute Inflammatory Response (AIR) Model
	Endothelial Dysfunction and Hypovolemia
	Microcirculatory Distress
	Systemic Vasodilation
	Other Pathophysiology
	Interventions
	Infection and Sepsis Action Initiation

	Model Simulations
	Infection Action Comparisons
	Virtual Patient Variability
	Sepsis Treatment Scenarios


	Results
	Infection Action Comparisons
	Virtual Patient Variability
	Sepsis Treatment Scenarios

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


